1,326
Views
43
CrossRef citations to date
0
Altmetric
Review Articles

Liposome–ligand conjugates: a review on the current state of art

&
Pages 225-244 | Received 09 Jun 2019, Accepted 23 Jul 2019, Published online: 13 Aug 2019

References

  • Hubbell JA, Chilkoti A. Chemistry. Nanomaterials for drug delivery. Science. 2012;337:303–305.
  • Ventola CL. The nanomedicine revolution: part 1: emerging concepts. P T. 2012;37:512–525.
  • Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65:36–48.
  • Ozpolat B, Sood AK, Lopez-Berestein G. Liposomal siRNA nanocarriers for cancer therapy. Adv Drug Deliv Rev. 2014;66:110–116.
  • He H, Lu Y, Qi J, et al. Adapting liposomes for oral drug delivery. Acta Pharm Sin B. 2019;9:36–48.
  • Uhumwangho MU, Okor RS. Current trends in the production and biomedical applications of liposomes: a review. J Med Biomed Res. 2005;2005:9–21.
  • Laouini A, Jaafar-Maalej C, Limayem-Blouza I, et al. Preparation, characterization and applications of liposomes: state of the art. J Coll Sci Biotechnol. 2012;1:147–168.
  • Bangham AD, Horne RW. Negative staining of phospholipids + their structural modification by-surface active agents as observed in electron microscope. J Mol Biol. 1964;8:660–668.
  • Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomed. 2015;10:975–999.
  • Sessa G, Weissmann G. Phospholipid spherules (liposomes) as a model for biological membranes. J Lip Res. 1968;9:310–310.
  • Fanciullino R, Ciccolini J. Liposome-encapsulated anticancer drugs: still waiting for the magic bullet? CMC. 2009;16:4361–4371.
  • Tanriverdi ST, Hilmioglu Polat S, Yesim Metin D, et al. Terbinafine hydrochloride loaded liposome film formulation for treatment of onychomycosis: in vitro and in vivo evaluation. J Lipos Res. 2016;26:163–173.
  • Eroglu I, Azizoglu E, Ozyazici M, et al. Effective topical delivery systems for corticosteroids: dermatological and histological evaluations. Drug Deliv. 2016;23:1502–1513.
  • Seleci M, Ag Seleci D, Scheper T, et al. Theranostic liposome-nanoparticle hybrids for drug delivery and bioimaging. Int J Mol Sci. 2017;18:E1415.
  • Carugo D, Bottaro E, Owen J, et al. Liposome production by microfluidics: potential and limiting factors. Sci Rep. 2016;6:25876.
  • Gregoriadis G. Liposomes in drug delivery: how it all happened. Pharmaceutics. 2016;8:19.
  • Gregoriadis G, Ryman BE. Lysosomal localization of fructofuranosidase-containing liposomes injected into rats. Biochem J. 1972;129:123–133.
  • Bulbake U, Doppalapudi S, Kommineni N, et al. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9:12.
  • Singh RP, Gangadharappa HV, Mruthunjaya K. Phospholipids: unique carriers for drug delivery systems. J Drug Deliv Sci Technol. 2017;39:166–179.
  • Frezard F. Liposomes: from biophysics to the design of peptide vaccines. Braz J Med Biol Res. 1999;32:181–189.
  • Li J, Wang XL, Zhang T, et al. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci. 2015;10:81–98.
  • Sharma A, Sharma US. Liposomes in drug delivery: progress and limitations. Int J Pharm. 1997;154:123–140.
  • van Hoogevest P. Review – an update on the use of oral phospholipid excipients. Eur J Pharm Sci. 2017;108:1–12.
  • Pollard D, Earnshaw WC, Lippincott-Schwartz J, et al. Membrane structure and dynamics In: Pollard D, Earnshaw WC, Lippincott-Schwartz J, et al. editors. Cell biology. Amsterdam (Netherlands): Elsevier Inc.; 2017. p. 227–239.
  • Senior J, Gregoriadis G. Stability of small unilamellar liposomes in serum and clearance from the circulation – the effect of the phospholipid and cholesterol components. Life Sci. 1982;30:2123–2136.
  • Briuglia ML, Rotella C, McFarlane A, et al. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res. 2015;5:231–242.
  • Shabbits JA, Chiu GNC, Mayer LD. Development of an in vitro drug release assay that accurately predicts in vivo drug retention for liposome-based delivery systems. J Control Release. 2002;84:161–170.
  • Yoshihara E, Nakae T. Cytolytic activity of liposomes containing stearylamine. Biochim Biophys Acta. 1986;854:93–101.
  • Boumann HA, Gubbens J, Koorengevel MC, et al. Depletion of phosphatidylcholine in yeast induces shortening and increased saturation of the lipid acyl chains: evidence for regulation of intrinsic membrane curvature in a eukaryote. MBoC. 2006;17:1006–1017.
  • Krukemeyer MG, Krenn V, Huebner F, et al. History and possible uses of nanomedicine based on nanoparticles and nanotechnological progress. J Nanomed Nanotechnol. 2015;6:336–342.
  • Rudokas M, Najlah M, Alhnan MA, et al. Liposome delivery systems for inhalation: a critical review highlighting formulation issues and anticancer applications. Med Princ Pract. 2016;25:60–72.
  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8:102.
  • Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol Rev. 2016;68:701–787.
  • Li M, Du C, Guo N, et al. Composition design and medical application of liposomes. Eur J Med Chem. 2019;164:640–653.
  • Gabizon A, Papahadjopoulos D. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci USA. 1988;85:6949–6953.
  • Sercombe L, Veerati T, Moheimani F, et al. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286.
  • Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1:297–315.
  • Batzri S, Korn ED. Single bilayer liposomes prepared without sonication. Biochim Biophys Acta. 1973;298:1015–1019.
  • Allen TM, Hansen C, Rutledge J. Liposomes with prolonged circulation times: factors affecting uptake by reticuloendothelial and other tissues. Biochim Biophys Acta. 1989;981:27–35.
  • Dhankhar R, Vyas SP, Jain AK, et al. Advances in novel drug delivery strategies for breast cancer therapy. Artif Cells Blood Substit Immobil Biotechnol. 2010;38:230–249.
  • Noble GT, Stefanick JF, Ashley JD, et al. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol. 2014;32:32–45.
  • Drummond DC, Meyer O, Hong K, et al. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev. 1999;51:691–743.
  • Mouritsen OG. Lipids, curvature, and nano-medicine. Eur J Lipid Sci Technol. 2011;113:1174–1187.
  • Northfelt DW, Dezube BJ, Thommes JA, et al. Efficacy of pegylated-liposomal doxorubicin in the treatment of AIDS-related Kaposi’s sarcoma after failure of standard chemotherapy. JCO. 1997;15:653–659.
  • Belfiore L, Saunders DN, Ranson M, et al. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: challenges and opportunities. J Control Release. 2018;277:1–13.
  • Zangabad PS, Mirkiani S, Shahsavari S, et al. Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnol Rev. 2018;7:95–122.
  • Yatvin MB, Weinstein JN, Dennis WH, et al. Design of liposomes for enhanced local release of drugs by hyperthermia. Science. 1978;202:1290–1293.
  • Ponce AM, Viglianti BL, Yu D, et al. Magnetic resonance imaging of temperature-sensitive liposome release: drug dose painting and antitumor effects. J Natl Cancer Inst. 2007;99:53–63.
  • Hamzehzadeh L, Imanparast A, Tajbakhsh A, et al. New approaches to use nanoparticles for treatment of colorectal cancer; a brief review. Nanomed Res J. 2016;1:59–68.
  • Needham D, Anyarambhatla G, Kong G, et al. A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res. 2000;60:1197–1201.
  • Cheng WY, Cheng H, Wan SS, et al. Dual-stimulus-responsive fluorescent supramolecular prodrug for antitumor drug delivery. Chem Mater. 2017;29:4218–4226.
  • Zhang WJ, Hong CY, Pan CY. Fabrication of reductive-responsive prodrug nanoparticles with superior structural stability by polymerization-induced self-assembly and functional nanoscopic platform for drug delivery. Biomacromolecules. 2016;17:2992–2999.
  • Liu X, Huang G. Formation strategies, mechanism of intracellular delivery and potential clinical applications of pH-sensitive liposomes. Asian J Pharm Sci. 2013;8:319–328.
  • Ropert C, Lavignon M, Dubernet C, et al. Oligonucleotides encapsulated in pH sensitive liposomes are efficient toward Friend retrovirus. Biochem Biophys Res Commun. 1992;183:879–885.
  • Ding Y, Cui W, Sun D, et al. In vivo study of doxorubicin-loaded cell-penetrating peptide-modified pH-sensitive liposomes: biocompatibility, bio-distribution, and pharmacodynamics in BALB/c nude mice bearing human breast tumors. DDDT. 2017;11:3105–3117.
  • Zhang XM, Lin YX, Gillies RJ. Tumor pH and its measurement. J Nucl Med. 2010;51:1167–1170.
  • Yavlovich A, Viard M, Gupta K, et al. Low-visibility light-intensity laser-triggered release of entrapped calcein from 1,2-bis (tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine liposomes is mediated through a type I photoactivation pathway. Int J Nanomed. 2013;8:2575–2587.
  • Thompson DH, Gerasimov OV, Wheeler JJ, et al. Triggerable plasmalogen liposomes: improvement of system efficiency. Biochim Biophys Acta. 1996;1279:25–34.
  • Bibi S, Lattmann E, Mohammed AR, et al. Trigger release liposome systems: local and remote controlled delivery? J Microencapsul. 2012;29:262–276.
  • Jain A, Jain SK. Stimuli-responsive smart liposomes in cancer targeting. Curr Drug Targets. 2018;19:259–270.
  • Gogoi M, Kumar N, Patra S. Multifunctional magnetic liposomes for cancer imaging and therapeutic applications In: Holban AM, Grumezescu AM, editors. Nanoarchitectonics for smart delivery and drug targeting. Oxford (UK): William Andrew Applied Science Publishers; 2016. p. 743–782.
  • Hermanson GT. Bioconjugate techniques. London: Academic Press; 2013.
  • Marques-Gallego P, de Kroon AI. Ligation strategies for targeting liposomal nanocarriers. Biomed Res Int. 2014;2014:129458.
  • Loughrey HC, Wong KF, Choi LS, et al. Protein-liposome conjugates with defined size distributions. Biochim Biophys Acta. 1990;1028:73–81.
  • Nag OK, Awasthi V. Surface engineering of liposomes for stealth behavior. Pharmaceutics. 2013;5:542–569.
  • Di Marco M, Shamsuddin S, Razak KA, et al. Overview of the main methods used to combine proteins with nanosystems: absorption, bioconjugation, and encapsulation. Int J Nanomed. 2010;5:37–49.
  • Shek PN, Heath TD. Immune response mediated by liposome-associated protein antigens. III. Immunogenicity of bovine serum albumin covalently coupled to vesicle surface. Immunology. 1983;50:101–106.
  • Mishra P, Nayak B, Dey RK. PEGylation in anti-cancer therapy: an overview. Asian J Pharm Sci. 2016;11:337–348.
  • Yin L, Su C, Ren TM, et al. MSAll strategy for comprehensive quantitative analysis of PEGylated-doxorubicin, PEG and doxorubicin by LC-high resolution q-q-TOF mass spectrometry coupled with all window acquisition of all fragment ion spectra. Analyst. 2017;142:4279–4288.
  • Riaz MK, Riaz MA, Zhang X, et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: a review. IJMS. 2018;19:195.
  • Gupta AS, von Recum A. Bioconjugation strategies: lipids, liposomes, polymersomes, and microbubbles. In: Narain R, editor. Chemistry of bioconjugates: synthesis, characterization, and biomedical applications. Hoboken (NJ): John Wiley & Sons, Inc.; 2014. p. 185.
  • Ringsdorf H. Structure and properties of pharmacologically active polymers. J Polym Sci C Polym Symp. 1975;51:135–153.
  • Martin FJ, Papahadjopoulos D. Irreversible coupling of immunoglobulin fragments to preformed vesicles. An improved method for liposome targeting. J Biol Chem. 1982;257:286–288.
  • Hutchinson FJ, Francis SE, Lyle IG, et al. The characterization of liposomes with covalently attached proteins. Biochim Biophys Acta. 1989;978:17–24.
  • Friedman AD, Claypool SE, Liu R. The smart targeting of nanoparticles. Curr Pharm Des. 2013;19:6315–6329.
  • Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics. 2012;2:3–44.
  • Encapsula Nanosciences. Immunodox®-Succinyl (PEGylated). 2019 [cited 2019 Jun 9]. Available from: https://encapsula.com/products/liposomal-doxorubicin/surface-reactive-doxorubicin-liposomes-immunodox/amine-reactive-doxorubicin-liposomes/immunodox-succinyl-pegylated/
  • Montalbetti C, Falque V. Amide bond formation and peptide coupling. Tetrahedron. 2005;61:10827–10852.
  • Marrazza G, Lucarelli F, Mascini M. Carbon electrodes in dna hybridisation research. Persp Bioanal. 2005;1:279–296.
  • Werengowska-Ciecwierz K, Wisniewski M, Terzyk AP, et al. The chemistry of bioconjugation in nanoparticles-based drug delivery system. Adv Cond Matter Phys. 2015;2015. DOI:10.1155/2015/198175
  • Nakajima N, Ikada Y. Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media. Bioconjug Chem. 1995;6:123–130.
  • Maruyama K, Takizawa T, Takahashi N, et al. Targeting efficiency of PEG-immunoliposome-conjugated antibodies at PEG terminals. Adv Drug Deliver Rev. 1997;24:235–242.
  • Kung VT, Redemann CT. Synthesis of carboxyacyl derivatives of phosphatidylethanolamine and use as an efficient method for conjugation of protein to liposomes. Biochim Biophys Acta. 1986;862:435–439.
  • Mahesh S, Tang KC, Raj M. Amide bond activation of biological molecules. Molecules. 2018;23:2615.
  • Ansell SM, Harasym TO, Tardi PG, et al. Antibody conjugation methods for active targeting of liposomes. Methods Mol Med. 2000;25:51–68.
  • Smyth DG, Konigsberg W, Blumenfeld OO. Reactions of N-ethylmaleimide with peptides and amino acids. Biochem J. 1964;91:589–589
  • Visser CC, Voorwinden LH, Harders LR, et al. Coupling of metal containing homing devices to liposomes via a maleimide linker: use of TCEP to stabilize thiol-groups without scavenging metals. J Drug Target. 2004;12:569–573.
  • Schelte P, Boeckler C, Frisch B, et al. Differential reactivity of maleimide and bromoacetyl functions with thiols: application to the preparation of liposomal diepitope constructs. Bioconjugate Chem. 2000;11:118–123.
  • Shahinian S, Silvius JR. A novel strategy affords high-yield coupling of antibody Fab' fragments to liposomes. Biochim Biophys Acta. 1995;1239:157–167.
  • Winther JR, Thorpe C. Quantification of thiols and disulfides. Biochim Biophys Acta. 2014;1840:838–846.
  • Chandrasekhar S, Epling DE, Sophocleous AM, et al. Thiol-disulfide exchange in peptides derived from human growth hormone. J Pharm Sci. 2014;103:1032–1042.
  • Shaik MS, Kanikkannan N, Singh M. Conjugation of anti-My9 antibody to stealth monensin liposomes and the effect of conjugated liposomes on the cytotoxicity of immunotoxin. J Control Release. 2001;76:285–295.
  • Kolmel DK, Kool ET. Oximes and hydrazones in bioconjugation: mechanism and catalysis. Chem Rev. 2017;117:10358–10376.
  • Zhong XB, Reynolds R, Kidd JR, et al. Single-nucleotide polymorphism genotyping on optical thin-film biosensor chips. Proc Natl Acad Sci USA. 2003;100:11559–11564.
  • Kozlov IA, Melnyk PC, Stromsborg KE, et al. Efficient strategies for the conjugation of oligonucleotides to antibodies enabling highly sensitive protein detection. Biopolymers. 2004;73:621–630.
  • Gershoni JM, Bayer EA, Wilchek M. Blot analyses of glycoconjugates: enzyme-hydrazide – a novel reagent for the detection of aldehydes. Anal Biochem. 1985;146:59–63.
  • Bayer EA, Safars M, Wilchek M. Selective labeling of sulfhydryls and disulfides on blot transfers using avidin-biotin technology: studies on purified proteins and erythrocyte membranes. Anal Biochem. 1987;161:262–271.
  • Harding JA, Engbers CM, Newman MS, et al. Immunogenicity and pharmacokinetic attributes of poly(ethylene glycol)-grafted immunoliposomes. Biochim Biophys Acta. 1997;1327:181–192.
  • Chua MM, Fan ST, Karush F. Attachment of immunoglobulin to liposomal membrane via protein carbohydrate. Biochim Biophys Acta. 1984;800:291–300.
  • Irby D, Du CG, Li F. Lipid-drug conjugate for enhancing drug delivery. Mol Pharm. 2017;14:1325–1338.
  • Xiong MP, Yanez JA, Remsberg CM, et al. Formulation of a geldanamycin prodrug in mPEG-b-PCL micelles greatly enhances tolerability and pharmacokinetics in rats. J Control Release. 2008;129:33–40.
  • Perkins WR, Ahmad I, Li XG, et al. Novel therapeutic nano-particles (lipocores): trapping poorly water soluble compounds. Int J Pharm. 2000;200:27–39.
  • Guo X, Szoka FC. Steric stabilization of fusogenic liposomes by a low-pH sensitive PEG-diortho ester-lipid conjugate. Bioconjugate Chem. 2001;12:291–300.
  • Livnah O, Bayer EA, Wilchek M, et al. Three-dimensional structures of avidin and the avidin-biotin complex. Proc Natl Acad Sci USA. 1993;90:5076–5080.
  • Bratthauer GL. The avidin-biotin complex (ABC) method and other avidin-biotin binding methods. Methods Mol Biol. 2010;588:257–270.
  • Koo H, Lee S, Na JH, et al. Bioorthogonal copper-free click chemistry in vivo for tumor-targeted delivery of nanoparticles. Angew Chem Int Ed. 2012;51:11836–11840.
  • Sun Q, Kang Z, Xue L, et al. A collaborative assembly strategy for tumor-targeted siRNA delivery. J Am Chem Soc. 2015;137:6000–6010.
  • Lombardo D, Calandra P, Barreca D, et al. Soft interaction in liposome nanocarriers for therapeutic drug delivery. Nanomaterials (Basel). 2016;6:125.
  • Aharon D, Weitman H, Ehrenberg B. The effect of liposomes’ surface electric potential on the uptake of hematoporphyrin. Biochim Biophys Acta. 2011;1808:2031–2035.
  • Adhikari P, Pal P, Das AK, et al. Nano lipid-drug conjugate: an integrated review. Int J Pharm. 2017;529:629–641.
  • Manjappa AS, Chaudhari KR, Venkataraju MP, et al. Antibody derivatization and conjugation strategies: application in preparation of stealth immunoliposome to target chemotherapeutics to tumor. J Control Release. 2011;150:2–22.
  • Neupane YR, Sabir MD, Ahmad N, et al. Lipid drug conjugate nanoparticle as a novel lipid nanocarrier for the oral delivery of decitabine: ex vivo gut permeation studies. Nanotechnology. 2013;24:415102.
  • Stuhne-Sekalec L, Stanacev NZ. Liposomes as cyclosporin A carriers: the influence of ordering of hydrocarbon chains of phosphatidylglycerol liposomes on the association with and topography of cyclosporin A. J Microencapsul. 1991;8:283–294.
  • Maruyama K, Ishida O, Takizawa T, et al. Possibility of active targeting to tumor tissues with liposomes. Adv Drug Deliv Rev. 1999;40:89–102.
  • Leserman LD, Machy P, Barbnet J. Covalent coupling of monoclonal antibodies and protein A to liposomes: specific interaction with cells in vitro and in vivo. In: Gregoriadis G, editor. Liposome technology. Vol.2. Boca Raton (FL): Taylor and Francis; 2018. p. 29–40.
  • Feng L, Mumper RJ. A critical review of lipid-based nanoparticles for taxane delivery. Cancer Lett. 2013;334:157–175.
  • Palmer JL. Nisonoff A. Reduction and reoxidation of a critical disulfide bond in rabbit antibody molecule. J Biol Chem. 1963;238:2393.
  • Sun MMC, Beam KS, Cerveny CG, et al. Reduction-alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjugate Chem. 2005;16:1282–1290.
  • Raso V, Lawrence J. Carboxylic ionophores enhance the cytotoxic potency of ligand- and antibody-delivered ricin A chain. J Exp Med. 1984;160:1234–1240.
  • Griffin T, Raso V. Monensin in lipid emulsion for the potentiation of ricin A chain immunotoxins. Cancer Res. 1991;51:4316–4322.
  • Demidenko ZN, Zubova SG, Bukreeva EI, et al. Rapamycin decelerates cellular senescence. Cell Cycle. 2009;8:1888–1895.
  • Demidenko ZN, Shtutman M, Blagosklonny MV. Pharmacologic inhibition of MEK and PI-3K converges on the mTOR/S6 pathway to decelerate cellular senescence. Cell Cycle. 2009;8:1896–1900.
  • Demidenko ZN, Blagosklonny MV. Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle. 2008;7:3355–3361.
  • Nguyen HT, Thapa RK, Shin BS, et al. CD9 monoclonal antibody-conjugated PEGylated liposomes for targeted delivery of rapamycin in the treatment of cellular senescence. Nanotechnology. 2017;28:095101.
  • Heath WR, Carbone FR. Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol. 2001;19:47–64.
  • Allison AC, Gregoriadis G. Liposomes as immunological adjuvants. Nature. 1974;252:252–252.
  • Alving CR. Liposomes as carriers of vaccines. In: Talwar GP, editor. Progress in vaccinology. Vol. 2. New York: Springer; 1989. p. 429–437.
  • Tanaka Y, Taneichi M, Kasai M, et al. Liposome-coupled antigens are internalized by antigen-presenting cells via pinocytosis and cross-presented to CD8 T cells. PLoS One. 2010;5:e15225.
  • Taneichi M, Ishida H, Kajino K, et al. Antigen chemically coupled to the surface of liposomes are cross-presented to CD8+ T cells and induce potent antitumor immunity. J Immunol. 2006;177:2324–2330.
  • Dissanayake S, Denny WA, Gamage S, et al. Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides. J Control Release. 2017;250:62–76.
  • Silva S, Almeida AJ, Vale N. Combination of cell-penetrating peptides with nanoparticles for therapeutic application: a review. Biomolecules. 2019;9:22.
  • Zhang Y, Zhang L, Hu Y, et al. Cell-permeable NF-kappaB inhibitor-conjugated liposomes for treatment of glioma. J Control Release. 2018;289:102–113.
  • Kang MH, Park MJ, Yoo HJ, et al. RIPL peptide (IPLVVPLRRRRRRRRC)-conjugated liposomes for enhanced intracellular drug delivery to hepsin-expressing cancer cells. Eur J Pharm Biopharm. 2014;87:489–499.
  • Kwon SS, Kim SY, Kong BJ, et al. Cell penetrating peptide conjugated liposomes as transdermal delivery system of Polygonum aviculare L. extract. Int J Pharm. 2015;483:26–37.
  • Cobb M. Oswald Avery, DNA, and the transformation of biology. Curr Biol. 2014;24:R55–60.
  • Jones MR, Seeman NC, Mirkin CA. Nanomaterials. Programmable materials and the nature of the DNA bond. Science. 2015;347:1260901.
  • Pinheiro AV, Han D, Shih WM, et al. Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol. 2011;6:763–772.
  • Alberts B, Lewis J, Raff M, et al. Molecular biology of the cell. New York (NY): Garland Science; 2002.
  • Wonder E, Simon-Gracia L, Scodeller P, et al. Competition of charge-mediated and specific binding by peptide-tagged cationic liposome-DNA nanoparticles in vitro and in vivo. Biomaterials. 2018;166:52–63.
  • Lopez A, Liu J. DNA oligonucleotide-functionalized liposomes: bioconjugate chemistry, biointerfaces, and applications. Langmuir. 2018;34:15000–15013.
  • Laursen MB, Pakula MM, Gao S, et al. Utilization of unlocked nucleic acid (UNA) to enhance siRNA performance in vitro and in vivo. Mol Biosyst. 2010;6:862–870.
  • Liu J, Cao Z, Lu Y. Functional nucleic acid sensors. Chem Rev. 2009;109:1948–1998.
  • van der Meulen SA, Dubacheva GV, Dogterom M, et al. Quartz crystal microbalance with dissipation monitoring and spectroscopic ellipsometry measurements of the phospholipid bilayer anchoring stability and kinetics of hydrophobically modified DNA oligonucleotides. Langmuir. 2014;30:6525–6533.
  • Jakobsen U, Simonsen AC, Vogel S. DNA controlled assembly of soft nanoparticles. Nucleic Acids Symp Ser. 2008; 52:225–226.
  • Cogoi S, Jakobsen U, Pedersen EB, et al. Lipid-modified G4-decoy oligonucleotide anchored to nanoparticles: delivery and bioactivity in pancreatic cancer cells. Sci Rep. 2016;6:38468.
  • Meckes B, Banga RJ, Nguyen ST, et al. Enhancing the stability and immunomodulatory activity of liposomal spherical nucleic acids through lipid-tail DNA modifications. Small. 2018;14:1702909.
  • Deng L, Zhang Y, Ma L, et al. Comparison of anti-EGFR-Fab' conjugated immunoliposomes modified with two different conjugation linkers for siRNa delivery in SMMC-7721 cells. Int J Nanomed. 2013;8:3271–3283.
  • Lundin KE, Gissberg O, Smith CI. Oligonucleotide therapies: the past and the present. Hum Gene Ther. 2015;26:475–485.
  • Yang L, Zhang X, Ye M, et al. Aptamer-conjugated nanomaterials and their applications. Adv Drug Deliv Rev. 2011;63:1361–1370.
  • Wilson DS, Szostak JW. In vitro selection of functional nucleic acids. Annu Rev Biochem. 1999;68:611–647.
  • Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346:818–822.
  • Yang X, Li N, Gorenstein DG. Strategies for the discovery of therapeutic aptamers. Expert Opin Drug Discov. 2011;6:75–87.
  • Dong J, Cao Y, Shen H, et al. EGFR aptamer-conjugated liposome-polycation-DNA complex for targeted delivery of SATB1 small interfering RNA to choriocarcinoma cells. Biomed Pharmacother. 2018;107:849–859.
  • Tarentino AL, Phelan AW, Plummer TH. Jr. 2-Iminothiolane: a reagent for the introduction of sulphydryl groups into oligosaccharides derived from asparagine-linked glycans. Glycobiology. 1993;3:279–285.
  • Zhang Y, Chan JW, Moretti A, et al. Designing polymers with sugar-based advantages for bioactive delivery applications. J Control Release. 2015;219:355–368.
  • Plotz PH, Rifai A. Stable, soluble, model immune complexes made with a versatile multivalent affinity-labeling antigen. Biochemistry. 1982;21:301–308.
  • Yeh HW, Lin TS, Wang HW, et al. S-Linked sialyloligosaccharides bearing liposomes and micelles as influenza virus inhibitors. Org Biomol Chem. 2015;13:11518–11528.
  • Wang Q, Chao YM. Multifunctional quantum dots and liposome complexes in drug delivery. J Biomed Res. 2018;32:91–106.
  • Alivisatos AP. Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem. 1996;100:13226–13239.
  • Pickett NL, O?Brien P. Syntheses of semiconductor nanoparticles using single-molecular precursors. Chem Record. 2001;1:467–479.
  • Bangal M, Ashtaputre S, Marathe S, et al. Semiconductor nanoparticles. Hyperfine Interact. 2005;160:81–94.
  • Ekimov AI, Onushchenko AA. Quantum size effect in three-dimensional microscopic semiconductor crystals. J Exp Theor Phys Lett. 1981;34:345–349.
  • Ekimov AI, Onushchenko AA. Quantum size effect in the optical-spectra of semiconductor micro-crystals. Sov Phys Semicond. 1982;16:775–778.
  • Efros AIL. Interband absorption of light in a semiconductor sphere. Sov Phys Semicond. 1982;16:772–775.
  • Efros AIL, Kharchenko VA, Rosen M. Breaking the phonnon bottleneck in nanometer quantum dots: role of Auger-like process. Solid State Commun. 1995;93:281–284.
  • Brus LE. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J Chem Phys. 1983;79:5566–5571.
  • Weng KC, Noble CO, Papahadjopoulos-Sternberg B, et al. Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo. Nano Lett. 2008;8:2851–2857.
  • Karamanou M, Papaioannou TG, Stefanadis C, et al. Genesis of ultrasonic microbubbles: a quick historical overview. CPD. 2012;18:2115–2117.
  • Sirsi S, Borden M. Microbubble compositions, properties and biomedical applications. Bubble Sci Eng Technol. 2009;1:3–17.
  • Lindner JR, Song J, Jayaweera AR, et al. Microvascular rheology of definity microbubbles after intra-arterial and intravenous administration. J Am Soc Echocardiogr. 2002;15:396–403.
  • Lentacker I, De Geest BG, Vandenbroucke RE, et al. Ultrasound-responsive polymer-coated microbubbles that bind and protect DNA. Langmuir. 2006;22:7273–7278.
  • Malik R, Pancholi K, Melzer A. Microbubble-liposome conjugate: payload evaluation of potential theranostic vehicle. Nanobiomedicine. 2016;3:1849543516670806.
  • Chen CC, Borden MA. Ligand conjugation to bimodal poly(ethylene glycol) brush layers on microbubbles. Langmuir. 2010;26:13183–13194.
  • Zhitomirsky B, Assaraf YG. Lysosomal accumulation of anticancer drugs triggers lysosomal exocytosis. Oncotarget. 2017;8:45117–45132.
  • Veronese FM, Morpurgo M. Bioconjugation in pharmaceutical chemistry. Farmaco. 1999;54:497–516.
  • Baek SE, Lee KH, Park YS, et al. RNA aptamer-conjugated liposome as an efficient anticancer drug delivery vehicle targeting cancer cells in vivo. J Control Release. 2014;196:234–242.
  • Boussios S, Pentheroudakis G, Katsanos K, et al. Systemic treatment-induced gastrointestinal toxicity: incidence, clinical presentation and management. Ann Gastroenterol. 2012;25:106–118.
  • Tiwari G, Tiwari R, Sriwastawa B, et al. Drug delivery systems: an updated review. Int J Pharm Investig. 2012;2:2–11.
  • Mao Y, Triantafillou G, Hertlein E, et al. Milatuzumab-conjugated liposomes as targeted dexamethasone carriers for therapeutic delivery in CD74+ B-cell malignancies. Clin Cancer Res. 2013;19:347–356.
  • Li SD, Huang L. Nanoparticles evading the reticuloendothelial system: role of the supported bilayer. Biochim Biophys Acta. 2009;1788:2259–2266.
  • Lehnert BE. Pulmonary and thoracic macrophage subpopulations and clearance of particles from the lung. Environ Health Perspect. 1992;97:17–46.
  • Lin C, Wong BCK, Chen H, et al. Pulmonary delivery of triptolide-loaded liposomes decorated with anti-carbonic anhydrase IX antibody for lung cancer therapy. Sci Rep. 2017;7:1097.
  • Allen TM, Mehra T, Hansen C, et al. Stealth liposomes: an improved sustained release system for 1-beta-D-arabinofuranosylcytosine. Cancer Res. 1992;52:2431–2439.
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–6392.
  • Golombek SK, May JN, Theek B, et al. Tumor targeting via EPR: strategies to enhance patient responses. Adv Drug Deliv Rev. 2018;130:17–38.
  • Owonikoko TK, Arbiser J, Zelnak A, et al. Current approaches to the treatment of metastatic brain tumours. Nat Rev Clin Oncol. 2014;11:203–222.
  • Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics. 2014;4:81–89.
  • Hansen AE, Petersen AL, Henriksen JR, et al. Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes. ACS Nano. 2015;9:6985–6995.
  • Chauhan VP, Stylianopoulos T, Martin JD, et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nature Nanotech. 2012;7:383–388.
  • Garbuzenko O, Barenholz Y, Priev A. Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Chem Phys Lipids. 2005;135:117–129.
  • Hadian Z. A review of nanoliposomal delivery system for stabilization of bioactive omega-3 fatty acids. Electron Physician. 2016;8:1776–1785.
  • Hashizaki K, Taguchi H, Itoh C, et al. Effects of poly(ethylene glycol) (PEG) chain length of PEG-lipid on the permeability of liposomal bilayer membranes. Chem Pharm Bull. 2003;51:815–820.
  • D’Silva JB, Notari RE. Drug stability in liposomal suspensions: hydrolysis of indomethacin, cyclocytidine, and p-nitrophenyl acetate. J Pharm Sci. 1982;71:1394–1398.
  • Verhoef JJ, Anchordoquy TJ. Questioning the use of PEGylation for drug delivery. Drug Deliv Transl Res. 2013;3:499–503.
  • Kelly C, Jefferies C, Cryan SA. Targeted liposomal drug delivery to monocytes and macrophages. J Drug Deliv. 2011;2011:727241.
  • Oliveira S, Schiffelers RM, van der Veeken J, et al. Downregulation of EGFR by a novel multivalent nanobody-liposome platform. J Control Release. 2010;145:165–175.
  • Klegerman ME, Hamilton AJ, Huang SL, et al. Quantitative immunoblot assay for assessment of liposomal antibody conjugation efficiency. Anal Biochem. 2002;300:46–52.
  • Belfiore L, Spenkelink LM, Ranson M, et al. Quantification of ligand density and stoichiometry on the surface of liposomes using single-molecule fluorescence imaging. J Control Release. 2018;278:80–86.
  • Mack K, Rüger R, Fellermeier S, et al. Dual targeting of tumor cells with bispecific single-chain Fv-immunoliposomes. Antibodies. 2012;1:199–214.
  • U.S. National Library of Medicine. ClinicalTrials.gov 2019 [cited 2019 June 9]. Available from: https://clinicaltrials.gov/ct2/results?cond=liposomes&term=liposome&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=e&recrs=f&phase=4&phase=0&phase=1&phase=2&phase=3
  • Ozturk-Atar K, Eroglu H, Gursoy RN, et al. Current advances in nanopharmaceuticals. J Nanosci Nanotechnol. 2019;19:3686–3705.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.