181
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Therapeutic effects of iontophoresis with gold nanoparticles in the repair of traumatic muscle injury

, , , , , , , , , & ORCID Icon show all
Pages 307-319 | Received 10 Apr 2019, Accepted 30 Jul 2019, Published online: 16 Aug 2019

References

  • Ferreira Filho CM, Silva AM, Sudo RT, et al. Laceration in rat gastrocnemius. Following-up muscle repairing by ultrasound biomicroscopy (in vivo), contractility test (ex vivo) and histopathology. Acta Cir Bras. 2015;30:13–23.
  • Bai RF, Lu XJ, E XF, Yu TS, et al. Comparison of the skin and skeletal muscle contusion in rats induced by blunt force with different heights. Fa Yi Xue Za Zhi. 2017;33:1–5.
  • Dantas MGB, Damasceno CMD, Barros VRP, et al. Creation of a contusion injury method for skeletal muscle in rats with differing impacts. Acta Cir Bras. 2017;32:369–375.
  • Tomazoni SS, Frigo L, Dos Reis Ferreira TC, et al. Effects of photobiomodulation therapy and topical non-steroidal anti-inflammatory drug on skeletal muscle injury induced by contusion in rats-part 2: biochemical aspects. Lasers Med Sci. 2017;32:1879–1887.
  • Silveira PC, da Silva LA, Pinho CA, et al. Effects of low-level laser therapy (GaAs) in an animal model of muscular damage induced by trauma. Lasers Med Sci. 2013;28:431–436.
  • Silveira PC, da Silva LA, Tromm PT, et al. Effects of therapeutic pulsed ultrasound and dimethylsulfoxide phonophoresis on oxidative stress parameters after injury induced by eccentric exercise. Ultrasonics. 2012;52:650–654.
  • Victor EG, Silveira PC, Possato JC, et al. Pulsed ultrasound associated with gold nanoparticle gel reduces oxidative stress parameters and expression of pro-inflammatory molecules in an animal model of muscle injury. J Nanobiotechnol. 2012;10:11.
  • Wang B, Trayhurn P. Acute and prolonged effects of TNF-alpha on the expression and secretion of inflammation-related adipokines by human adipocytes differentiated in culture. Pflugers Arch - Eur J Physiol. 2006;452:418–427.
  • da Silva JP, da Silva MA, Almeida AP, et al. Laser therapy in the tissue repair process: a literature review. Photomed Laser Surg. 2010;28:17–21.
  • Serrano AL, Baeza-Raja B, Perdiguero E, et al. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 2008;7:33–44.
  • Liu XG, Chen PJ, Zhao LL, et al. Macrophages depletion impairs skeletal muscle regeneration by regulating inflammation and oxidative stress levels. Sheng Li Xue Bao. 2018;70:23–32.
  • Li YP. TNF-alpha is a mitogen in skeletal muscle. Am J Physiol Cell Physiol. 2003;285:C370–C376.
  • Lee BY, Al-Waili N, Stubbs D, et al. Ultra-low microcurrent in the management of diabetes mellitus, hypertension and chronic wounds: report of twelve cases and discussion of mechanism of action. Int J Med Sci. 2009;7:29–35.
  • Silveira PC, Venancio M, Souza PS, et al. Iontophoresis with gold nanoparticles improves mitochondrial activity and oxidative stress markers of burn wounds. Mater Sci Eng C Mater Biol Appl. 2014;44:380–385.
  • Gault WR, Gatens PF. Jr. Use of low intensity direct current in management of ischemic skin ulcers. Phys Ther. 1976;56:265–269.
  • Wolcott LE, Wheeler PC, Hardwicke HM, et al. Accelerated healing of skin ulcer by electrotherapy: preliminary clinical results. Southern Med J. 1969;62:795–801.
  • Barry BW. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharma Sci Off J Eur Feder Pharma Sci. 2001;14:101–114.
  • Ahn S, Seo E, Kim K, et al. Controlled cellular uptake and drug efficacy of nanotherapeutics. Sci Rep. 2013;3:1997.
  • Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009;30:592–599.
  • Kim HS, Jun SH, Koo YK, et al. Green synthesis and nanotopography of heparin-reduced gold nanoparticles with enhanced anticoagulant activity. J Nanosci Nanotechnol. 2013;13:2068–2076.
  • Sumbayev VV, Yasinska IM, Garcia CP, et al. Gold nanoparticles downregulate interleukin-1beta-induced pro-inflammatory responses. Small. 2013;9:472–477.
  • Ma JS, Kim WJ, Kim JJ, et al. Gold nanoparticles attenuate LPS-induced NO production through the inhibition of NF-kappaB and IFN-beta/STAT1 pathways in RAW264.7 cells. Nitric Oxide. 2010;23:214–219.
  • Barathmanikanth S, Kalishwaralal K, Sriram M, et al. Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J Nanobiotechnol. 2010;8:16.
  • Sul OJ, Kim JC, Kyung TW, et al. Gold nanoparticles inhibited the receptor activator of nuclear factor-kappab ligand (RANKL)-induced osteoclast formation by acting as an antioxidant. Biosci Biotechnol Biochem. 2010;74:2209–2213.
  • Mukherjee P, Bhattacharya R, Wang P, et al. Antiangiogenic properties of gold nanoparticles. Clin Cancer Res Off J Am Assoc Cancer Res. 2005;11:3530–3534.
  • Kajita M, Hikosaka K, Iitsuka M, et al. Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radic Res. 2007;41:615–626.
  • Rizzi CF, Mauriz JL, Freitas Correa DS, et al. Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kappaB signaling pathway in traumatized muscle. Lasers Surg Med. 2006;38:704–713.
  • Turkevich A. Chemical analysis of surfaces by use of large-angle scattering of heavy charged particles. Science. 1961;134:672–674.
  • Cardoso E, Londero E, Ferreira GK, et al. Gold nanoparticles induce DNA damage in the blood and liver of rats. J Nanopart Res. 2014;16:2727.
  • Suryanarayana V, Rao L, Kanakavalli M, et al. Association between novel HLA-G genotypes and risk of recurrent miscarriages: a case-control study in a South Indian population. Reprod Sci. 2008;15:817–824.
  • Ferreira GK, Cardoso E, Vuolo FS, et al. Effect of acute and long-term administration of gold nanoparticles on biochemical parameters in rat brain. Mater Sci Eng C Mater Biol Appl. 2017;79:748–755.
  • Choi Y, Yoon YW, Na HS, et al. Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain. 1994;59:369–376.
  • Chaplan SR, Bach FW, Pogrel JW, et al. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53:55–63.
  • Dixon WJ. Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol. 1980;20:441–462.
  • Simon P, Dupuis R, Costentin J. Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav Brain Res. 1994;61:59–64.
  • Stewart MD, Lopez S, Nagandla H, et al. Mouse myofibers lacking the SMYD1 methyltransferase are susceptible to atrophy, internalization of nuclei and myofibrillar disarray. Dis Model Mech. 2016;9:347–359.
  • Poderoso JJ, Carreras MC, Lisdero C, et al. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys. 1996;328:85–92.
  • Dong J, Sulik KK, Chen SY. The role of NOX enzymes in ethanol-induced oxidative stress and apoptosis in mouse embryos. Toxicol Lett. 2010;193:94–100.
  • Chae SY, Lee M, Kim SW, et al. Protection of insulin secreting cells from nitric oxide induced cellular damage by crosslinked hemoglobin. Biomaterials. 2004;25:843–850.
  • Muller AP, Haas CB, Camacho-Pereira J, et al. Insulin prevents mitochondrial generation of H(2)O(2) in rat brain. Exp Neurol. 2013;247:66–72.
  • Grotto D, Santa Maria LD, Boeira S, et al. Rapid quantification of malondialdehyde in plasma by high performance liquid chromatography-visible detection. J Pharma Biomed Anal. 2007;43:619–624.
  • Levine RL, Garland D, Oliver CN, et al. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464–478.
  • Aksenov MY, Markesbery WR. Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett. 2001;302:141–145.
  • Bannister JV, Calabrese L. Assays for superoxide dismutase. Methods Biochem Anal. 1987;32:279–312.
  • Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126.
  • Flohe L, Gunzler WA. Assays of glutathione peroxidase. Methods Enzymol. 1984;105:114–121.
  • Hissin PJ, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 1976;74:214–226.
  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–275.
  • Chan YS, Li Y, Foster W, et al. Antifibrotic effects of suramin in injured skeletal muscle after laceration. J Appl Physiol. 2003;95:771–780.
  • Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomed Nanotechnol Biol Med. 2008;3:703–717.
  • Sadauskas E, Wallin H, Stoltenberg M, et al. Kupffer cells are central in the removal of nanoparticles from the organism. Part Fibre Toxicol. 2007;4:10.
  • Sonavane G, Tomoda K, Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B Biointerfaces. 2008;66:274–280.
  • Gigante A, Cianforlini M, Manzotti S, et al. The effects of growth factors on skeletal muscle lesions. Joints. 2014;1:180–186.
  • Ohno Y, Fujiya H, Goto A, et al. Microcurrent electrical nerve stimulation facilitates regrowth of mouse soleus muscle. Int J Med Sci. 2013;10:1286–1294.
  • Chen H, Dorrigan A, Saad S, et al. In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice. PloS One. 2013;8:28.
  • Parchi PD, Vittorio O, Andreani L, et al. Nanoparticles for tendon healing and regeneration: literature review. Front Aging Neurosci. 2016;8:202.
  • Tidball JG, Villalta SA. Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol. 2010;298:R1173–R1187.
  • El-Husseini T, El-Kawy S, Shalaby H, et al. Microcurrent skin patches for postoperative pain control in total knee arthroplasty: a pilot study. Int Orthop. 2007;31:229–233.
  • Denda M, Kumazawa N. Negative electric potential induces alteration of ion gradient and lamellar body secretion in the epidermis, and accelerates skin barrier recovery after barrier disruption. J Invest Dermatol. 2002;118:65–72.
  • Dohnert MB, Venancio M, Possato JC, et al. Gold nanoparticles and diclofenac diethylammonium administered by iontophoresis reduce inflammatory cytokines expression in Achilles tendinitis. Int J Nanomed. 2012;7:1651–1657.
  • Jeon KI, Byun MS, Jue DM. Gold compound auranofin inhibits IkappaB kinase (IKK) by modifying Cys-179 of IKKbeta subunit. Exp Mol Med. 2003;35:61–66.
  • Tsai CY, Shiau AL, Chen SY, et al. Amelioration of collagen-induced arthritis in rats by nanogold. Arthritis Rheum. 2007;56:544–554.
  • Pedersen MO, Larsen A, Pedersen DS, et al. Metallic gold reduces TNFalpha expression, oxidative DNA damage and pro-apoptotic signals after experimental brain injury. Brain Res. 2009;1271:103–113.
  • Konig D, Wagner KH, Elmadfa I, et al. Exercise and oxidative stress: significance of antioxidants with reference to inflammatory, muscular, and systemic stress. Exerc Immunol Rev. 2001;7:108–133.
  • Kalogeris T, Baines CP, Krenz M, et al. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 2012;298:229–317.
  • Halliwell B. Biochemistry of oxidative stress. Biochem Soc Trans. 2007;35:1147–1150.
  • Drose S, Brandt U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv Exp Med Biol. 2012;748:145–169.
  • Votyakova TV, Reynolds IJ. DeltaPsi(m)-dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem. 2008;79:266–277.
  • Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88:1243–1276.
  • Martin R, Menchon C, Apostolova N, et al. Nano-jewels in biology. Gold and platinum on diamond nanoparticles as antioxidant systems against cellular oxidative stress. ACS Nano. 2010;4:6957–6965.
  • Nie Z, Liu KJ, Zhong CJ, et al. Enhanced radical scavenging activity by antioxidant-functionalized gold nanoparticles: a novel inspiration for development of new artificial antioxidants. Free Radic Biol Med. 2007;43:1243–1254.
  • Razzaq H, Saira F, Yaqub A, et al. Interaction of gold nanoparticles with free radicals and their role in enhancing the scavenging activity of ascorbic acid. J Photochem Photobiol B. 2016;161:266–272.
  • Daduang J, Palasap A, Daduang S, et al. Gallic acid enhancement of gold nanoparticle anticancer activity in cervical cancer cells. Asian Pac J Cancer Prev. 2015;16:169–174.
  • Sengani M, Devi Rajeswari V. Identification of potential antioxidant indices by biogenic gold nanoparticles in hyperglycemic Wistar rats. Environ Toxicol Pharmacol. 2017;50:11–19.
  • Zhang Z, Berg A, Levanon H, et al. On the interactions of free radicals with gold nanoparticles. J Am Chem Soc. 2003;125:7959–7963.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.