229
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Gold nanoparticles potentiates N-acetylcysteine effects on neurochemicals alterations in rats after polymicrobial sepsis

, , , , , , , , , , , , , , , , & show all
Pages 428-436 | Received 28 May 2019, Accepted 06 Oct 2019, Published online: 17 Oct 2019

References

  • Singer M. The new sepsis consensus definitions (Sepsis-3): the good, the not-so-bad, and the actually-quite-pretty. Intensive Care Med. 2016;42(12):2027–2029.
  • Barichello T, Sayana P, Giridharan VV, et al. Long-Term cognitive outcomes after sepsis: a translational systematic review. Mol Neurobiol. 2019;56(1):186–251.
  • Hensley MK, Prescott HC. Bad brains, bad outcomes. Crit Care Med. 2018;46(6):1001–1002.
  • Michels M, Danielski LG, Dal-Pizzol F, et al. Neuroinflammation: microglial activation during sepsis. CNR. 2014;11(3):262–270.
  • Danielski LG, Giustina AD, Badawy M, et al. Brain barrier breakdown as a cause and consequence of neuroinflammation in sepsis. Mol Neurobiol. 2018;55(2):1045–1053.
  • Dal-Pizzol F, Ritter C, Cassol OJ, et al. Oxidative mechanisms of brain dysfunction during sepsis. Neurochem Res. 2010;35(1):1–12.
  • Schwalm MT, Pasquali M, Miguel SP, et al. Acute brain inflammation and oxidative damage are related to long-term cognitive deficits and markers of neurodegeneration in sepsis-survivor rats. Mol Neurobiol. 2014;49(1):380–385.
  • Petronilho F, Périco SR, Vuolo F, et al. Protective effects of guanosine against sepsis-induced damage in rat brain and cognitive impairment. Brain Behav Immun. 2012;26(6):904–910.
  • Goldim MP, Danielski LG, Rodrigues JF, et al. Oxidative stress in the choroid plexus contributes to blood-cerebrospinal fluid barrier disruption during sepsis development. Microvasc Res. 2019;123:19–24.
  • Zarbato GF, de Souza Goldim MP, Giustina AD, et al. Dimethyl fumarate limits neuroinflammation and oxidative stress and improves cognitive impairment after polymicrobial sepsis. Neurotox Res. 2018;34(3):418–430.
  • Davies R, O’Dea K, Gordon A. Immune therapy in sepsis: Are we ready to try again?. J Intensive Care Soc. 2018;19(4):326–344.
  • Naz S, Shamoon M, Wang R, et al. Advances in therapeutic implications of inorganic drug delivery Nano-Platforms for cancer. IJMS. 2019;20(4):965.
  • Hornos Carneiro MF, Barbosa F. Gold nanoparticles: a critical review of therapeutic applications and toxicological aspects. J Toxicol Environ Heal Part B. 2016;19(3–4):129–148.
  • Pereira DV, Petronilho F, Pereira H, et al. Effects of gold nanoparticles on endotoxin-induced uveitis in rats. Invest Ophthalmol Vis Sci. 2012;53(13):8036–8041.
  • Paula MMS, Petronilho F, Vuolo F, et al. Gold nanoparticles and/or N-acetylcysteine mediate carrageenan-induced inflammation and oxidative stress in a concentration-dependent manner. J Biomed Mater Res. 2015;103(10):3323–3330.
  • Steckert A, Castro A, Quevedo J, et al. Sepsis in the central nervous system and antioxidant strategies with N-acetylcysteine, vitamins and statins. CNR. 2014;11(1):83–90.
  • Minarini A, Ferrari S, Galletti M, et al. N-acetylcysteine in the treatment of psychiatric disorders: current status and future prospects. Expert Opin Drug Met. 2017;13(3):279–292.
  • Cassol OJ, Rezin GT, Petronilho FC, et al. Effects of N-Acetylcysteine/Deferoxamine, Taurine and RC-3095 on respiratory chain complexes and creatine kinase activities in rat brain after sepsis. Neurochem Res. 2010;35(4):515–521.
  • Ritter C, Andrades ME, Reinke A, et al. Treatment with N-acetylcysteine plus deferoxamine protects rats against oxidative stress and improves survival in sepsis. Crit Care Med. 2004;32(2):342–349.
  • Andrades M, Ritter C, de Oliveira MR, et al. Antioxidant treatment reverses organ failure in rat model of sepsis: role of antioxidant enzymes imbalance, neutrophil infiltration, and oxidative stress. J Surg Res. 2011;167(2):e307.
  • Barichello T, Machado RA, Constantino L, et al. Antioxidant treatment prevented late memory impairment in an animal model of sepsis. Crit Care Med. 2007;35(9):2186–2190.
  • Turkevich A. Chemical analysis of surfaces by use of Large-Angle scattering of heavy charged particles. Science. 1961;134(3480):672–674.
  • Hubbard WJ, Choudhry M, Schwacha MG, et al. Cecal ligation and puncture. Shock. 2005;24(Supplement 1):52–57.
  • Rittirsch D, Huber-Lang MS, Flierl MA, et al. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc. 2009;4(1):31–36.
  • Young LM, Kheifets JB, Ballaron SJ, et al. Edema and cell infiltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacologic agents. Agents Actions. 1989;26(3–4):335–341.
  • Draper HH, Squires EJ, Mahmoodi H, et al. A comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials. Free Radic Biol Med. 1993;15(4):353–363.
  • Levine RL, Garland D, Oliver CN, et al. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464–478.
  • Cassina A, Radi R. Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys. 1996;328(2):309–316.
  • Fischer JC, Ruitenbeek W, Berden JA, et al. Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta. 1985;153(1):23–36.
  • Hughes BP. A method for the estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clin Chim Acta. 1962;7(5):597–603.
  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–275.
  • Fleischmann C, Scherag A, Adhikari NKJ, Hartog CS, et al. Assessment of global incidence and mortality of Hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med. 2016;193(3):259–272.
  • Heming N, Mazeraud A, Verdonk F, et al. Neuroanatomy of sepsis-associated encephalopathy. Crit Care. 2017;21(1):65.
  • Dal-Pizzol F, Rojas HA, dos Santos EM, et al. Matrix metalloproteinase-2 and metalloproteinase-9 activities are associated with blood-brain barrier dysfunction in an animal model of severe sepsis. Mol Neurobiol. 2013;48(1):62–70.
  • Comim CM, Vilela MC, Constantino LS, et al. Traffic of leukocytes and cytokine up-regulation in the central nervous system in sepsis. Intensive Care Med. 2011;37(4):711–718.
  • Taratummarat S, Sangphech N, Vu CTB, et al. Gold nanoparticles attenuates bacterial sepsis in cecal ligation and puncture mouse model through the induction of M2 macrophage polarization. BMC Microbiol. 2018;18(1):85.
  • Moldogazieva NT, Mokhosoev IM, Feldman NB, et al. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic Res. 2018;52(5):507–543.
  • Sivandzade F, Prasad S, Bhalerao A, et al. NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: molecular mechanisms and possible therapeutic approaches. Redox Biol. 2019;21:101059.
  • Salminen A, Ojala J, Kaarniranta K, et al. Mitochondrial dysfunction and oxidative stress activate inflammasomes: impact on the aging process and age-related diseases. Cell Mol Life Sci. 2012;69(18):2999–3013.
  • Palacio JR, Markert UR, Martínez P. Anti-inflammatory properties of N-acetylcysteine on lipopolysaccharide-activated macrophages. Inflamm Res. 2011;60(7):695–704.
  • Mokhtari V, Afsharian P, Shahhoseini M, et al. A review on various uses of N-Acetyl cysteine. Cell J. 2017;19(1):11–17.
  • Silvestre F, Danielski LG, Michels M, et al. Effects of organoselenium compounds on early and late brain biochemical alterations in Sepsis-survivor rats. Neurotox Res. 2014;26(4):382–391.
  • Della Giustina A, Goldim MP, Danielski LG, et al. Fish oil-rich lipid emulsion modulates neuroinflammation and prevents long-term cognitive dysfunction after sepsis. Nutrition. 2018. DOI: 10.1016/j.nut.2018.12.003
  • Danielski LG, Giustina A, Della Goldim MP, et al. Vitamin B6 reduces neurochemical and long-term cognitive alterations after polymicrobial sepsis: Involvement of the kynurenine pathway modulation. Mol Neurobiol. 2018;55(6):5255–5268.
  • Della Giustina A, Goldim MP, Danielski LG, et al. Alpha-lipoic acid attenuates acute neuroinflammation and long-term cognitive impairment after polymicrobial sepsis. Neurochem Int. 2017;108:436–447.
  • Dan Dunn J, Alvarez LA, Zhang X, et al. Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol. 2015;6:472–485.
  • Gilkerson R. A disturbance in the force: Cellular stress sensing by the mitochondrial network. Antioxid (Basel, Switzerland). 2018;7(10):126.
  • Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders — A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta - Mol Basis Dis. 2017;1863(5):1066–1077.
  • Bozza FA, D’Avila JC, Ritter C, et al. Bioenergetics, mitochondrial dysfunction, and oxidative stress in the pathophysiology of septic encephalopathy. Shock. 2013;39(Suppl 1):10–16.
  • Berg RMG, Møller K, Bailey DM. Neuro-oxidative-nitrosative stress in sepsis. J Cereb Blood Flow Metab. 2011;31(7):1532–1544.
  • Karataş ÖF, Sezgin E, Aydın Ö, et al. Interaction of gold nanoparticles with mitochondria. Colloid Surface B. 2009;71(2):315–318.
  • Huang X, El-Sayed IH, Yi X, et al. Gold nanoparticles: catalyst for the oxidation of NADH to NAD+. J Photochem Photobiol B Biol. 2005;81(2):76–83.
  • Fedor JG, Jones AJY, Di Luca A, et al. Correlating kinetic and structural data on ubiquinone binding and reduction by respiratory complex I. Proc Natl Acad Sci USA. 2017;114(48):12737–12742.
  • Oudman I, Clark JF, Brewster LM. The effect of the creatine analogue Beta-guanidinopropionic acid on energy metabolism: a systematic review. Saks V, editor. PLoS One. 2013;8(1):e52879.
  • Brewster LM. Creatine kinase, energy reserve, and hypertension: from bench to bedside. Ann Transl Med. 2018;6(15):292–292.
  • Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 2018;15:490–503.
  • Comim CM, Barichello T, Grandgirard D, et al. Caspase-3 mediates in part hippocampal apoptosis in sepsis. Mol Neurobiol. 2013;47(1):394–398.
  • Zhang S, Wang X, Ai S, et al. Sepsis-induced selective loss of NMDA receptors modulates hippocampal neuropathology in surviving septic mice. Dal Pizzol F, editor. PLoS One. 2017;12(11):e0188273.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.