239
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

LPS-induced inflammation delays the transportation of ASP+ due to down-regulation of OCTN1/2 in alveolar epithelial cells

, , , , , & show all
Pages 437-447 | Received 03 Jun 2019, Accepted 06 Oct 2019, Published online: 21 Oct 2019

References

  • Giacomini KM, Huang S-M, Tweedie DJ, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–236.
  • Salomon JJ, Ehrhardt C. Organic cation transporters in the blood-air barrier: expression and implications for pulmonary drug delivery. Ther Deliv. 2012;3(6):735–747.
  • Salomon JJ, Endter S, Tachon G, et al. Transport of the fluorescent organic cation 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP+) in human respiratory epithelial cells. Eur J Pharm Biopharm. 2012;81(2):351–359.
  • Indiveri C, Galluccio M, Scalise M, et al. Strategies of bacterial over expression of membrane transporters relevant in human health: the successful case of the three members of OCTN subfamily. Mol Biotechnol. 2013;54(2):724–736.
  • Pochini L, Scalise M, Galluccio M, et al. OCTN cation transporters in health and disease: role as drug targets and assay development. J Biomol Screen. 2013;18(8):851–867.
  • Alnouti Y, Petrick JS, Klaassen CD. Tissue distribution and ontogeny of organic cation transporters in mice. Drug Metab Dispos. 2006;34(3):477–482.
  • Maeda T, Hirayama M, Kobayashi D, et al. Regulation of testis-specific carnitine transporter (octn3) gene by proximal cis-acting elements Sp1 in mice. Biochem Pharmacol. 2005;70(6):858–868.
  • Mihaljevic I, Popovic M, Zaja R, et al. Phylogenetic, syntenic, and tissue expression analysis of slc22 genes in zebrafish (Danio rerio). BMC Genomics. 2016;17(1):626.
  • Lamhonwah A-M, Ackerley CA, Tilups A, et al. OCTN3 is a mammalian peroxisomal membrane carnitine transporter. Biochem Biophys Res Commun. 2005;338(4):1966–1972.
  • Scalise M, Galluccio M, Pochini L, et al. Over-expression in Escherichia coli, purification and reconstitution in liposomes of the third member of the OCTN sub-family: the mouse carnitine transporter OCTN3. Biochem Biophys Res Commun. 2012;422(1):59–63.
  • Zhu C, Nigam KB, Date RC, et al. Evolutionary analysis and classification of OATs, OCTs, OCTNs, and other SLC22 transporters: structure-function implications and analysis of sequence motifs. PLoS One. 2015;10(11):e0140569.
  • Nigam SK. What do drug transporters really do? Nat Rev Drug Discov. 2015;14(1):29–44.
  • Lozano E, et al. Genetic heterogeneity of SLC22 family of transporters in drug disposition. J Pers Med. 2018;8(2):pii: E14.
  • Lepist EI, Ray AS. Beyond drug-drug interactions: effects of transporter inhibition on endobiotics, nutrients and toxins. Expert Opin Drug Metab Toxicol. 2017;13(10):1075–1087.
  • Koepsell H. The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med. 2013;34(2–3):413–435.
  • Tamai I. Pharmacological and pathophysiological roles of carnitine/organic cation transporters (OCTNs: SLC22A4, SLC22A5 and Slc22a21). Biopharm Drug Dispos. 2013;34(1):29–44.
  • Nickel S, et al. Ergothioneine protects lung epithelial cells from tobacco smoke-induced oxidative damage in vitro and in vivo. Am J Respir Crit Care Med. 2016;193:A7514.
  • Horvath G, et al. Carrier-mediated transport of tiotropium in bronchial smooth muscle cells: The role of pH-dependent organic cation transporters. Eur Respir J. 2011;38(Suppl 55):745.
  • Scalise M, Galluccio M, Pochini L, et al. Studying interactions of drugs with cell membrane nutrient transporters: new frontiers of proteoliposome nanotechnology. Curr Pharm Des. 2017;23(26):3871–3883.
  • Mukherjee M, Pritchard DI, Bosquillon C. Evaluation of air-interfaced Calu-3 cell layers for investigation of inhaled drug interactions with organic cation transporters in vitro. Int J Pharm. 2012;426(1–2):7–14.
  • Nakamura T, Nakanishi T, Haruta T, et al. Transport of ipratropium, an anti-chronic obstructive pulmonary disease drug, is mediated by organic cation/carnitine transporters in human bronchial epithelial cells: implications for carrier-mediated pulmonary absorption. Mol Pharmaceut. 2010;7(1):187–195.
  • Ibrahim M, Garcia-Contreras L. Mechanisms of absorption and elimination of drugs administered by inhalation. Ther Deliv. 2013;4(8):1027–1045.
  • Song L, Zhu Y, Jin M, et al. Hydroxysafflor yellow a inhibits lipopolysaccharide-induced inflammatory signal transduction in human alveolar epithelial A549 cells. Fitoterapia. 2013;84:107–114.
  • Frost TS, Jiang L, Zohar Y. Characterizing A549 cell line as an epithelial cell monolayer model for pharmacokinetic applications. IEEE Nanomed. 2018;2018:27–30.
  • Fei S, Cao L, Pan L. microRNA‑3941 targets IGF2 to control LPS‑induced acute pneumonia in A549 cells. Mol Med Rep. 2018;17(3):4019–4026.
  • Horvath G, Schmid N, Fragoso MA, et al. Epithelial organic cation transporters ensure pH-dependent drug absorption in the airway. Am J Respir Cell Mol Biol. 2007;36(1):53–60.
  • MacDonald C, Shao D, Oli A, et al. Characterization of Calu-3 cell monolayers as a model of bronchial epithelial transport: organic cation interaction studies. J Drug Target. 2013;21(1):97–106.
  • Salomon JJ, Muchitsch VE, Gausterer JC, et al. The cell line NCl-H441 is a useful in vitro model for transport studies of human distal lung epithelial barrier. Mol Pharmaceutics. 2014;11(3):995–1006.
  • Liu Q, Yang H, Xu S, et al. Downregulation of p300 alleviates LPS-induced inflammatory injuries through regulation of RhoA/ROCK/NF-kappaB pathways in A549 cells. Biomed Pharmacother. 2018;97:369–374.
  • Rytting E, Audus KL. Novel organic cation transporter 2-mediated carnitine uptake in placental choriocarcinoma (BeWo) cells. J Pharmacol Exp Ther. 2005;312(1):192–198.
  • Wright S, Ramos R, Tobias P, et al. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990;249(4975):1431–1433.
  • Rathinam VAK, Zhao Y, Shao F. Innate immunity to intracellular LPS. Nat Immunol. 2019;20(5):527–533.
  • Turner CM, Arulkumaran N, Singer M, et al. Is the inflammasome a potential therapeutic target in renal disease?. BMC Nephrol. 2014;15(1):21.
  • Slomiany BL, Slomiany A. Role of LPS-elicited signaling in triggering gastric mucosal inflammatory responses to H. pylori: modulatory effect of ghrelin. Inflammopharmacology. 2017;25(4):415–429.
  • Liu G-P, Wang W-W, Lu W-Y, et al. The mechanism of miR-16-5p protection on LPS-induced A549 cell injury by targeting CXCR3. Artif Cells Nanomed Biotechnol. 2019;47(1):1200–1206.
  • Cao L, Li C-S, Chang Y, et al. The effects of perfluorocarbon on ICAM-1 expression in LPS-induced A549 cells and the potential mechanism. Mol Med Rep. 2016;13(4):3700–3708.
  • Abate W, Alghaithy AA, Parton J, et al. Surfactant lipids regulate LPS-induced interleukin-8 production in A549 lung epithelial cells by inhibiting translocation of TLR4 into lipid raft domains. J Lipid Res. 2010;51(2):334–344.
  • Gnadt M, Trammer B, Freiwald M, et al. Methacholine delays pulmonary absorption of inhaled beta(2)-agonists due to competition for organic cation/carnitine transporters. Pulm Pharmacol Ther. 2012;25(1):124–134.
  • Ling B, Alcorn J. LPS-induced inflammation downregulates mammary gland glucose, fatty acid, and L-carnitine transporter expression at different lactation stages. Res Vet Sci. 2010;89(2):200–202.
  • Warde-Farley D, Donaldson SL, Comes O, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38(suppl_2):W214–20.
  • Nakanishi T, Hasegawa Y, Haruta T, et al. In vivo evidence of organic cation transporter-mediated tracheal accumulation of the anticholinergic agent ipratropium in mice. J Pharm Sci. 2013;102(9):3373–3381.
  • Gumbleton M, Al-Jayyoussi G, Crandon-Lewis A, et al. Spatial expression and functionality of drug transporters in the intact lung: objectives for further research. Adv Drug Deliv Rev. 2011;63(1–2):110–118.
  • Van DDM, et al. Effect of COPD treatments on MRP1-mediated transport in bronchial epithelial cells. Int J Chron Obstruct Pulmon Dis. 2008;3(3):469–475.
  • Valenzuela B, Nácher A, Ruiz‐Carretero P, et al. Profile of P-glycoprotein distribution in the rat and its possible influence on the salbutamol intestinal absorption process. J Pharm Sci. 2004;93(6):1641–1648.
  • Sakamoto A, Suzuki S, Matsumaru T, et al. Correlation of organic cation/carnitine transporter 1 and multidrug resistance-associated protein 1 transport activities with protein expression levels in primary cultured human tracheal, bronchial, and alveolar epithelial cells. J Pharm Sci. 2016;105(2):876–883.
  • Somers GI, Lindsay N, Lowdon BM, et al. A comparison of the expression and metabolizing activities of phase I and II enzymes in freshly isolated human lung parenchymal cells and cryopreserved human hepatocytes. Drug Metab Dispos. 2007;35(10):1797–1805.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.