361
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

The role of antibody delivery formation in cancer therapy

, , , , , & show all
Pages 574-584 | Received 12 Dec 2019, Accepted 08 Feb 2020, Published online: 18 Feb 2020

References

  • Alibakhshi A, Abarghooi Kahaki F, Ahangarzadeh S, et al. Targeted cancer therapy through antibody fragments-decorated nanomedicines. J Control Release. 2017;268:323–334.
  • Banerjee A, Pathak S, Subramanium VD, et al. Strategies for targeted drug delivery in treatment of colon cancer: current trends and future perspectives. Drug Discov Today. 2017;22(8):1224–1232.
  • Ma N, Liu J, He W, et al. Folic acid-grafted bovine serum albumin decorated graphene oxide: an efficient drug carrier for targeted cancer therapy. J Colloid Interface Sci. 2017;490:598–607.
  • Crawford J, Dale DC, Lyman GH. Chemotherapy-induced neutropenia: risks, consequences, and new directions for its management. Cancer. 2004;100(2):228–237.
  • De Ruysscher D, Dehing C, Bremer RH, et al. Maximal neutropenia during chemotherapy and radiotherapy is significantly associated with the development of acute radiation-induced dysphagia in lung cancer patients. Ann Oncol. 2007;18(5):909–916.
  • Nabil G, Bhise K, Sau S, et al. Nano-engineered delivery systems for cancer imaging and therapy: recent advances, future direction and patent evaluation. Drug Discov Today. 2019;24(2):462–491.
  • Gebleux R, Stringhini M, Casanova R, et al. Non-internalizing antibody-drug conjugates display potent anti-cancer activity upon proteolytic release of monomethyl auristatin E in the subendothelial extracellular matrix. Int J Cancer. 2017;140(7):1670–1679.
  • Gebleux R, Wulhfard S, Casi G, et al. Antibody format and drug release rate determine the therapeutic activity of noninternalizing antibody-drug conjugates. Mol Cancer Ther. 2015;14(11):2606–2612.
  • McDonagh CF, Turcott E, Westendorf L, et al. Engineered antibody-drug conjugates with defined sites and stoichiometries of drug attachment. Protein Eng Des Sel. 2006;19(7):299–307. Jul
  • De Vlaeminck Y, Lecocq Q, Giron P, et al. Single-domain antibody fusion proteins can target and shuttle functional proteins into macrophage mannose receptor expressing macrophages. J Control Release. 2019;299:107–120.
  • Lim SI, Lukianov CI, Champion JA. Self-assembled protein nanocarrier for intracellular delivery of antibody. J Control Release. 2017;249:1–10.
  • Thompson P, Fleming R, Bezabeh B, et al. Rational design, biophysical and biological characterization of site-specific antibody-tubulysin conjugates with improved stability, efficacy and pharmacokinetics. J Control Release. 2016;236:100–116.
  • Owen SC, Patel N, Logie J, et al. Targeting HER2+ breast cancer cells: lysosomal accumulation of anti-HER2 antibodies is influenced by antibody binding site and conjugation to polymeric nanoparticles. J Control Release. 2013;172(2):395–404.
  • Chester K, Pedley B, Tolner B, et al. Engineering antibodies for clinical applications in cancer. Tumor Biol. 2004;25(1–2):91–98.
  • Kroll AV, Fang RH, Jiang Y, et al. Nanoparticulate delivery of cancer cell membrane elicits multiantigenic antitumor immunity. Adv Mater. 2017;29(47). DOI:10.1002/adma.201703969
  • Lebre F, Hearnden CH, Lavelle EC. Modulation of immune responses by particulate materials. Adv Mater. 2016;28(27):5525–5541.
  • Giansanti F, Capone E, Ponziani S, et al. Secreted Gal-3BP is a novel promising target for non-internalizing Antibody-Drug Conjugates. J Control Release. 2019;294:176–184.
  • Guo J, Luan X, Cong Z, et al. The potential for clinical translation of antibody-targeted nanoparticles in the treatment of acute myeloid leukaemia. J Control Release. 2018;286:154–166.
  • Sanmamed MF, Chen L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell. 2018;175(2):313–326.
  • Chung CK, Da Silva CG, Kralisch D, et al. Combinatory therapy adopting nanoparticle-based cancer vaccination with immune checkpoint blockade for treatment of post-surgical tumor recurrences. J Control Release. 2018;285:56–66.
  • Dal Corso A, Gebleux R, Murer P, et al. A non-internalizing antibody-drug conjugate based on an anthracycline payload displays potent therapeutic activity in vivo. J Control Release. 2017;264:211–218.
  • Mahjub R, Jatana S, Lee SE, et al. Recent advances in applying nanotechnologies for cancer immunotherapy. J Controlled Release. 2018;288:239–263.
  • Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–448.
  • Yang C, Lee A, Gao S, et al. Hydrogels with prolonged release of therapeutic antibody: block junction chemistry modification of ‘ABA’ copolymers provides superior anticancer efficacy. J Control Release. 2019;293:193–200.
  • Bown HK, Bonn C, Yohe S, et al. In vitro model for predicting bioavailability of subcutaneously injected monoclonal antibodies. J Control Release. 2018;273:13–20.
  • Azevedo C, Macedo MH, Sarmento B. Strategies for the enhanced intracellular delivery of nanomaterials. Drug Discov Today. 2018;23(5):944–959.
  • Arabi L, Badiee A, Mosaffa F, et al. Targeting CD44 expressing cancer cells with anti-CD44 monoclonal antibody improves cellular uptake and antitumor efficacy of liposomal doxorubicin. J Control Release. 2015;220(Pt A):275–286.
  • Bahrami B, Hojjat-Farsangi M, Mohammadi H, et al. Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett. 2017;190:64–83. Oct
  • Qiang M, Dong X, Zha Z, et al. Selection of an ASIC1a-blocking combinatorial antibody that protects cells from ischemic death. Proc Natl Acad Sci USA. 2018;115(32):E7469–E7477.
  • Giddens JP, Lomino JV, DiLillo DJ, et al. Site-selective chemoenzymatic glycoengineering of Fab and Fc glycans of a therapeutic antibody. Proc Natl Acad Sci USA. 2018;115(47):12023–12027.
  • Liu Y, Zheng P. How does an anti-CTLA-4 antibody promote cancer immunity? Trends Immunol. 2018;39(12):953–956.
  • Du X, Tang F, Liu M, et al. A reappraisal of CTLA-4 checkpoint blockade in cancer immunotherapy. Cell Res. 2018;28(4):416–432. Apr
  • van de Donk N. Reprint of “Immunomodulatory effects of CD38-targeting antibodies”. Immunol Lett. 2019;205:71–77.
  • Knorr DA, Dahan R, Ravetch JV. Toxicity of an Fc-engineered anti-CD40 antibody is abrogated by intratumoral injection and results in durable antitumor immunity. Proc Natl Acad Sci Usa. 2018;115(43):11048–11053.
  • Yin W, Zhu J, Gonzalez-Rivas D, et al. Construction of a novel bispecific antibody to enhance antitumor activity against lung cancer. Adv Mater. 2018;30(51):e1805437. Dec
  • Dai Y, Chiu LY, Chen Y, et al. Neutral charged immunosensor platform for protein-based biomarker analysis with enhanced sensitivity. ACS Sens. 2019;4(1):161–169.
  • Zhu L, Zhao Z, Cheng P, et al. Antibody-mimetic peptoid nanosheet for label-free serum-based diagnosis of Alzheimer’s disease. Adv Mater. 2017;29(30). DOI:10.1002/adma.201700057
  • Li Q, White JB, Peterson NC, et al. Tumor uptake of pegylated diabodies: balancing systemic clearance and vascular transport. J Control Release. 2018;279:126–135.
  • Patil HP, Freches D, Karmani L, et al. Fate of PEGylated antibody fragments following delivery to the lungs: influence of delivery site, PEG size and lung inflammation. J Control Release. 2018;272:62–71.
  • Loi S, Pommey S, Haibe-Kains B, et al. CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc Natl Acad Sci USA. 2013;110(27):11091–11096.
  • Heukers R, van Bergen En Henegouwen PM, Oliveira S. Nanobody-photosensitizer conjugates for targeted photodynamic therapy. Nanomedicine. 2014;10(7):1441–1451. Oct
  • Reichert A. Development trends for therapeutic antibody fragments. Nat Biotechnol. 2009;27:7.
  • Wu X, Demarest SJ. Building blocks for bispecific and trispecific antibodies. Methods. 2019;154:3–9.
  • Goubran H, Goubran M, Seghatchian J, et al. New monoclonal/bi-specific antibodies: reshaping transfusion medicine beyond replacement. Transfus Apher Sci. 2019;58(2):208–211. Apr
  • Gupta J, Hoque M, Ahmad MF, et al. Acid pH promotes bispecific antibody formation by the redox procedure. Int J Biol Macromol. 2019;125:469–477.
  • Olafsen T, Cheung CW, Yazaki PJ, et al. Covalent disulfide-linked anti-CEA diabody allows site-specific conjugation and radiolabeling for tumor targeting applications. Protein Eng Des Sel. 2004;17(1):21–27.
  • Chang CH, Wang Y, Li R, et al. Combination therapy with bispecific antibodies and PD-1 blockade enhances the antitumor potency of T cells. Cancer Res. 2017;77(19):5384–5394.
  • Scully M, Cataland SR, Peyvandi F, et al. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N Engl J Med. 2019;380(4):335–346.
  • Saag KG, Petersen J, Brandi ML, et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med. 2017;377(15):1417–1427.
  • Gordon KB, Strober B, Lebwohl M, et al. Efficacy and safety of risankizumab in moderate-to-severe plaque psoriasis (UltIMMa-1 and UltIMMa-2): results from two double-blind, randomised, placebo-controlled and ustekinumab-controlled phase 3 trials. Lancet. 2018;392(10148):650–661.
  • Reich K, Papp KA, Blauvelt A, et al. Tildrakizumab versus placebo or etanercept for chronic plaque psoriasis (reSURFACE 1 and reSURFACE 2): results from two randomised controlled, phase 3 trials. Lancet. 2017;390(10091):276–288.
  • Imel EA, Glorieux FH, Whyte MP, et al. Burosumab versus conventional therapy in children with X-linked hypophosphataemia: a randomised, active-controlled, open-label, phase 3 trial. Lancet. 2019;393(10189):2416–2427.
  • Stoker K, Baker DE. Erenumab-aooe. Hosp Pharm. 2018;53(6):363–368. Dec
  • Madeleine D, Pinter-Brown LC, Foss FM, et al. Phase 1/2 study of mogamulizumab, a defucosylated anti-CCR4 antibody, in previously treated patients with cutaneous T-cell lymphoma. Blood. 2015;125(12):1883–1889.
  • Lanadelumab. Available from: https://www.fda.gov/drugs/drug-approvals-and-databases/drug-trials-snapshots-takhzyro
  • Moxetumomab pasudotox-tdfk. Available from: https://www.fda.gov/drugs/drug-approvals-and-databases/drug-trials-snapshots-lumoxiti
  • Fremanezumab. Available from: https://www.fda.gov/drugs/drug-trials-snapshot-ajovy
  • Galcanezumab. Available from: https://www.fda.gov/drugs/drug-trials-snapshots-emgality
  • Cemiplimab. Available from: https://www.fda.gov/drugs/drug-approvals-and-databases/drug-trials-snapshot-libtayo
  • Emapalumab. Available from: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&varApplNo=761107
  • Ravulizumab. Available from: https://www.fda.gov/drugs/drug-approvals-and-databases/drug-trials-snapshots-ultomiris
  • Ji T, Lang J, Ning B, et al. Enhanced natural killer cell immunotherapy by rationally assembling Fc fragments of antibodies onto tumor membranes. Adv Mater. 2019;31(6):e1804395.
  • Liu X, Liu C, Zheng Z, et al. Vesicular antibodies: a bioactive multifunctional combination platform for targeted therapeutic delivery and cancer immunotherapy. Adv Mater. 2019;31(17):1808294.
  • Garcia-Alonso S, Ocana A, Pandiella A. Resistance to antibody-drug conjugates. Cancer Res. 2018;78(9):2159–2165.
  • Lu J, Jiang F, Lu A, et al. Linkers having a crucial role in antibody-drug conjugates. IJMS. 2016;17(4):561.
  • Sau S, Alsaab HO, Kashaw SK, et al. Advances in antibody-drug conjugates: a new era of targeted cancer therapy. Drug Discov Today. 2017;22(10):1547–1556. Oct
  • Duerr C, Friess W. Antibody-drug conjugates- stability and formulation. Eur J Pharm Biopharm. 2019;139:168–176.
  • Teicher BA, Chari RV. Antibody conjugate therapeutics: challenges and potential. Clin Cancer Res. 2011;17(20):6389–6397.
  • Erickson HK, Park PU, Widdison WC, et al. Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res. 2006;66(8):4426–4433.
  • McCombs JR, Owen SC. Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry. AAPS J. 2015;17(2):339–351. Mar
  • Wang Y, Wu C. Site-specific conjugation of polymers to proteins. Biomacromolecules. 2018;19(6):1804–1825.
  • Bross PF, Beitz J, Chen G, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7(6):1490–1496.
  • Junutula JR, Raab H, Clark S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol. 2008;26(8):925–932. Aug
  • Mao C, Zhao Y, Li F, et al. P-glycoprotein targeted and near-infrared light-guided depletion of chemoresistant tumors. J Control Release. 2018;286:289–300.
  • Mehra NK, Jain AK, Nahar M. Carbon nanomaterials in oncology: an expanding horizon. Drug Discov Today. 2018;23(5):1016–1025.
  • Kovtun YV, Audette CA, Ye Y, et al. Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res. 2006;66(6):3214–3221.
  • Oflazoglu E, Stone IJ, Gordon K, et al. Potent anticarcinoma activity of the humanized anti-CD70 antibody h1F6 conjugated to the tubulin inhibitor auristatin via an uncleavable linker. Clin Cancer Res. 2008;14(19):6171–6180.
  • Tsumura R, Manabe S, Takashima H, et al. Influence of the dissociation rate constant on the intra-tumor distribution of antibody-drug conjugate against tissue factor. J Control Release. 2018;284:49–56.
  • Lei W, Zhiwen Z, Ansgar B, et al. Addition of the keto functional group to the genetic code of Escherichia coli. PNAS. 2003;100(1):56–61.
  • Perez HL, Cardarelli PM, Deshpande S, et al. Antibody-drug conjugates: current status and future directions. Drug Discov Today. 2014;19(7):869–881.
  • Thomas H, Thomas JD, Burke TR, et al. An engineered selenocysteine defines a unique class of antibody derivatives. Proc Natl Acad Sci U S A. 2008;105(34):12451–12456.
  • Thomas H, Skeffington LR, Chapman CM, et al. Molecularly defined antibody conjugation through a selenocysteine interface. Biochemistry. 2009;48(50):12047.
  • Merino M, Zalba S, Garrido MJ. Immunoliposomes in clinical oncology: state of the art and future perspectives. J Control Release. 2018;275:162–176.
  • Xiao H, Schultz PG. At the interface of chemical and biological synthesis: an expanded genetic code. Cold Spring Harb Perspect Biol. 2016;8(9):a023945.
  • Chin JW. Expanding and reprogramming the genetic code. Nature. 2017;50(7674):53–60.
  • Hankore ED, Zhang L, Chen Y, et al. Genetic incorporation of noncanonical amino acids using two mutually orthogonal quadruplet codons. ACS Synth Biol. 2019;8(5):1168–1174.
  • Lang K, Davis L, Torres-Kolbus J, et al. Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. Nature Chem. 2012;4(4):298–304.
  • Feng T, Yingchun L, Anthony M, et al. A general approach to site-specific antibody drug conjugates. PNAS. 2014;111(5):1766.
  • Alexander DT, Ashton C, Mridul M, et al. Adding amino acids with novel reactivity to the genetic code of Saccharomyces cerevisiae. J Am Chem Soc. 2003;125(39):11782–11783.
  • VanBrunt MP, Shanebeck K, Caldwell Z, et al. Genetically encoded azide containing amino acid in mammalian cells enables site-specific antibody-drug conjugates using click cycloaddition chemistry. Bioconjugate Chem. 2015;26(11):2249–2260.
  • Murphy C, Stack E, Krivelo S, et al. Enhancing recombinant antibody performance by optimally engineering its format. J Immunol Methods. 2018;463:127–133.
  • Mariathasan S, Tan MW. Antibody-antibiotic conjugates: a novel therapeutic platform against bacterial infections. Trends Mol Med. 2017;23(2):135–149.
  • Meng T, Kulkarni V, Simmers R, et al. Therapeutic implications of nanomedicine for ocular drug delivery. Drug Discov Today. 2019;24(8):1524–1538.
  • Huang X, Chau Y. Intravitreal nanoparticles for retinal delivery. Drug Discov Today. 2019;24(8):1510–1523.
  • Siafaka PI, Ustundag Okur N, Karavas E, et al. Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting: current status and uses. Int J Mol Sci. 2016;17(9). DOI:10.3390/ijms17091440
  • Urquhart AJ, Eriksen AZ. Recent developments in liposomal drug delivery systems for the treatment of retinal diseases. Drug Discov Today. 2019;24(8):1660–1668.
  • Garg NK, Tandel N, Jadon RS, et al. Lipid-polymer hybrid nanocarrier-mediated cancer therapeutics: current status and future directions. Drug Discov Today. 2018;23(9):1610–1621.
  • Wang ZY, Sreenivasmurthy SG, Song JX, et al. Strategies for brain-targeting liposomal delivery of small hydrophobic molecules in the treatment of neurodegenerative diseases. Drug Discov Today. 2019;24(2):595–605.
  • Valero L, Alhareth K, Gil S, et al. Nanomedicine as a potential approach to empower the new strategies for the treatment of preeclampsia. Drug Discov Today. 2018;23(5):1099–1107.
  • Li Q, Li W, Di H, et al. A photosensitive liposome with NIR light triggered doxorubicin release as a combined photodynamic-chemo therapy system. J Control Release. 2018;277:114–125.
  • Ou W, Thapa RK, Jiang L, et al. Regulatory T cell-targeted hybrid nanoparticles combined with immuno-checkpoint blockage for cancer immunotherapy. J Control Release. 2018;281:84–96.
  • Fang Y, Xue J, Gao S, et al. Cleavable PEGylation: a strategy for overcoming the “PEG dilemma” in efficient drug delivery. Drug Deliv. 2017;24(2):22–32.
  • Gu L, Ruff LE, Qin Z, et al. Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic CD40 antibody. Adv Mater. 2012;24(29):3981–3987.
  • Evans ER, Bugga P, Asthana V, et al. Metallic nanoparticles for cancer immunotherapy. Mater Today (Kidlington). 2018;21(6):673–685.
  • Yang W, Zhou Z, Lau J, et al. Functional T cell activation by smart nanosystems for effective cancer immunotherapy. Nano Today. 2019;27:28–47.
  • Kaushik A, Jayant RD, Bhardwaj V, et al. Personalized nanomedicine for CNS diseases. Drug Discov Today. 2018;23(5):1007–1015.
  • Wolfram J, Ferrari M. Clinical cancer nanomedicine. Nano Today. 2019;25:85–98.
  • Ju Y, Dong B, Yu J, et al. Inherent multifunctional inorganic nanomaterials for imaging-guided cancer therapy. Nano Today. 2019;26:108–122.
  • Tomitaka A, Kaushik A, Kevadiya BD, et al. Surface-engineered multimodal magnetic nanoparticles to manage CNS diseases. Drug Discov Today. 2019;24(3):873–882. Mar
  • Qiu M, Singh A, Wang D, et al. Biocompatible and biodegradable inorganic nanostructures for nanomedicine: silicon and black phosphorus. Nano Today. 2019;25:135–155.
  • Jianwei L, Folarin E, Ken-Tye Y, et al. Assessing clinical prospects of silicon quantum dots: studies in mice and monkeys. Acs Nano. 2013;7(8):7303–7310.
  • Folarin E, Ken-Tye Y, Indrajit R, et al. In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. Acs Nano. 2011;5(1):413–423.
  • Zhao Q, Zhang R, Ye D, et al. Ratiometric fluorescent silicon quantum dots–Ce6 complex probe for the live cell imaging of highly reactive oxygen species. ACS Appl Mater Interfaces. 2017;9(3):2052–2058.
  • Saneja A, Kumar R, Arora D, et al. Recent advances in near-infrared light-responsive nanocarriers for cancer therapy. Drug Discov Today. 2018;23(5):1115–1125.
  • Argyo C, Weiss V, Bräuchle C, et al. Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem Mater. 2014;26(1):435–451.
  • Poonia N, Lather V, Pandita D. Mesoporous silica nanoparticles: a smart nanosystem for management of breast cancer. Drug Discov Today. 2018;23(2):315–332.
  • Tsai C-P, Chen C-Y, Hung Y, et al. Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J Mater Chem. 2009;19(32):5737.
  • Lim DJ, Sim M, Oh L, et al. Carbon-based drug delivery carriers for cancer therapy. Arch Pharm Res. 2014;37(1):43–52.
  • Chen D, Dougherty CA, Zhu K, et al. Theranostic applications of carbon nanomaterials in cancer: focus on imaging and cargo delivery. J Control Release. 2015;210:230–245.
  • Wong BS, Yoong SL, Jagusiak A, et al. Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev. 2013;65(15):1964–2015.
  • Yang X, Ebrahimi A, Li J, et al. Fullerene-biomolecule conjugates and their biomedicinal applications. Int J Nanomedicine. 2014;9:77–92.
  • Yang K, Feng L, Liu Z. The advancing uses of nano-graphene in drug delivery. Expert Opin Drug Deliv. 2015;12(4):601–612.
  • Jung JH, Cheon DS, Liu F, et al. A graphene oxide based immuno-biosensor for pathogen detection. Angew Chem Int Ed Engl. 2010;49(33):5708–5711.
  • Yang Y, Asiri AM, Tang Z, et al. Graphene based materials for biomedical applications. Mater Today. 2013;16(10):365–373.
  • Dhas N, Parekh K, Pandey A, et al. Two dimensional carbon based nanocomposites as multimodal therapeutic and diagnostic platform: a biomedical and toxicological perspective. J Control Release. 2019;308:130–161.
  • Zhou L, Mao H, Wu C, et al. Label-free graphene biosensor targeting cancer molecules based on non-covalent modification. Biosens Bioelectron. 2017;87:701–707.
  • Cheng H, Gadora K, Wang Z, et al. Functionalized nanographene oxide in biomedicine applications: bioinspired surface modifications, multidrug shielding, and site-specific trafficking. Drug Discov Today. 2019;24(3):749–762.
  • Liu J, Dong J, Zhang T, et al. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J Control Release. 2018;286:64–73.
  • Wang M, Wu J, Li Y, et al. A tumor targeted near-infrared light-controlled nanocomposite to combat with multidrug resistance of cancer. J Control Release. 2018;288:34–44.
  • Al-Qattan MN, Deb PK, Tekade RK. Molecular dynamics simulation strategies for designing carbon-nanotube-based targeted drug delivery. Drug Discov Today. 2018;23(2):235–250.
  • Ranjous Y, Regdon G, Jr., Pintye-Hodi K, et al. Standpoint on the priority of TNTs and CNTs as targeted drug delivery systems. Drug Discov Today. 2019;24(9):1704–1709.
  • Hassan H, Diebold SS, Smyth LA, et al. Application of carbon nanotubes in cancer vaccines: achievements, challenges and chances. J Control Release. 2019;297:79–90.
  • Kafa H, Wang JT, Rubio N, et al. Translocation of LRP1 targeted carbon nanotubes of different diameters across the blood-brain barrier in vitro and in vivo. J Control Release. 2016;225:217–229.
  • Parra J, Abad-Somovilla A, Mercader JV, et al. Carbon nanotube-protein carriers enhance size-dependent self-adjuvant antibody response to haptens. J Control Release. 2013;170(2):242–251.
  • Hassan HA, Smyth L, Wang JT, et al. Dual stimulation of antigen presenting cells using carbon nanotube-based vaccine delivery system for cancer immunotherapy. Biomaterials. 2016;104:310–322.
  • Lu GH, Shang WT, Deng H, et al. Targeting carbon nanotubes based on IGF-1R for photothermal therapy of orthotopic pancreatic cancer guided by optical imaging. Biomaterials. 2019;195:13–22.
  • Wu Y, Ali MRK, Chen K, et al. Gold nanoparticles in biological optical imaging. Nano Today. 2019;24:120–140.
  • Du S, Yu Y, Xu C, et al. LMWH and its derivatives represent new rational for cancer therapy: construction strategies and combination therapy. Drug Discov Today. 2019;24:2096–2104.
  • Manivasagan P, Nguyen VT, Jun SW, et al. Anti-EGFR antibody conjugated thiol chitosan-layered gold nanoshells for dual-modal imaging-guided cancer combination therapy. J Control Release. 2019;311–312:26–42.
  • Kong F, Zhang H, Qu X, et al. Gold nanorods, DNA origami, and porous silicon nanoparticle-functionalized biocompatible double emulsion for versatile targeted therapeutics and antibody combination therapy. Adv Mater. 2016;28(46):10195–10203. Dec
  • Kang H, Hu S, Cho MH, et al. Theranostic nanosystems for targeted cancer therapy. Nano Today. 2018;23:59–72.
  • Sau S, Tatiparti K, Alsaab HO, et al. A tumor multicomponent targeting chemoimmune drug delivery system for reprograming the tumor microenvironment and personalized cancer therapy. Drug Discov Today. 2018;23(7):1344–1356.
  • Gu M, Wang X, Toh TB, et al. Applications of stimuli-responsive nanoscale drug delivery systems in translational research. Drug Discov Today. 2018;23(5):1043–1052.
  • Wang C, Sun W, Wright G, et al. Inflammation-triggered cancer immunotherapy by programmed delivery of CpG and anti-PD1 antibody. Adv Mater. 2016;28(40):8912–8920.
  • Li S, Tian T, Zhang T, et al. Advances in biological applications of self-assembled DNA tetrahedral nanostructures. Mater Today. 2019;24:57–68.
  • Arranz-Romera A, Esteban-Perez S, Garcia-Herranz D, et al. Combination therapy and co-delivery strategies to optimize treatment of posterior segment neurodegenerative diseases. Drug Discov Today. 2019;24(8):1644–1653.
  • Elsabahy M, Wooley KL. Reassessment of nanomaterials immunotoxicity. Nano Today. 2018;20:10–12.
  • Taussig MJ, Fonseca C, Trimmer JS. Antibody validation: a view from the mountains. N Biotechnol. 2018;45:1–8.
  • Gulzar A, Xu J, Wang C, et al. Tumour microenvironment responsive nanoconstructs for cancer theranostic. Nano Today. 2019;26:16–56.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.