446
Views
23
CrossRef citations to date
0
Altmetric
Review Article

Bioengineered smart bacterial carriers for combinational targeted therapy of solid tumours

, , , & ORCID Icon
Pages 700-713 | Received 01 Oct 2019, Accepted 26 Feb 2020, Published online: 16 Mar 2020

References

  • Felgner S, Kocijancic D, Frahm M, et al. Bacteria in cancer therapy: renaissance of an old concept. Int J Microbiol. 2016;2016:1–14.
  • Forbes NS. Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer. 2010;10(11):785–794.
  • Kim OY, Park HT, Dinh NTH, et al. Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response. Nat Commun. 2017;8(1):626.
  • Dobrovolskienė N, Pašukonienė V, Darinskas A, et al. Tumor lysate-loaded Bacterial Ghosts as a tool for optimized production of therapeutic dendritic cell-based cancer vaccines. Vaccine. 2018;36(29):4171–4180.
  • Ryan R, Green J, Williams P, et al. Bacterial delivery of a novel cytolysin to hypoxic areas of solid tumors. Gene Ther. 2009;16(3):329–339.
  • Bhave MS, Hassanbhai AM, Anand P, et al. Effect of heat-inactivated Clostridium sporogenes and its conditioned media on 3-dimensional colorectal cancer cell models. Sci Rep. 2015;5(1):1–12.
  • Payne KK, Toor AA, Wang XY, et al. Immunotherapy of cancer: reprogramming tumor-immune crosstalk. Clin Dev Immunol. 2012;2012:1–8.
  • Ryu M-H, Gomelsky M. Near-infrared light responsive synthetic c-di-GMP module for optogenetic applications. ACS Synth Biol. 2014;3(11):802–810.
  • Magaraci MS, Veerakumar A, Qiao P, et al. Engineering Escherichia coli for light-activated cytolysis of mammalian cells. ACS Synth Biol. 2014;3(12):944–948.
  • Cronin M, Stanton R, Francis K, et al. Bacterial vectors for imaging and cancer gene therapy: a review. Cancer Gene Ther. 2012;19(11):731–740.
  • Hosseinidoust Z, Mostaghaci B, Yasa O, et al. Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv Drug Deliv Rev. 2016;106:27–44.
  • Liu S, Xu X, Zeng X, et al. Tumor-targeting bacterial therapy: a potential treatment for oral cancer (Review). Oncol Lett. 2014;8(6):2359–2366.
  • Dietrich G, Bubert A, Gentschev I, et al. Delivery of antigen-encoding plasmid DNA into the cytosol of macrophages by attenuated suicide Listeria monocytogenes. Nat Biotechnol. 1998;16(2):181–185.
  • Tangney M, Gahan CG. Listeria monocytogenes as a vector for anti-cancer therapies. Curr Gene Ther. 2010;10(1):46–55.
  • Yang N, Zhu X, Chen L, et al. Oral administration of attenuated S. typhimurium carrying shRNA-expressing vectors as a cancer therapeutic. Cancer Biol Ther. 2008;7(1):145–151.
  • Fu W, Lan H, Li S, et al. Synergistic antitumor efficacy of suicide/ePNP gene and 6-methylpurine 2’-deoxyriboside via Salmonella against murine tumors. Cancer Gene Ther. 2008;15(7):474–484.
  • van Pijkeren JP, Morrissey D, Monk IR, et al. A novel Listeria monocytogenes-based DNA delivery system for cancer gene therapy. Hum Gene Ther. 2010;21(4):405–416.
  • Parker RC, Plummer HC, Siebenmann CO, et al. Effect of histolyticus infection and toxin on transplantable mouse tumors. Proc Soc Exp Biol Med. 1947;66(2):461–467.
  • Cronin M, Morrissey D, Rajendran S, et al. Orally administered bifidobacteria as vehicles for delivery of agents to systemic tumors. Mol Ther. 2010;18(7):1397–1407.
  • Brader P, Stritzker J, Riedl CC, et al. Escherichia coli Nissle 1917 facilitates tumor detection by positron emission tomography and optical imaging. Clin Cancer Res. 2008;14(8):2295–2302.
  • Pawelek JM, Low KB, Bermudes D. Bacteria as tumour-targeting vectors. Lancet Oncol. 2003;4(9):548–556.
  • Dang LH, Bettegowda C, Huso DL, et al. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci USA. 2001;98(26):15155–15160.
  • Anderson JC, Clarke EJ, Arkin AP, et al. Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol. 2006;355(4):619–627.
  • Svoboda MG. Culturing cancer in the american century. Bull Sci Technol Soc. 1999;19(3):219–230.
  • Baban CK, Cronin M, O’Hanlon D, et al. Bacteria as vectors for gene therapy of cancer. Bioeng Bugs. 2010;1(6):385–394.
  • Lechardeur D, Sohn K, Haardt M, et al. Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther. 1999;6(4):482–497.
  • McCrudden CM, McCarthy HO. Cancer gene therapy–key biological concepts in the design of multifunctional non-viral delivery systems. Gene therapy-tools and potential applications. London: InTech; 2013.
  • Omidi Y, Hollins AJ, Benboubetra M, et al. Toxicogenomics of non-viral vectors for gene therapy: a microarray study of lipofectin- and oligofectamine-induced gene expression changes in human epithelial cells. J Drug Target. 2003;11(6):311–323.
  • Omidi Y, Barar J, Akhtar S. Toxicogenomics of cationic lipid-based vectors for gene therapy: impact of microarray technology. Curr Drug Deliv. 2005;2(4):429–441.
  • Omidi Y, Hollins AJ, Drayton RM, et al. Polypropylenimine dendrimer-induced gene expression changes: the effect of complexation with DNA, dendrimer generation and cell type. J Drug Target. 2005;13(7):431–443.
  • Hollins AJ, Omidi Y, Benter IF, et al. Toxicogenomics of drug delivery systems: exploiting delivery system-induced changes in target gene expression to enhance siRNA activity. J Drug Target. 2007;15(1):83–88.
  • Omidi Y, Barar J, Heidari HR, et al. Microarray analysis of the toxicogenomics and the genotoxic potential of a cationic lipid-based gene delivery nanosystem in human alveolar epithelial a549 cells. Toxicol Mech Methods. 2008;18(4):369–378.
  • Barar J, Omidi Y. Intrinsic bio-signature of gene delivery nanocarriers may impair gene therapy goals. Bioimpacts. 2013;3(3):105–109.
  • Palffy R, Gardlik R, Hodosy J, et al. Bacteria in gene therapy: bactofection versus alternative gene therapy. Gene Ther. 2006;13:101.
  • Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4(5):346–358.
  • Bernardes N, Chakrabarty AM, Fialho AM. Engineering of bacterial strains and their products for cancer therapy. Appl Microbiol Biotechnol. 2013;97(12):5189–5199.
  • Ohlendorf R, Vidavski RR, Eldar A, et al. From dusk till dawn: one-plasmid systems for light-regulated gene expression. J Mol Biol. 2012;416(4):534–542.
  • Bettegowda C, Dang LH, Abrams R, et al. Overcoming the hypoxic barrier to radiation therapy with anaerobic bacteria. Proc Natl Acad Sci USA. 2003;100(25):15083–15088.
  • Pawelek JM, Low KB, Bermudes D. Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 1997;57(20):4537–4544.
  • Brockstedt DG, Giedlin MA, Leong ML, et al. Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc Natl Acad Sci USA. 2004;101(38):13832–13837.
  • Roberts NJ, Zhang L, Janku F, et al. Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses. Sci Transl Med. 2014;6(249):249ra111–249ra111.
  • Toso JF, Gill VJ, Hwu P, et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol. 2002;20(1):142–152.
  • Saltzman DA, Katsanis E, Heise CP, et al. Antitumor mechanisms of attenuated Salmonella typhimurium containing the gene for human interleukin-2: a novel antitumor agent? J Pediatr Surg. 1997;32(2):301–306.
  • Le DT, Wang-Gillam A, Picozzi V, et al. Safety and survival with GVAX pancreas prime and Listeria monocytogenes–expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J Clin Oncol. 2015;33(12):1325–1333.
  • Silva-Valenzuela CA, Desai PT, Molina-Quiroz RC, et al. Solid tumors provide niche-specific conditions that lead to preferential growth of Salmonella. Oncotarget. 2016;7(23):35169–35180.
  • Nair N, Kasai T, Seno M. Bacteria: prospective savior in battle against cancer. Anticancer Res. 2014;34(11):6289–6296.
  • Gardlik R, Behuliak M, Palffy R, et al. Gene therapy for cancer: bacteria-mediated anti-angiogenesis therapy. Gene Ther. 2011;18(5):425–431.
  • Shukla GS, Krag DN. Selective delivery of therapeutic agents for the diagnosis and treatment of cancer. Expert Opin Biol Ther. 2006;6(1):39–54.
  • Ren J, Shen S, Wang D, et al. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2. Biomaterials. 2012;33(11):3324–3333.
  • Price C, Storz G, Hengge-Aaronis R. Bacterial stress responses. Washington (DC): ASM Press; 2000.
  • Du ZQ, Wang JY. A novel lumazine synthase molecule from Brucella significantly promotes the immune-stimulation effects of antigenic protein. Genet Mol Res. 2015;14(4):13084–13095.
  • Qin JY, Zhang L, Clift KL, et al. Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS One. 2010;5(5):e10611.
  • Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399–408.
  • Terpe K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol. 2006;72(2):211–222.
  • Hartman AH, Liu H, Melville SB. Construction and characterization of a lactose-inducible promoter system for controlled gene expression in Clostridium perfringens. Appl Environ Microbiol. 2011;77(2):471–478.
  • Polstein LR, Gersbach CA. Light-inducible spatiotemporal control of gene activation by customizable zinc finger transcription factors. J Am Chem Soc. 2012;134(40):16480–16483.
  • Wang V, Davis DA, Yarchoan R. Identification of functional hypoxia inducible factor response elements in the human lysyl oxidase gene promoter. Biochem Biophys Res Commun. 2017;490(2):480–485.
  • Nuyts S, Van Mellaert L, Theys J, et al. The use of radiation-induced bacterial promoters in anaerobic conditions: a means to control gene expression in clostridium-mediated therapy for cancer. Radiat Res. 2001;155(5):716–723.
  • Polstein LR, Gersbach CA. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol. 2015;11(3):198–200.
  • Ge X, Wang R, Ma J, et al. DegP primarily functions as a protease for the biogenesis of β-barrel outer membrane proteins in the Gram-negative bacterium Escherichia coli. FEBS J. 2014;281(4):1226–1240.
  • Dajkovic A, Lutkenhaus J. Z ring as executor of bacterial cell division. J Mol Microbiol Biotechnol. 2006;11(3–5):140–151.
  • Kudela P, Koller VJ, Lubitz W. Bacterial ghosts (BGs)–advanced antigen and drug delivery system. Vaccine. 2010;28(36):5760–5767.
  • Cho S, Choi YJ, Zheng S, et al. Modeling of chemotactic steering of bacteria-based microrobot using a population-scale approach. Biomicrofluidics. 2015;9(5):054116.
  • Jahanban-Esfahlan R, de la Guardia M, Ahmadi D, et al. Modulating tumor hypoxia by nanomedicine for effective cancer therapy. J Cell Physiol. 2018;233(3):2019–2031.
  • Staedtke V, Bai R-Y, Sun W, et al. Clostridium novyi-NT can cause regression of orthotopically implanted glioblastomas in rats. Oncotarget. 2015;6(8):5536.
  • Cosse JP, Michiels C. Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression. Anticancer Agents Med Chem. 2008;8(7):790–797.
  • Casas A, Di Venosa G, Hasan T, et al. Mechanisms of resistance to photodynamic therapy. Curr Med Chem. 2011;18(16):2486–2515.
  • Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 2001;93(4):266–276.
  • Staedtke V, Roberts NJ, Bai R-Y, et al. Clostridium novyi-NT in cancer therapy. Genes Dis. 2016;3:144–152.
  • Brown JM. Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies. Mol Med Today. 2000;6(4):157–162.
  • Javan B, Shahbazi M. Hypoxia-inducible tumour-specific promoters as a dual-targeting transcriptional regulation system for cancer gene therapy. Ecancermedicalscience. 2017;11:751.
  • Unruh A, Ressel A, Mohamed HG, et al. The hypoxia-inducible factor-1 alpha is a negative factor for tumor therapy. Oncogene. 2003;22(21):3213–3220.
  • Umer B, Good D, Anne J, et al. Clostridial spores for cancer therapy: targeting solid tumour microenvironment. J Toxicol. 2012;2012:1–8.
  • St Jean AT, Zhang M, Forbes NS. Bacterial therapies: completing the cancer treatment toolbox. Curr Opin Biotechnol. 2008;19(5):511–517.
  • Dang LH, Bettegowda C, Agrawal N, et al. Targeting vascular and avascular compartments of tumors with C. novyi-NT and anti-microtubule agents. Cancer Biol Ther. 2004;3(3):326–337.
  • Giaccia A, Siim BG, Johnson RS. HIF-1 as a target for drug development. Nat Rev Drug Discov. 2003;2(10):803–811.
  • Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–732.
  • Mengesha A, Dubois L, Lambin P, et al. Development of a flexible and potent hypoxia-inducible promoter for tumor-targeted gene expression in attenuated Salmonella. Cancer Biol Ther. 2006;5(9):1120–1128.
  • Felfoul O, Mohammadi M, Taherkhani S, et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat Nanotechnol. 2016;11(11):941–947.
  • Kaliberov SA, Buchsbaum DJ. Chapter seven-Cancer treatment with gene therapy and radiation therapy. Adv Cancer Res. 2012;115:221–263.
  • Kamensek U, Sersa G. Targeted gene therapy in radiotherapy. Radiol Oncol. 2008;42(3):115–135.
  • Ogawa R, Morii A, Watanabe A, et al. Development of a therapeutically important radiation induced promoter. Bioengineered. 2013;4(1):44–49.
  • Lumniczky K, Safrany G. Cancer gene therapy: combination with radiation therapy and the role of bystander cell killing in the anti-tumor effect. Pathol Oncol Res. 2006;12(2):118–124.
  • Sonveaux P, Dessy C, Brouet A, et al. Modulation of the tumor vasculature functionality by ionizing radiation accounts for tumor radiosensitization and promotes gene delivery. FASEB J. 2002;16(14):1979–1981.
  • Chastel C, Jiricny J, Jaussi R. Activation of stress-responsive promoters by ionizing radiation for deployment in targeted gene therapy. DNA Repair (Amst). 2004;3(3):201–215.
  • Riley P. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol. 1994;65(1):27–33.
  • Nuyts S, Van Mellaert L, Theys J, et al. Radio-responsive recA promoter significantly increases TNFalpha production in recombinant Clostridia after 2 Gy irradiation. Gene Ther. 2001;8(15):1197–1201.
  • Nuyts S, Van Mellaert L, Barbe S, et al. Insertion or deletion of the Cheo box modifies radiation inducibility of Clostridium promoters. Appl Environ Microbiol. 2001;67(10):4464–4470.
  • Marples B, Scott SD, Hendry JH, et al. Development of synthetic promoters for radiation-mediated gene therapy. Gene Ther. 2000;7(6):511–517.
  • Xiong J, Sun WJ, Wang WF, et al. Novel, chimeric, cancer-specific, and radiation-inducible gene promoters for suicide gene therapy of cancer. Cancer. 2012;118(2):536–548.
  • Scott SD, Marples B, Hendry JH, et al. A radiation-controlled molecular switch for use in gene therapy of cancer. Gene Ther. 2000;7(13):1121–1125.
  • Milias-Argeitis A, Rullan M, Aoki SK, et al. Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth. Nat Commun. 2016;7(1):12546.
  • Polesskaya O, Baranova A, Bui S, et al. Optogenetic regulation of transcription. BMC Neurosci. 2018;19(S1):12.
  • Airan RD, Thompson KR, Fenno LE, et al. Temporally precise in vivo control of intracellular signalling. Nature. 2009;458(7241):1025–1029.
  • Muller K, Weber W. Optogenetic tools for mammalian systems. Mol Biosyst. 2013;9:596–608.
  • Yazawa M, Sadaghiani AM, Hsueh B, et al. Induction of protein-protein interactions in live cells using light. Nat Biotechnol. 2009;27(10):941–945.
  • Pathak GP, Strickland D, Vrana JD, et al. Benchmarking of optical dimerizer systems. ACS Synth Biol. 2014;3(11):832–838.
  • Tedford CE, DeLapp S, Jacques S, et al. Quantitative analysis of transcranial and intraparenchymal light penetration in human cadaver brain tissue. Lasers Surg Med. 2015;47(4):312–322.
  • Piatkevich KD, Subach FV, Verkhusha VV. Engineering of bacterial phytochromes for near-infrared imaging, sensing, and light-control in mammals. Chem Soc Rev. 2013;42(8):3441–3452.
  • Gujrati V, Kim S, Kim SH, et al. Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. ACS Nano. 2014;8(2):1525–1537.
  • Montanaro J, Inic-Kanada A, Ladurner A, et al. Escherichia coli Nissle 1917 bacterial ghosts retain crucial surface properties and express chlamydial antigen: an imaging study of a delivery system for the ocular surface. Drug Des Devel Ther. 2015;9:3741–3754.
  • Gujrati VB, Jon S. Bioengineered bacterial outer membrane vesicles: what is their potential in cancer therapy? Nanomedicine (Lond). 2014;9(7):933–935.
  • Jain S, Pillai J. Bacterial membrane vesicles as novel nanosystems for drug delivery. Int J Nanomedicine. 2017;12:6329–6341.
  • Mashburn-Warren L, Mclean R, Whiteley M. Gram-negative outer membrane vesicles: beyond the cell surface. Geobiology. 2008;6:214–219.
  • Bitto NJ, Kaparakis-Liaskos M. The therapeutic benefit of bacterial membrane vesicles. Int J Mol Sci. 2017;18.
  • Alves NJ, Turner KB, Medintz IL, et al. Emerging therapeutic delivery capabilities and challenges utilizing enzyme/protein packaged bacterial vesicles. Ther Deliv. 2015;6(7):873–887.
  • Baker JL, Chen L, Rosenthal JA, et al. Microbial biosynthesis of designer outer membrane vesicles. Curr Opin Biotechnol. 2014;29:76–84.
  • Nguyen HN, Romero Jovel S, Nguyen T. Nanosized minicells generated by lactic acid bacteria for drug delivery. J Nanomater. 2017;2017:1–10.
  • Farley MM, Hu B, Margolin W, et al. Minicells, back in fashion. J Bacteriol. 2016;198(8):1186–1195.
  • Carleton HA, Lara-Tejero M, Liu X, et al. Engineering the type III secretion system in non-replicating bacterial minicells for antigen delivery. Nat Commun. 2013;4(1):1590.
  • Solomon BJ, Desai J, Rosenthal M, et al. A first-time-in-human phase I clinical trial of bispecific antibody-targeted, paclitaxel-packaged bacterial minicells. PLOS One. 2015;10(12):e0144559.
  • Langemann T, Koller VJ, Muhammad A, et al. The bacterial ghost platform system: production and applications. Bioeng Bugs. 2010;1(5):326–336.
  • Henrich B, Lubitz W, Plapp R. Lysis of Escherichia coli by induction of cloned ϕX174 genes. Mol Gen Genet. 1982;185(3):493–497.
  • Jalava K, Eko FO, Riedmann E, et al. Bacterial ghosts as carrier and targeting systems for mucosal antigen delivery. Expert Rev Vaccines. 2003;2(1):45–51.
  • Jaleta H, Mamo B, Disassa H. Review on bacterial ghost and its application. Int J Microbiol Res. 2015;6:200–210.
  • Muhammad A, Champeimont J, Mayr UB, et al. Bacterial ghosts as carriers of protein subunit and DNA-encoded antigens for vaccine applications. Expert Rev Vaccines. 2012;11(1):97–116.
  • Pashine A, Valiante NM, Ulmer JB. Targeting the innate immune response with improved vaccine adjuvants. Nat Med. 2005;11(S4):S63–S68.
  • Groza D, Gehrig S, Kudela P, et al. Bacterial ghosts as adjuvant to oxaliplatin chemotherapy in colorectal carcinomatosis. Oncoimmunology. 2018;7(5):e1424676.
  • Paukner S, Kohl G, Lubitz W. Bacterial ghosts as novel advanced drug delivery systems: antiproliferative activity of loaded doxorubicin in human Caco-2 cells. J Control Release. 2004;94(1):63–74.
  • Huter V, Hensel A, Brand E, et al. Improved protection against lung colonization by Actinobacillus pleuropneumoniae ghosts: characterization of a genetically inactivated vaccine. J Biotechnol. 2000;83(1–2):161–172.
  • Griffeth LK. Use of PET/CT scanning in cancer patients: technical and practical considerations. Proc (Bayl Univ Med Cent). 2005;18(4):321–330.
  • Parkash V, Domfeh A, Cohen P, et al. Does size matter? Comparison study between MRI, gross, and microscopic tumor sizes in breast cancer in lumpectomy specimens. Int J Clin Exp Pathol. 2010;3:303–309.
  • Akbari Nakhjavani S, Khalilzadeh B, Samadi Pakchin P, et al. A highly sensitive and reliable detection of CA15-3 in patient plasma with electrochemical biosensor labeled with magnetic beads. Biosens Bioelectron. 2018;122:8–15.
  • Akbari Nakhjavani S, Afsharan H, Khalilzadeh B, et al. Gold and silver bio/nano-hybrids-based electrochemical immunosensor for ultrasensitive detection of carcinoembryonic antigen. Biosens Bioelectron. 2019;141:111439.
  • Panteli JT, Forkus BA, Van Dessel N, et al. Genetically modified bacteria as a tool to detect microscopic solid tumor masses with triggered release of a recombinant biomarker. Integr Biol. 2015;7(4):423–434.
  • Liu Y, Zhou M, Luo D, et al. Bacteria-mediated in vivo delivery of quantum dots into solid tumor. Biochem Biophys Res Commun. 2012;425(4):769–774.
  • Cronin M, Akin AR, Collins SA, et al. High resolution in vivo bioluminescent imaging for the study of bacterial tumour targeting. PLoS One. 2012;7(1):e30940.
  • Li D, Choi H, Cho S, et al. A hybrid actuated microrobot using an electromagnetic field and flagellated bacteria for tumor-targeting therapy. Biotechnol Bioeng. 2015;112(8):1623–1631.
  • Park SJ, Park SH, Cho S, et al. New paradigm for tumor theranostic methodology using bacteria-based microrobot. Sci Rep. 2013;3(1):3394.
  • Park SJ, Lee YK, Cho S, et al. Effect of chitosan coating on a bacteria-based alginate microrobot. Biotechnol Bioeng. 2015;112(4):769–776.
  • Han J-W, Choi YJ, Cho S, et al. Active tumor-therapeutic liposomal bacteriobot combining a drug (paclitaxel)-encapsulated liposome with targeting bacteria (Salmonella Typhimurium). Sens Actuators B Chem. 2016;224:217–224.
  • Abbott JJ, Nagy Z, Beyeler F, et al. Robotics in the small, part I: microbotics. IEEE Robot Automat Mag. 2007;14:92–103.
  • Sharma N, Mittal R. Nanorobot movement: challenges and biologically inspired solutions. Int J Smart Sens Intell Syst. 2008;1:87–109.
  • Malmgren RA, Flanigan CC. Localization of the vegetative form of Clostridium tetani in mouse tumors following intravenous spore administration. Cancer Res. 1955;15(7):473–478.
  • Minton NP. Clostridia in cancer therapy. Nat Rev Microbiol. 2003;1(3):237–242.
  • Karjoo Z, Chen X, Hatefi A. Progress and problems with the use of suicide genes for targeted cancer therapy. Adv Drug Deliv Rev. 2016;99:113–128.
  • Kramer MG, Masner M, Ferreira FA, et al. Bacterial therapy of cancer: promises, limitations, and insights for future directions. Front Microbiol. 2018;9:16.
  • Lukasiewicz K, Fol M. Microorganisms in the treatment of cancer: advantages and limitations. J Immunol Res. 2018;2018:2397808.
  • Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol. 2014;5:172.
  • Maleki Kakelar H, Barzegari A, Dehghani J, et al. Pathogenicity of Helicobacter pylori in cancer development and impacts of vaccination. Gastric Cancer. 2019;22:23–36.
  • Low K, Ittensohn M, Lin S, et al. VNP20009, a genetically modified Salmonella typhimurium for treatment of solid tumors. Proc Am Assoc Cancer Res. 1999;40:851.
  • Hu Q, Wu M, Fang C, et al. Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy. Nano Lett. 2015;15(4):2732–2739.
  • Zhao M, Yang M, Ma H, et al. Targeted therapy with a Salmonella typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res. 2006;66(15):7647–7652.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.