301
Views
9
CrossRef citations to date
0
Altmetric
Original Article

Machine learning-guided evolution of BMP-2 knuckle Epitope-Derived osteogenic peptides to target BMP receptor II

, , , , , & show all
Pages 802-810 | Received 31 Dec 2019, Accepted 13 Apr 2020, Published online: 01 May 2020

References

  • Dimitriou R, Jones E, McGonagle D, et al. Bone regeneration: current concepts and future directions. BMC Med. 2011;9(1):66.
  • Urist MR. Bone: formation by autoinduction. Science. 1965;150(3698):893–899.
  • Kanie K, Kurimoto R, Tian J, et al. Screening of osteogenic-enhancing short peptides from BMPs for biomimetic material applications. Materials. 2016;9(9):e730.
  • Even J, Eskander M, Kang J. Bone morphogenetic protein in spine surgery: current and future uses. J Am Acad Orthop Surg. 2012;20(9):547–552.
  • Agrawal V, Sinha M. A review on carrier systems for bone morphogenetic protein-2. J Biomed Mater Res. 2017;105(4):904–925.
  • Saito A, Suzuki Y, Ogata S, et al. Activation of osteo-progenitor cells by a novel synthetic peptide derived from the bone morphogenetic protein-2 knuckle epitope. Biochim Biophys Acta. 2003;1651(1-2):60–67.
  • Senta H, Park H, Bergeron E, et al. Cell responses to bone morphogenetic proteins and peptides derived from them: biomedical applications and limitations. Cytokine Growth Factor Rev. 2009;20(3):213–222.
  • Senta H, Bergeron E, Drevelle O, et al. Combination of synthetic peptides derived from bone morphogenetic proteins and biomaterials for medical applications. Can J Chem Eng. 2011;89(2):227–239.
  • Chen Y, Liu X, Liu R, et al. Zero-order controlled release of BMP2-derived peptide P24 from the chitosan scaffold by chemical grafting modification technique for promotion of osteogenesis in vitro and enhancement of bone repair in vivo. Theranostics. 2017;7(5):1072–1087.
  • Zhang W, Zhong B, Zhang C, et al. Structural modeling of osteoarthritis ADAMTS4 complex with its cognate inhibitory protein TIMP3 and rational derivation of cyclic peptide inhibitors from the complex interface to target ADAMTS4. Bioorg Chem. 2018;76:13–22.
  • Zhang W, Zhang C, Luo C, et al. Design, cyclization, and optimization of MMP13-TIMP1 interaction-derived self-inhibitory peptides against chondrocyte senescence in osteoarthritis. Int J Biol Macromol. 2019;121:921–929.
  • Zhou P, Yang C, Ren Y, et al. What are the ideal properties for functional food peptides with antihypertensive effect? A computational peptidology approach. Food Chem. 2013;141(3):2967–2973.
  • Yang C, Wang C, Zhang S, et al. Structural and energetic insights into the intermolecular interaction among human leukocyte antigens, clinical hypersensitive drugs and antigenic peptides. Mol Simul. 2015;41(9):741–751.
  • Zhou P, Zhang S, Wang Y, et al. Structural modeling of HLA-B*1502 peptide carbamazepine T-cell receptor complex architecture: implication for the molecular mechanism of carbamazepine-induced Stevens-Johnson syndrome toxic epidermal necrolysis. J Biomol Struct Dyn. 2016;34(8):1806–1817.
  • Bai Z, Hou S, Zhang S, et al. Targeting self-binding peptides as a novel strategy to regulate protein activity and function: a case study on the proto-oncogene tyrosine protein kinase c-Src. J Chem Inf Model. 2017;57(4):835–845.
  • Zhou P, Hou S, Bai Z, et al. Disrupting the intramolecular interaction between proto-oncogene c-Src SH3 domain and its self-binding peptide PPII with rationally designed peptide ligands. Artif Cells Nanomed Biotechnol. 2018;46(6):1122–1131.
  • Alford RF, Leaver-Fay A, Jeliazkov JR, et al. The Rosetta all-atom energy function for macromolecular modeling and design. J Chem Theory Comput. 2017;13(6):3031–3048.
  • Hellberg S, Sjoestroem M, Skagerberg B, et al. Peptide quantitative structure-activity relationships, a multivariate approach. J Med Chem. 1987;30(7):1126–1135.
  • Tian F, Zhou P, Li ZT. scale as a novel vector of topological descriptors for amino acids and its application in QSARs of peptides. J Mol Struct. 2007;830(1–3):106–115.
  • Mei H, Liao ZH, Zhou Y, et al. A new set of amino acid descriptors and its application in peptide QSARs. Biopolymers. 2005;80(6):775–786.
  • Ren Y, Chen X, Feng M, et al. Gaussian process: a promising approach for the modeling and prediction of peptide binding affinity to MHC proteins. Protein Pept Lett. 2011;18(7):670–678.
  • Zhou P, Wang C, Tian F, et al. Biomacromolecular quantitative structure-activity relationship (BioQSAR): a proof-of-concept study on the modeling, prediction and interpretation of protein-protein binding affinity. J Comput Aided Mol Des. 2013;27(1):67–78.
  • Tian F, Tan R, Guo T, et al. Fast and reliable prediction of domain-peptide binding affinity using coarse-grained structure models. Biosystems. 2013;113(1):40–49.
  • Li Z, Miao Q, Yan F, et al. Machine learning in quantitative protein-peptide affinity prediction: implications for therapeutic peptide design. Curr Drug Metab. 2019;20(3):170–176.
  • Xiong M, Chen M, Zhang J. Rational evolution of antimicrobial peptides containing unnatural amino acids to combat burn wound infections. Chem Biol Drug Des. 2016;88(3):404–410.
  • He Y, He X. Molecular design and genetic optimization of antimicrobial peptides containing unnatural amino acids against antibiotic-resistant bacterial infections. Biopolymers. 2016;106(5):746–756.
  • Han S, Liu Q, Wang F, et al. Targeting the SH3 domain of human osteoclast-stimulating factor with rationally designed peptoid inhibitors. J Pept Sci. 2016;22(8):533–539.
  • Kim HK, Kim JH, Park DS, et al. Osteogenesis induced by a bone forming peptide from the prodomain region of BMP-7. Biomaterials. 2012;33(29):7057–7063.
  • Lee JS, Kim ME, Seon JK, et al. Bone-forming peptide-3 induces osteogenic differentiation of bone marrow stromal cells via regulation of the ERK1/2 and Smad1/5/8 pathways. Stem Cell Res. 2018;26:28–35.
  • Golub E, Boesze-Battaglia K. The role of alkaline phosphatase in mineralization. Curr Opin Orthop. 2007;18:444–448.
  • Yang C, Zhang S, He P, et al. Self-binding peptides: folding or binding. J Chem Inf Model. 2015;55(2):329–342.
  • Li Z, Yan F, Miao Q, et al. Self-binding peptides: binding-upon-folding versus folding-upon-binding. J Theor Biol. 2019;469:25–34.
  • Yang C, Zhang S, Bai Z, et al. A two-step binding mechanism for the self-binding peptide recognition of target domains. Mol Biosyst. 2016;12(4):1201–1213.
  • Zhou P, Miao Q, Yan F, et al. Is protein context responsible for peptide-mediated interactions? Mol Omics. 2019;15(4):280–295.
  • Yu H, Zhou P, Deng M, et al. Indirect readout in protein-peptide recognition: a different story from classical biomolecular recognition. J Chem Inf Model. 2014;54(7):2022–2032.
  • Tian F, Lv Y, Zhou P, et al. Characterization of PDZ domain-peptide interactions using an integrated protocol of QM/MM, PB/SA, and CFEA analyses. J Comput Aided Mol Des. 2011;25(10):947–958.
  • Tian F, Yang C, Wang C, et al. Mutatomics analysis of the systematic thermostability profile of Bacillus subtilis lipase A. J Mol Model. 2014;20(6):2257.
  • Johnson QR, Lindsay RJ, Nellas RB, et al. Mapping allostery through computational glycine scanning and correlation analysis of residue-residue contacts. Biochemistry. 2015;54(7):1534–1541.
  • Luo H, Du T, Zhou P, et al. Molecular docking to identify associations between drugs and class I human leukocyte antigens for predicting idiosyncratic drug reactions. Comb Chem High Throughput Screen. 2015;18(3):296–304.
  • Parker KC, Bednarek MA, Coligan JE. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol. 1994;152(1):163–175.
  • Xu QS, Xu YD, Li L, et al. Uniform experimental design in chemometrics. J Chemometr. 2018;32(11):e3020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.