321
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Development of stimuli-responsive intelligent polymer micelles for the delivery of doxorubicin

, , , , &
Pages 993-1011 | Received 04 Feb 2020, Accepted 05 May 2020, Published online: 19 May 2020

References

  • Wicki A, Witzigmann D, Balasubramanian V, et al. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release. 2015;200:138–157.
  • Norouzi M, Amerian M, Amerian M, et al. Clinical applications of nanomedicine in cancer therapy. Drug Discov Today. 2020;25(1):107–125.
  • Yu D-S, Yan H-Y, Wu C-L, et al. Comparison of therapeutic efficacy of lipo-doxorubicin and doxorubicin in treating bladder cancer. Urol Sci. 2017;28(4):200–205.
  • Li S, Zhang D, Sheng S, et al. Targeting thyroid cancer with acid-triggered release of doxorubicin from silicon dioxide nanoparticles. Int J Nanomed. 2017;12:5993–6003.
  • Punia R, Raina K, Agarwal R, et al. Acacetin enhances the therapeutic efficacy of doxorubicin in non-small-cell lung carcinoma cells. PLoS One. 2017;12(8):e0182870.
  • Fan X, Wang L, Guo Y, et al. Inhibition of prostate cancer growth using doxorubicin assisted by ultrasound-targeted nanobubble destruction. Int J Nanomed. 2016;11:3585–3596.
  • Songbo M, Lang H, Xinyong C, et al. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett. 2019;307:41–48.
  • Zhang Y, Huang Y, Li S. Polymeric micelles: nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech. 2014;15(4):862–871.
  • Nishiyama N, Matsumura Y, Kataoka K. Development of polymeric micelles for targeting intractable cancers. Cancer Sci. 2016;107(7):867–874.
  • Cho H, Lai TC, Tomoda K, et al. Polymeric micelles for multi-drug delivery in cancer. AAPS PharmSciTech. 2015;16(1):10–20.
  • Liu Y, Wang W, Yang J, et al. pH-sensitive polymeric micelles triggered drug release for extracellular and intracellular drug targeting delivery. Asian J Pharm Sci. 2013;8(3):159–167.
  • Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliv Rev. 2009;61(10):768–784.
  • Priya James H, John R, Alex A, et al. Smart polymers for the controlled delivery of drugs - a concise overview. Acta Pharm Sin B. 2014;4(2):120–127.
  • Zhou Q, Zhang L, Yang T, et al. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomed. 2018;13:2921–2942.
  • Yin J, Chen Y, Zhang ZH, et al. Stimuli-responsive block copolymer-based assemblies for cargo delivery and theranostic applications. Polymers (Basel). 2016;8(7):268.
  • Agudelo D, Berube G, Tajmir-Riahi HA. An overview on the delivery of antitumor drug doxorubicin by carrier proteins. Int J Biol Macromol. 2016;88:354–360.
  • Nakayama M, Akimoto J, Okano T. Polymeric micelles with stimuli-triggering systems for advanced cancer drug targeting. J Drug Target. 2014;22(7):584–599.
  • Ganta S, Devalapally H, Shahiwala A, et al. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release. 2008;126(3):187–204.
  • Kim DH, Vitol EA, Liu J, et al. Stimuli-responsive magnetic nanomicelles as multifunctional heat and cargo delivery vehicles. Langmuir. 2013;29(24):7425–7432.
  • Medeiros SF, Santos AM, Fessi H, et al. Stimuli-responsive magnetic particles for biomedical applications. Int J Pharm. 2011;403(1-2):139–161.
  • Fleige E, Quadir MA, Haag R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev. 2012;64(9):866–884.
  • Zhang ZT, Huang-Fu MY, Xu WH, et al. Stimulus-responsive nanoscale delivery systems triggered by the enzymes in the tumor microenvironment. Eur J Pharm Biopharm. 2019;137:122–130.
  • Hanusova V, Bousova I, Skalova L. Possibilities to increase the effectiveness of doxorubicin in cancer cells killing. Drug Metab Rev. 2011;43(4):540–557.
  • Rivankar S. An overview of doxorubicin formulations in cancer therapy. J Cancer Res Ther. 2014;10(4):853–858.
  • Octavia Y, Tocchetti CG, Gabrielson KL, et al. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol. 2012;52(6):1213–1225.
  • Mohajeri M, Sahebkar A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: a review. Crit Rev Oncol Hematol. 2018;122:30–51.
  • Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013;65(2):157–170.
  • Pugazhendhi A, Edison TNJI, Velmurugan BK, et al. Toxicity of doxorubicin (Dox) to different experimental organ systems. Life Sci. 2018;200:26–30.
  • Qiu L, Hong CY, Pan CY. Doxorubicin-loaded aromatic imine-contained amphiphilic branched star polymer micelles: synthesis, self-assembly, and drug delivery. Int J Nanomed. 2015;10:3623–3640.
  • Feng H, Lu X, Wang W, et al. Block copolymers: synthesis, self-assembly, and applications. Polymers (Basel). 2017;9(12):494.
  • Agrahari V, Agrahari V. Advances and applications of block-copolymer-based nanoformulations. Drug Discov Today. 2018;23(5):1139–1151.
  • Hussein YHA, Youssry M. Polymeric micelles of biodegradable diblock copolymers: Enhanced encapsulation of hydrophobic drugs. Materials (Basel). 2018;11(5):688.
  • Birhan YS, Hailemeskel BZ, Mekonnen TW, et al. Fabrication of redox-responsive Bi(mPEG-PLGA)-Se2 micelles for doxorubicin delivery. Int J Pharm. 2019;567:118486.
  • Huang X, Liao W, Xie Z, et al. A pH-responsive prodrug delivery system self-assembled from acid-labile doxorubicin-conjugated amphiphilic pH-sensitive block copolymers. Mater Sci Eng C Mater Biol Appl. 2018;90:27–37.
  • Viswanathan G, Hsu YH, Voon SH, et al. A comparative study of cellular uptake and subcellular localization of doxorubicin loaded in self-assemblies of amphiphilic copolymers with pendant dendron by MDA-MB-231 human breast cancer cells. Macromol Biosci. 2016;16(6):882–895.
  • Voon SH, Kue CS, Imae T, et al. Doxorubicin-loaded micelles of amphiphilic diblock copolymer with pendant dendron improve antitumor efficacy: In vitro and in vivo studies. Int J Pharm. 2017;534(1-2):136–143.
  • Yusa S-i, Shimada Y, Imae T, et al. Self-association behavior in water of an amphiphilic diblock copolymer comprised of anionic and dendritic blocks. Polym Chem. 2011;2(8):1815.
  • Wyman IW, Liu G. Micellar structures of linear triblock terpolymers: Three blocks but many possibilities. Polymer. 2013;54(8):1950–1978.
  • Feitosa VA, Almeida VC, Malheiros B, et al. Polymeric micelles of pluronic F127 reduce hemolytic potential of amphiphilic drugs. Colloids Surf B. 2019;180:177–185.
  • Zhao Y, Alakhova DY, Zhao X, et al. Eradication of cancer stem cells in triple negative breast cancer using doxorubicin/pluronic polymeric micelles. Nanomedicine. 2019;24:102–124.
  • Valle JW, Armstrong A, Newman C, et al. A phase 2 study of SP1049C, doxorubicin in P-glycoprotein-targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction. Invest New Drugs. 2011;29(5):1029–1037.
  • Biswas S, Kumari P, Lakhani PM, et al. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur J Pharm Sci. 2016;83:184–202.
  • Park H, Park W, Na K. Doxorubicin loaded singlet-oxygen producible polymeric micelle based on chlorine e6 conjugated pluronic F127 for overcoming drug resistance in cancer. Biomaterials. 2014;35(27):7963–7969.
  • Choo ESG, Yu B, Xue J. Synthesis of poly(acrylic acid) (PAA) modified pluronic P123 copolymers for pH-stimulated release of doxorubicin. J Colloid Interface Sci. 2011;358(2):462–470.
  • Atanase LI, Desbrieres J, Riess G. Micellization of synthetic and polysaccharides-based graft copolymers in aqueous media. Prog Polym Sci. 2017;73:32–60.
  • Jarosz T, Gebka K, Stolarczyk A. Recent advances in conjugated graft copolymers: approaches and applications. Molecules. 2019;24(16):3019.
  • Liu M, Yin L, Zhang S, et al. Design and synthesis of a cyclic double-grafted polymer using active ester chemistry and click chemistry via A “Grafting onto” method. Polymers (Basel). 2019;11(2):240.
  • Atanase LI, Riess G. Self-assembly of block and graft copolymers in organic solvents: an overview of recent advances. Polymers (Basel). 2018;10(1):62.
  • Unlu CH, Pollet E, Averous L. Original macromolecular architectures based on poly(epsilon-caprolactone) and poly(epsilon-thiocaprolactone) grafted onto chitosan backbone. IJMS. 2018;19(12):3799.
  • Lin WJ, Lee WC, Shieh MJ. Hyaluronic acid conjugated micelles possessing CD44 targeting potential for gene delivery. Carbohydr Polym. 2017;155:101–108.
  • Hou L, Tian C, Chen D, et al. Investigation on vitamin e succinate based intelligent hyaluronic acid micelles for overcoming drug resistance and enhancing anticancer efficacy. Eur J Pharm Sci. 2019;140:105071.
  • Rippe M, Cosenza V, Auzely-Velty R. Design of soft nanocarriers combining hyaluronic acid with another functional polymer for cancer therapy and other biomedical applications. Pharmaceutics. 2019;11(7):338.
  • Gao QQ, Zhang CM, Zhang EX, et al. Zwitterionic pH-responsive hyaluronic acid polymer micelles for delivery of doxorubicin. Colloids Surf B Biointerf. 2019;178:412–420.
  • Yu J, Zhou Y, Chen W, et al. Preparation, characterization and evaluation of α-tocopherol succinate-modified dextran micelles as potential drug carriers. Materials (Basel). 2015;8(10):6685–6696.
  • Varshosaz J, Hassanzadeh F, Sadeghi Aliabadi H, et al. Synthesis and characterization of folate-targeted dextran/retinoic acid micelles for doxorubicin delivery in acute leukemia. Biomed Res Int. 2014;2014:525684.
  • Jin R, Guo X, Dong L, et al. Amphipathic dextran-doxorubicin prodrug micelles for solid tumor therapy. Colloids Surf B Biointerf. 2017;158:47–56.
  • Jafarzadeh-Holagh S, Hashemi-Najafabadi S, Shaki H, et al. Self-assembled and pH-sensitive mixed micelles as an intracellular doxorubicin delivery system. J Colloid Interf Sci. 2018;523:179–190.
  • Peng N, Yang M, Tang Y, et al. Amphiphilic hexadecyl-quaternized chitin micelles for doxorubicin delivery. Int J Biol Macromol. 2019;130:615–621.
  • Yang X, Lian K, Tan Y, et al. Selective uptake of chitosan polymeric micelles by circulating monocytes for enhanced tumor targeting. Carbohydr Polym. 2020;229:115435.
  • Prabaharan M. Chitosan-based nanoparticles for tumor-targeted drug delivery. Int J Biol Macromol. 2015;72:1313–1322.
  • Xie P, Liu P. Core-shell-corona chitosan-based micelles for tumor intracellular pH-triggered drug delivery: improving performance by grafting polycation. Int J Biol Macromol. 2019;141:161–170.
  • Qu C, Li J, Zhou Y, et al. Targeted delivery of doxorubicin via CD147-mediated ROS/pH dual-sensitive nanomicelles for the efficient therapy of hepatocellular carcinoma. Aaps J. 2018;20(2):34.
  • Nam JP, Lee KJ, Choi JW, et al. Targeting delivery of tocopherol and doxorubicin grafted-chitosan polymeric micelles for cancer therapy: in vitro and in vivo evaluation. Colloids Surf B Biointerf. 2015;133:254–262.
  • Chen J, Xing MMQ, Zhong W. Degradable micelles based on hydrolytically degradable amphiphilic graft copolymers for doxorubicin delivery. Polymer. 2011;52(4):933–941.
  • Sun Y, Yan X, Yuan T, et al. Disassemblable micelles based on reduction-degradable amphiphilic graft copolymers for intracellular delivery of doxorubicin. Biomaterials. 2010;31(27):7124–7131.
  • Liu M, Huang G, Cong Y, et al. The preparation and characterization of micelles from poly(γ-glutamic acid)-graft-poly(L-lactide) and the cellular uptake thereof. J Mater Sci Mater Med. 2015;26(5):187.
  • Cao L, Xiao Y, Lu W, et al. Nanomicelle drug with acid-triggered doxorubicin release and enhanced cellular uptake ability based on mPEG-graft-poly(N-(2-aminoethyl)-L-aspartamide)-hexahydrophthalic acid copolymers. J Biomater Appl. 2018;32(6):826–838.
  • Cagel M, Grotz E, Bernabeu E, et al. Doxorubicin: nanotechnological overviews from bench to bedside. Drug Discov Today. 2017;22(2):270–281.
  • Danson S, Ferry D, Alakhov V, et al. Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br J Cancer. 2004;90(11):2085–2091.
  • Matsumura Y, Hamaguchi T, Ura T, et al. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer. 2004;91(10):1775–1781.
  • Kesharwani SS, Kaur S, Tummala H, et al. Multifunctional approaches utilizing polymeric micelles to circumvent multidrug resistant tumors. Colloids Surf B Biointerf. 2019;173:581–590.
  • Lee ES, Gao Z, Bae YH. Recent progress in tumor pH targeting nanotechnology. J Control Release. 2008;132(3):164–170.
  • Wang Z, Deng X, Ding J, et al. Mechanisms of drug release in pH-sensitive micelles for tumour targeted drug delivery system: a review. Int J Pharm. 2018;535(1-2):253–260.
  • Bazban-Shotorbani S, Hasani-Sadrabadi MM, Karkhaneh A, et al. Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. J Control Release. 2017;253:46–63.
  • Zhang Y, Li P, Pan H, et al. Retinal-conjugated pH-sensitive micelles induce tumor senescence for boosting breast cancer chemotherapy. Biomaterials. 2016;83:219–232.
  • Low SA, Yang J, Kopeček J. Bone-targeted acid-sensitive doxorubicin conjugate micelles as potential osteosarcoma therapeutics. Bioconjug Chem. 2014;25(11):2012–2020.
  • Li X, Yang X, Lin Z, et al. A folate modified pH sensitive targeted polymeric micelle alleviated systemic toxicity of doxorubicin (DOX) in multi-drug resistant tumor bearing mice. Eur J Pharm Sci. 2015;76:95–101.
  • Wang P, Liu W, Liu S, et al. pH-responsive nanomicelles of poly(ethylene glycol)-poly(ε-caprolactone)-poly(L-histidine) for targeted drug delivery. J Biomater Sci Polym Ed. 2020;31(3):277–292.
  • Li Y, Zhang X, Zhang J, et al. Synthesis of a biodegradable branched copolymer mPEG-b-PLGA-g-OCol and its pH-sensitive micelle. Mater Sci Eng C Mater Biol Appl. 2020;108:110455.
  • He W, Zheng X, Zhao Q, et al. pH-triggered charge-reversal polyurethane micelles for controlled release of doxorubicin. Macromol Biosci. 2016;16(6):925–935.
  • Ma B, Zhuang W, Wang Y, et al. pH-sensitive doxorubicin-conjugated prodrug micelles with charge-conversion for cancer therapy. Acta Biomater. 2018;70:186–196.
  • Yang Q, Liu S, Liu X, et al. Role of charge-reversal in the hemo/immuno-compatibility of polycationic gene delivery systems. Acta Biomater. 2019;96:436–455.
  • Chen X, Liu L, Jiang C. Charge-reversal nanoparticles: novel targeted drug delivery carriers. Acta Pharm Sin B. 2016;6(4):261–267.
  • Fang Z, Pan S, Gao P, et al. Stimuli-responsive charge-reversal nano drug delivery system: the promising targeted carriers for tumor therapy. Int J Pharm. 2020;575:118841
  • Sun H, Meng F, Cheng R, et al. Reduction-responsive polymeric micelles and vesicles for triggered intracellular drug release. Antioxid Redox Signal. 2014;21(5):755–767.
  • Raza A, Hayat U, Rasheed T, et al. Redox-responsive nano-carriers as tumor-targeted drug delivery systems. Eur J Med Chem. 2018;157:705–715.
  • Zhang P, Hu J, Bu L, et al. Facile preparation of reduction-responsive micelles based on biodegradable amphiphilic polyurethane with disulfide bonds in the backbone. Polymers (Basel). 2019;11(2):262.
  • Jeong GW, Jeong YI, Nah JW. Triggered doxorubicin release using redox-sensitive hyaluronic acid-g-stearic acid micelles for targeted cancer therapy. Carbohydr Polym. 2019;209:161–171.
  • Yang Q, Tan L, He C, et al. Redox-responsive micelles self-assembled from dynamic covalent block copolymers for intracellular drug delivery. Acta Biomater. 2015;17:193–200.
  • Lili Y, Ruihua M, Li L, et al. Intracellular doxorubicin delivery of a core cross-linked, redox-responsive polymeric micelles. Int J Pharm. 2016;498(1-2):195–204.
  • Sun J, Liu Y, Chen Y, et al. Doxorubicin delivered by a redox-responsive dasatinib-containing polymeric prodrug carrier for combination therapy. J Control Release. 2017;258:43–55.
  • Zeng X, Zhou X, Li M, et al. Redox poly(ethylene glycol)-b-poly(L-lactide) micelles containing diselenide bonds for effective drug delivery. J Mater Sci Mater Med. 2015;26(9):234.
  • Wang L, Cao W, Yi Y, et al. Dual redox responsive coassemblies of diselenide-containing block copolymers and polymer lipids. Langmuir. 2014;30(19):5628–5636.
  • Mao HL, Qian F, Li S, et al. Delivery of doxorubicin from hyaluronic acid-modified glutathione-responsive ferrocene micelles for combination cancer therapy. Mol Pharm. 2019;16(3):987–994.
  • Muddineti OS, Rompicharla SVK, Kumari P, et al. Vitamin-E/lipid based PEGylated polymeric micellar doxorubicin to sensitize doxorubicin-resistant cells towards treatment. React Funct Polym. 2019;134:49–57.
  • Cao Z, Li W, Liu R, et al. pH- and enzyme-triggered drug release as an important process in the design of anti-tumor drug delivery systems. Biomed Pharmacother. 2019;118:109340.
  • de la Rica R, Aili D, Stevens MM. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Deliv Rev. 2012;64(11):967–978.
  • Deryugina EI, Quigley JP. Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix Biol. 2015;44-46:94–112.
  • Gonzalez-Avila G, Sommer B, Mendoza-Posada DA, et al. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit Rev Oncol Hematol. 2019;137:57–83.
  • Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67.
  • Piperigkou Z, Manou D, Karamanou K, et al. Strategies to target matrix metalloproteinases as therapeutic approach in cancer. Methods Mol Biol. 2018;1731:325–348.
  • Isaacson KJ, Martin Jensen M, Subrahmanyam NB, et al. Matrix-metalloproteinases as targets for controlled delivery in cancer: an analysis of upregulation and expression. J Control Release. 2017;259:62–75.
  • Bauvois B. New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: outside-in signaling and relationship to tumor progression. Biochim Biophys Acta. 2012;1825(1):29–36.
  • Sun DW, Zhang YY, Qi Y, et al. Prognostic significance of MMP-7 expression in colorectal cancer: a meta-analysis. Cancer Epidemiol. 2015;39(2):135–142.
  • Chen MK, Liu YT, Lin JT, et al. Pinosylvin reduced migration and invasion of oral cancer carcinoma by regulating matrix metalloproteinase-2 expression and extracellular signal-regulated kinase pathway. Biomed Pharmacother. 2019;117:109160.
  • Ke W, Li J, Zhao K, et al. Modular design and facile synthesis of enzyme-responsive peptide-linked block copolymers for efficient delivery of doxorubicin. Biomacromolecules. 2016;17(10):3268–3276.
  • Suboj P, Babykutty S, Valiyaparambil Gopi DR, et al. Aloe emodin inhibits colon cancer cell migration/angiogenesis by downregulating MMP-2/9, RhoB and VEGF via reduced DNA binding activity of NF-κB. Eur J Pharm Sci. 2012;45(5):581–591.
  • Chuang CH, Yeh CL, Yeh SL, et al. Quercetin metabolites inhibit MMP-2 expression in A549 lung cancer cells by PPAR-γ associated mechanisms. J Nutr Biochem. 2016;33:45–53.
  • Dai Z, Yao Q, Zhu L. MMP2-sensitive PEG-lipid copolymers: a new type of tumor-targeted P-glycoprotein inhibitor. ACS Appl Mater Interf. 2016;8(20):12661–12673.
  • Yao Q, Liu Y, Kou L, et al. Tumor-targeted drug delivery and sensitization by MMP2-responsive polymeric micelles. Nanomedicine. 2019;19:71–80.
  • Aggarwal N, Sloane BF. Cathepsin B: multiple roles in cancer. Proteomics Clin Appl. 2014;8(5-6):427–437.
  • Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. The Lancet. 2011;377(9773):1276–1287.
  • Weitoft T, Larsson A, Manivel VA, et al. Cathepsin S and cathepsin L in serum and synovial fluid in rheumatoid arthritis with and without autoantibodies. Rheumatology (Oxford). 2015;54(10):1923–1928.
  • Patel S, Homaei A, El-Seedi HR, et al. Cathepsins: proteases that are vital for survival but can also be fatal. Biomed Pharmacother. 2018;105:526–532.
  • Olson OC, Joyce JA. Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat Rev Cancer. 2015;15(12):712–729.
  • Turk V, Stoka V, Vasiljeva O, et al. Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta. 2012;1824(1):68–88.
  • Pislar A, Jewett A, Kos J. Cysteine cathepsins: their biological and molecular significance in cancer stem cells. Semin Cancer Biol. 2018;53:168–177.
  • Zhong YJ, Shao LH, Li Y. Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy (Review). Int J Oncol. 2013;42(2):373–383.
  • Pogorzelska A, Żołnowska B, Bartoszewski R. Cysteine cathepsins as a prospective target for anticancer therapies-current progress and prospects. Biochimie. 2018;151:85–106.
  • Lo C-L, Lin S-J, Tsai H-C, et al. Mixed micelle systems formed from critical micelle concentration and temperature-sensitive diblock copolymers for doxorubicin delivery. Biomaterials. 2009;30(23-24):3961–3970.
  • Huang H, Geng J, Golzarian J, et al. Fabrication of doxorubicin-loaded ellipsoid micelle based on diblock copolymer with a linkage of enzyme-cleavable peptide. Colloids Surf B Biointerf. 2015;133:362–369.
  • Le PN, Huynh CK, Tran NQ. Advances in thermosensitive polymer-grafted platforms for biomedical applications. Mater Sci Eng C Mater Biol Appl. 2018;92:1016–1030.
  • Lee RS, Lin CH, Aljuffali IA, et al. Passive targeting of thermosensitive diblock copolymer micelles to the lungs: synthesis and characterization of poly(N-isopropylacrylamide)-block-poly(ε-caprolactone)). J Nanobiotechnol. 2015;13:42.
  • Zhang J, Peng CA. Poly(N-isopropylacrylamide) modified polydopamine as a temperature-responsive surface for cultivation and harvest of mesenchymal stem cells. Biomater Sci. 2017;5(11):2310–2318.
  • Islam MR, Ahiabu A, Li X, et al. Poly (N-isopropylacrylamide) microgel-based optical devices for sensing and biosensing. Sensors (Basel). 2014;14(5):8984–8995.
  • Song X, Zhu JL, Wen Y, et al. Thermoresponsive supramolecular micellar drug delivery system based on star-linear pseudo-block polymer consisting of β-cyclodextrin-poly(N-isopropylacrylamide) and adamantyl-poly(ethylene glycol)). J Colloid Interface Sci. 2017;490:372–379.
  • Wang X, Li S, Wan Z, et al. Investigation of thermo-sensitive amphiphilic micelles as drug carriers for chemotherapy in cholangiocarcinoma in vitro and in vivo. Int J Pharm. 2014;463(1):81–88.
  • Dulinska-Litewka J, Lazarczyk A, Halubiec P, et al. Superparamagnetic iron oxide nanoparticles-Current and prospective medical applications. Materials (Basel). 2019;12(4):617.
  • Yan L, Miller J, Yuan M, et al. Improved photodynamic therapy efficacy of protoporphyrin IX-loaded polymeric micelles using erlotinib pretreatment. Biomacromolecules. 2017;18(6):1836–1844.
  • Dai L, Yu Y, Luo Z, et al. Photosensitizer enhanced disassembly of amphiphilic micelle for ROS-response targeted tumor therapy in vivo. Biomaterials. 2016;104:1–17.
  • Kumari P, Jain S, Ghosh B, et al. Polylactide-based block copolymeric micelles loaded with chlorin e6 for photodynamic therapy: In vitro evaluation in monolayer and 3D spheroid models. Mol Pharm. 2017;14(11):3789–3800.
  • Kim DH, Hwang HS, Na K. Photoresponsive micelle-incorporated doxorubicin for chemo-photodynamic therapy to achieve synergistic antitumor effects. Biomacromolecules. 2018;19(8):3301–3310.
  • Wei X, Liu L, Guo X, et al. Light-activated ROS-responsive nanoplatform codelivering apatinib and doxorubicin for enhanced chemo-photodynamic therapy of multidrug-resistant tumors. ACS Appl Mater Interf. 2018;10(21):17672–17684.
  • Debele TA, Peng S, Tsai HC. Drug carrier for photodynamic cancer therapy. Int J Mol Sci. 2015;16(9):22094–22136.
  • Saravanakumar G, Kim J, Kim WJ. Reactive-oxygen-species-responsive drug delivery systems: promises and challenges. Adv Sci (Weinh)). 2017;4(1):1600124.
  • Liang J, Liu B. ROS-responsive drug delivery systems. Bioeng Transl Med. 2016;1(3):239–251.
  • Kumar P, Agnihotri S, Roy I. Preparation and characterization of superparamagnetic iron oxide nanoparticles for magnetically guided drug delivery. Int J Nanomed. 2018;13(T-NANO 2014 Abstracts):43–46:
  • van Nostrum CF. Polymeric micelles to deliver photosensitizers for photodynamic therapy. Adv Drug Deliv Rev. 2004;56(1):9–16.
  • Price PM, Mahmoud WE, Al-Ghamdi AA, et al. Magnetic drug delivery: where the field is going. Front Chem. 2018;6:619.
  • WahajuddinArora S. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomed. 2012;7:3445–3471.
  • Tietze R, Zaloga J, Unterweger H, et al. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem Biophys Res Commun. 2015;468(3):463–470.
  • Hervault A, Thanh NT. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale. 2014;6(20):11553–11573.
  • Zheng S, Han J, Jin Z, et al. Dual tumor-targeted multifunctional magnetic hyaluronic acid micelles for enhanced MR imaging and combined photothermal-chemotherapy. Colloids Surf B Biointerf. 2018;164:424–435.
  • Wang C, Ravi S, Martinez GV, et al. Dual-purpose magnetic micelles for MRI and gene delivery. J Control Release. 2012;163(1):82–92.
  • Yan K, Li H, Li P, et al. Self-assembled magnetic fluorescent polymeric micelles for magnetic resonance and optical imaging. Biomaterials. 2014;35(1):344–355.
  • Huang C, Tang Z, Zhou Y, et al. Magnetic micelles as a potential platform for dual targeted drug delivery in cancer therapy. Int J Pharm. 2012;429(1-2):113–122.
  • Situ JQ, Wang XJ, Zhu XL, et al. Multifunctional SPIO/DOX-loaded A54 homing peptide functionalized dextran-g-PLGA micelles for tumor therapy and MR imaging. Sci Rep. 2016;6:35910.
  • Kim HC, Kim E, Jeong SW, et al. Magnetic nanoparticle-conjugated polymeric micelles for combined hyperthermia and chemotherapy. Nanoscale. 2015;7(39):16470–16480.
  • Karami Z, Sadighian S, Rostamizadeh K, et al. Magnetic brain targeting of naproxen-loaded polymeric micelles: pharmacokinetics and biodistribution study. Mater Sci Eng C Mater Biol Appl. 2019;100:771–780.
  • Li B, Cai M, Lin L, et al. MRI-visible and pH-sensitive micelles loaded with doxorubicin for hepatoma treatment. Biomater Sci. 2019;7(4):1529–1542.
  • Lohrke J, Frenzel T, Endrikat J, et al. 25 years of contrast-enhanced MRI: developments, current challenges and future perspectives. Adv Ther. 2016;33(1):1–28.
  • Haris M, Yadav SK, Rizwan A, et al. Molecular magnetic resonance imaging in cancer. J Transl Med. 2015;13:313.
  • Albanese C, Rodriguez OC, VanMeter J, et al. Preclinical magnetic resonance imaging and systems biology in cancer research: current applications and challenges. Am J Pathol. 2013;182(2):312–318.
  • Zhang W, Liu L, Chen H, et al. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Theranostics. 2018;8(9):2521–2548.
  • Xie X, Chen Y, Chen Z, et al. Polymeric hybrid nanomicelles for cancer theranostics: an efficient and precise anticancer strategy for the codelivery of doxorubicin/miR-34a and magnetic resonance imaging. ACS Appl Mater Interf. 2019;11(47):43865–43878.
  • Li Y, Zhang H, Zhai GX. Intelligent polymeric micelles: development and application as drug delivery for docetaxel. J Drug Target. 2017;25(4):285–295.
  • Luo Y, Yin X, Yin X, et al. Dual pH/redox-responsive mixed polymeric micelles for anticancer drug delivery and controlled release. Pharmaceutics. 2019;11(4):176.
  • Su X, Ma B, Hu J, et al. Dual-responsive doxorubicin-conjugated polymeric micelles with aggregation-induced emission active bioimaging and charge conversion for cancer therapy. Bioconjug Chem. 2018;29(12):4050–4061.
  • Debele TA, Yu LY, Yang CS, et al. pH- and GSH-sensitive hyaluronic acid-MP conjugate micelles for intracellular delivery of doxorubicin to colon cancer cells and cancer stem cells. Biomacromolecules. 2018;19(9):3725–3737.
  • He L, Sun M, Cheng X, et al. pH/redox dual-sensitive platinum (IV)-based micelles with greatly enhanced antitumor effect for combination chemotherapy. J Colloid Interf Sci. 2019;541:30–41.
  • Huang Y, Yan J, Peng S, et al. pH/reduction dual-stimuli-responsive cross-linked micelles based on multi-functional amphiphilic star copolymer: synthesis and controlled anti-cancer drug release. Polymers (Basel). 2020;12(1):82.
  • Zhou Z, Li G, Wang N, et al. Synthesis of temperature/pH dual-sensitive supramolecular micelles from β-cyclodextrin-poly(N-isopropylacrylamide) star polymer for drug delivery. Colloids Surf B Biointerf. 2018;172:136–142.
  • Mousavi SD, Maghsoodi F, Panahandeh F, et al. Doxorubicin delivery via magnetic nanomicelles comprising from reduction-responsive poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-SS-PCL) and loaded with superparamagnetic iron oxide (SPIO) nanoparticles: preparation, characterization and simulation. Mater Sci Eng C Mater Biol Appl. 2018;92:631–643.
  • Huo H, Ma X, Dong Y, et al. Light/temperature dual-responsive ABC miktoarm star terpolymer micelles for controlled release. Eur Polym J. 2017;87:331–343.
  • Wang Y, Zhang XY, Luo YL, et al. Dual stimuli-responsive Fe3O4 graft poly(acrylic acid)-block-poly(2-methacryloyloxyethyl ferrocenecarboxylate) copolymer micromicelles: surface RAFT synthesis, self-assembly and drug release applications. J Nanobiotechnol. 2017;15(1):76.
  • Qu J, Wang QY, Chen KL, et al. Reduction/temperature/pH multi-stimuli responsive core cross-linked polypeptide hybrid micelles for triggered and intracellular drug release. Colloids Surf B Biointerf. 2018;170:373–381.
  • Bu L, Zhang H, Xu K, et al. pH and reduction dual-responsive micelles based on novel polyurethanes with detachable poly(2-ethyl-2-oxazoline) shell for controlled release of doxorubicin. Drug Deliv. 2019;26(1):300–308.
  • Zhang H, Liu P. Bio-inspired keratin-based core-crosslinked micelles for pH and reduction dual-responsive triggered DOX delivery. Int J Biol Macromol. 2019;123:1150–1156.
  • Yang Z, Cheng R, Zhao C, et al. Thermo- and pH-dual responsive polymeric micelles with upper critical solution temperature behavior for photoacoustic imaging-guided synergistic chemo-photothermal therapy against subcutaneous and metastatic breast tumors. Theranostics. 2018;8(15):4097–4115.
  • Kim TH, Alle M, Kim JC. Oxidation- and temperature-responsive poly(hydroxyethyl acrylate-co-phenyl vinyl sulfide) micelle as a potential anticancer drug carrier. Pharmaceutics. 2019;11(9):462.
  • Harnoy AJ, Slor G, Tirosh E, et al. The effect of photoisomerization on the enzymatic hydrolysis of polymeric micelles bearing photo-responsive azobenzene groups at their cores. Org Biomol Chem. 2016;14(24):5813–5819.
  • Wu L, Zong L, Ni H, et al. Magnetic thermosensitive micelles with upper critical solution temperature for NIR triggered drug release. Biomater Sci. 2019;7(5):2134–2143.
  • Wen J, Yang K, Xu Y, et al. Construction of a triple-stimuli-responsive system based on cerium oxide coated mesoporous silica nanoparticles. Sci Rep. 2016;6:38931.
  • Qin X, Li Y. Strategies to design and synthesize polymer-based stimuli-responsive drug-delivery nanosystems. Chembiochem. 2020;21(9):1236–1253.
  • Li Y, Yu A, Li L, et al. The development of stimuli-responsive polymeric micelles for effective delivery of chemotherapeutic agents. J Drug Target. 2018;26(9):753–765.
  • Kalhapure RS, Renukuntla J. Thermo- and pH dual responsive polymeric micelles and nanoparticles. Chem Biol Interact. 2018;295:20–37.
  • Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci. 2007;32(8-9):962–990.
  • Cagel M, Tesan FC, Bernabeu E, et al. Polymeric mixed micelles as nanomedicines: achievements and perspectives. Eur J Pharm Biopharm. 2017;113:211–228.
  • Alsehli M. Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: recent advances in drug delivery. Saudi Pharm J. 2020;28(3):255–265.
  • Yu G, Ning Q, Mo Z, et al. Intelligent polymeric micelles for multidrug co-delivery and cancer therapy. Artif Cells Nanomed Biotechnol. 2019;47(1):1476–1487.
  • Raza A, Rasheed T, Nabeel F, et al. Endogenous and exogenous stimuli-responsive drug delivery systems for programmed site-specific release. Molecules. 2019;24(6):1117.
  • Zhao J, Lee VE, Liu R, et al. Responsive polymers as smart nanomaterials enable diverse applications. Annu Rev Chem Biomol Eng. 2019;10:361–382.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.