5,826
Views
45
CrossRef citations to date
0
Altmetric
Review Articles

A comprehensive review on the antiviral activities of chalcones

, , & ORCID Icon
Pages 403-419 | Received 01 Sep 2020, Accepted 17 Nov 2020, Published online: 16 Dec 2020

References

  • Ali I, Suhail M, Naqshbandi M, et al. Role of unani medicines in cancer control and management. Curr Drug Ther. 2019;14(2):92–113.
  • Nabavi SM, Marchese A, Izadi M, et al. Plants belonging to the genus Thymus as antibacterial agents: from farm to pharmacy. Food Chem. 2015;173:339–347.
  • Ahmad MF, Ahmad FA, Ashraf SA, et al. An updated knowledge of Black seed (Nigella sativa Linn): review of phytochemical constituents and pharmacological properties. J Herb Med. 2021;25:100404.
  • Bukhari SN, Jasamai M, Jantan I. Synthesis and biological evaluation of chalcone derivatives (mini review). Mini Rev Med Chem. 2012;12(13):1394–1403.
  • Rani A, Anand A, Kumar K, et al. Recent developments in biological aspects of chalcones: the Odyssey continues. Expert Opin Drug Discov. 2019;14(3):249–288.
  • Batovska DI, Todorova IT. Trends in utilization of the pharmacological potential of chalcones. Curr Clin Pharmacol. 2010;5(1):1–29.
  • Zhou B, Xing C. Diverse molecular targets for chalcones with varied bioactivities. Med Chem (Los Angeles). 2015;5(8):388–404.
  • Kar Mahapatra D, Asati V, Bharti SK. An updated patent review of therapeutic applications of chalcone derivatives (2014–present). Expert Opin Ther Pat. 2019;29(5):385–406.
  • Otvos SB, Hsieh CT, Wu YC, et al. Continuous-flow synthesis of deuterium-labeled antidiabetic chalcones: studies towards the selective deuteration of the alkynone core. Molecules. 2016;21(3):318.
  • Mahapatra DK, Bharti SK, Asati V. Chalcone scaffolds as anti-infective agents: structural and molecular target perspectives. Eur J Med Chem. 2015;101:496–524.
  • Irwin KK, Renzette N, Kowalik TF, et al. Antiviral drug resistance as an adaptive process. Virus Evol. 2016;2(1):vew014.
  • WHO. Ten threats to global health in 2019; 2019. Available from: https://www.who.int/news-room/feature-stories/ten-threats-to-global-health-in-2019
  • Pal M, Berhanu G, Desalegn C, et al. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): an update. Cureus. 2020;12(3):e7423.
  • Stokes EK, Zambrano LD, Anderson KN, et al. Coronavirus disease 2019 case surveillance – United States, January 22–May 30, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(24):759–765.
  • Baron S, Fons M, Albrecht T. Viral pathogenesis. In: Baron S, editor. Medical microbiology. 4th ed. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. Chapter 45. PMID: 21413306.
  • De Clercq E, Li G. Approved antiviral drugs over the past 50 years. Clin Microbiol Rev. 2016;29(3):695–747.
  • Ravanfar P, Satyaprakash A, Creed R, et al. Existing antiviral vaccines. Dermatol Ther. 2009;22(2):110–128.
  • De Clercq E. Strategies in the design of antiviral drugs. Nat Rev Drug Discov. 2002;1(1):13–25.
  • Lou Z, Sun Y, Rao Z. Current progress in antiviral strategies. Trends Pharmacol Sci. 2014;35(2):86–102.
  • Jo S, Kim H, Kim S, et al. Characteristics of flavonoids as potent MERS-CoV 3C-like protease inhibitors. Chem Biol Drug Des. 2019;94(6):2023–2030.
  • Lin CW, Tsai FJ, Tsai CH, et al. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res. 2005;68(1):36–42.
  • Monserrat JP, Al-Safi RI, Tiwari KN, et al. Ferrocenyl chalcone difluoridoborates inhibit HIV-1 integrase and display low activity towards cancer and endothelial cells. Bioorg Med Chem Lett. 2011;21(20):6195–6197.
  • Dao TT, Nguyen PH, Lee HS, et al. Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata. Bioorg Med Chem Lett. 2011;21(1):294–298.
  • Al-Nakib W, Higgins PG, Barrow I, et al. Intranasal chalcone, Ro 09-0410, as prophylaxis against rhinovirus infection in human volunteers. J Antimicrob Chemother. 1987;20(6):887–892.
  • Ali MA, Shaharyar M, De Clercq E. Synthesis of 5-(4-hydroxy-3-methylphenyl)-5-(substituted phenyl)-4, 5-dihydro-1H-1-pyrazolyl-4-pyridylmethanone derivatives with anti-viral activity. J Enzyme Inhib Med Chem. 2007;22(6):702–708.
  • Kiat TS, Pippen R, Yusof R, et al. Inhibitory activity of cyclohexenyl chalcone derivatives and flavonoids of fingerroot, Boesenbergia rotunda (L.), towards dengue-2 virus NS3 protease. Bioorg Med Chem Lett. 2006;16(12):3337–3340.
  • Kralj A, Nguyen MT, Tschammer N, et al. Development of flavonoid-based inverse agonists of the key signaling receptor US28 of human cytomegalovirus. J Med Chem. 2013;56(12):5019–5032.
  • Mathayan M, Jayaraman S, Kulanthaivel L, et al. Inhibition studies of HBV DNA polymerase using seed extracts of Pongamia pinnata. Bioinformation. 2019;15(7):506–512.
  • Adianti M, Aoki C, Komoto M, et al. Anti-hepatitis C virus compounds obtained from Glycyrrhiza uralensis and other Glycyrrhiza species. Microbiol Immunol. 2014;58(3):180–187.
  • Patil V, Patil SA, Patil R, et al. Exploration of (hetero)aryl derived thienylchalcones for antiviral and anticancer activities. Med Chem. 2019;15(2):150–161.
  • Hameed A, Abdullah MI, Ahmed E, et al. Anti-HIV cytotoxicity enzyme inhibition and molecular docking studies of quinoline based chalcones as potential non-nucleoside reverse transcriptase inhibitors (NNRT). Bioorg Chem. 2016;65:175–182.
  • Mathaiyan M, Suresh A, Balamurugan R. Binding property of HIV p24 and Reverse transcriptase by chalcones from Pongamia pinnata seeds. Bioinformation. 2018;14(6):279–284.
  • Sharma H, Patil S, Sanchez TW, et al. Synthesis, biological evaluation and 3D-QSAR studies of 3-keto salicylic acid chalcones and related amides as novel HIV-1 integrase inhibitors. Bioorg Med Chem. 2011;19(6):2030–2045.
  • Deng J, Sanchez T, Al-Mawsawi LQ, et al. Discovery of structurally diverse HIV-1 integrase inhibitors based on a chalcone pharmacophore. Bioorg Med Chem. 2007;15(14):4985–5002.
  • Deng J, Kelley JA, Barchi JJ, et al. Mining the NCI antiviral compounds for HIV-1 integrase inhibitors. Bioorg Med Chem. 2006;14(11):3785–3792.
  • Turkovic N, Ivkovic B, Kotur-Stevuljevic J, et al. Molecular docking, synthesis and anti-HIV-1 protease activity of novel chalcones. Curr Pharm Des. 2020;26(8):802–814.
  • Cheenpracha S, Karalai C, Ponglimanont C, et al. Anti-HIV-1 protease activity of compounds from Boesenbergia pandurata. Bioorg Med Chem. 2006;14(6):1710–1714.
  • Xu HX, Wan M, Dong H, et al. Inhibitory activity of flavonoids and tannins against HIV-1 protease. Biol Pharm Bull. 2000;23(9):1072–1076.
  • Malbari K, Gonsalves H, Chintakrindi A, et al. In search of effective H1N1 neuraminidase inhibitor by molecular docking, antiviral evaluation and membrane interaction studies using NMR. Acta Virol. 2018;62(2):179–190.
  • Yang M, Li N, Li F, et al. Xanthohumol, a main prenylated chalcone from hops, reduces liver damage and modulates oxidative reaction and apoptosis in hepatitis C virus infected Tupaia belangeri. Int Immunopharmacol. 2013;16(4):466–474.
  • Buckwold VE, Wilson RJ, Nalca A, et al. Antiviral activity of hop constituents against a series of DNA and RNA viruses. Antiviral Res. 2004;61(1):57–62.
  • Ninomiya Y, Shimma N, Ishitsuka H. Comparative studies on the antirhinovirus activity and the mode of action of the rhinovirus capsid binding agents, chalcone amides. Antiviral Res. 1990;13(2):61–74.
  • Mateeva N, Eyunni SVK, Redda KK, et al. Functional evaluation of synthetic flavonoids and chalcones for potential antiviral and anticancer properties. Bioorg Med Chem Lett. 2017;27(11):2350–2356.
  • Wang Y, Liu TX, Wang TY, et al. Isobavachalcone inhibits pseudorabies virus by impairing virus-induced cell-to-cell fusion. Virol J. 2020;17(1):39.
  • Cole AL, Hossain S, Cole AM, et al. Synthesis and bioevaluation of substituted chalcones, coumaranones and other flavonoids as anti-HIV agents. Bioorg Med Chem. 2016;24(12):2768–2776.
  • Sahu NK, Balbhadra SS, Choudhary J, et al. Exploring pharmacological significance of chalcone scaffold: a review. Curr Med Chem. 2012;19(2):209–225.
  • Park JY, Ko JA, Kim DW, et al. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. J Enzyme Inhib Med Chem. 2016;31(1):23–30.
  • Wu J, Ao MT, Shao R, et al. A chalcone derivative reactivates latent HIV-1 transcription through activating P-TEFb and promoting Tat-SEC interaction on viral promoter. Sci Rep. 2017;7(1):10657.
  • Wu JH, Wang XH, Yi YH, et al. Anti-AIDS agents 54. A potent anti-HIV chalcone and flavonoids from genus Desmos. Bioorg Med Chem Lett. 2003;13(10):1813–1815.
  • Casano G, Dumetre A, Pannecouque C, et al. Anti-HIV and antiplasmodial activity of original flavonoid derivatives. Bioorg Med Chem. 2010;18(16):6012–6023.
  • Pan W, Liu K, Guan Y, et al. Bioactive compounds from Vitex leptobotrys. J Nat Prod. 2014;77(3):663–667.
  • Uchiumi F, Hatano T, Ito H, et al. Transcriptional suppression of the HIV promoter by natural compounds. Antiviral Res. 2003;58(1):89–98.
  • El-Subbagh HI, Abu-Zaid SM, Mahran MA, et al. Synthesis and biological evaluation of certain alpha, beta-unsaturated ketones and their corresponding fused pyridines as antiviral and cytotoxic agents. J Med Chem. 2000;43(15):2915–2921.
  • Seo WD, Kim JH, Kang JE, et al. Sulfonamide chalcone as a new class of alpha-glucosidase inhibitors. Bioorg Med Chem Lett. 2005;15(24):5514–5516.
  • Ali MA, Yar MS, Siddiqui AA, et al. Synthesis and anti-HIV activity of N′-nicotinoyl-3-(4′-hydroxy-3′-methylphenyl)-5-[substituted phenyl]-2-pyrazolines. Acta Pol Pharm. 2007;64(5):423–428.
  • Chintakrindi AS, Martis EA, Gohil DJ, et al. A computational model for docking of noncompetitive neuraminidase inhibitors and probing their binding interactions with neuraminidase of influenza virus H5N1. Curr Comput Aided Drug Des. 2016;12(4):272–281.
  • Nguyen PH, Na M, Dao TT, et al. New stilbenoid with inhibitory activity on viral neuraminidases from Erythrina addisoniae. Bioorg Med Chem Lett. 2010;20(22):6430–6434.
  • Dao TT, Tung BT, Nguyen PH, et al. C-Methylated flavonoids from Cleistocalyx operculatus and their inhibitory effects on novel influenza A (H1N1) neuraminidase. J Nat Prod. 2010;73(10):1636–1642.
  • Park JY, Jeong HJ, Kim YM, et al. Characteristic of alkylated chalcones from Angelica keiskei on influenza virus neuraminidase inhibition. Bioorg Med Chem Lett. 2011;21(18):5602–5604.
  • Ishitsuka H, Ninomiya YT, Ohsawa C, et al. Direct and specific inactivation of rhinovirus by chalcone Ro 09-0410. Antimicrob Agents Chemother. 1982;22(4):617–621.
  • Ahmad ALM, Dowsett AB, Tyrrell DAJ. Studies of rhinovirus resistant to an antiviral chalcone. Antiviral Res. 1987;8(1):27–39.
  • Ishitsuka H, Ninomiya Y, Suhara Y. Molecular basis of drug resistance to new antirhinovirus agents. J Antimicrob Chemother. 1986;18(Suppl. B):11–18.
  • Phrutivorapongkul A, Lipipun V, Ruangrungsi N, et al. Studies on the chemical constituents of stem bark of Millettia leucantha: isolation of new chalcones with cytotoxic, anti-herpes simplex virus and anti-inflammatory activities. Chem Pharm Bull (Tokyo). 2003;51(2):187–190.
  • Brandao GC, Kroon EG, Duarte MG, et al. Antimicrobial, antiviral and cytotoxic activity of extracts and constituents from Polygonum spectabile Mart. Phytomedicine. 2010;17(12):926–929.
  • Heh CH, Othman R, Buckle MJ, et al. Rational discovery of dengue type 2 non-competitive inhibitors. Chem Biol Drug Des. 2013;82(1):1–11.
  • Chen Z, Knutson E, Wang S, et al. Stabilization of p53 in human cytomegalovirus-initiated cells is associated with sequestration of HDM2 and decreased p53 ubiquitination. J Biol Chem. 2007;282(40):29284–29295.
  • Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1–23.
  • Rabaan AA, Al-Ahmed SH, Haque S, et al. SARS-CoV-2, SARS-CoV, and MERS-COV: a comparative overview. Infez Med. 2020;28(2):174–184.
  • Cheng VC, Lau SK, Woo PC, et al. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev. 2007;20(4):660–694.
  • CDC. Severe acute respiratory syndrome (SARS) basics fact sheet; 2020. Available from: https://www.cdc.gov/sars/about/fs-sars.html
  • Chafekar A, Fielding BC. MERS-CoV: understanding the latest human coronavirus threat. Viruses. 2018;10(2):93.
  • WHO. WHO coronavirus disease (COVID-19) dashboard; 2020. Available from: https://covid19.who.int/
  • Ghosh AK, Xi K, Johnson ME, et al. Progress in anti-SARS coronavirus chemistry, biology and chemotherapy. Annu Rep Med Chem. 2007;41:183–196.
  • Arien KK, Abraha A, Quinones-Mateu ME, et al. The replicative fitness of primary human immunodeficiency virus type 1 (HIV-1) group M, HIV-1 group O, and HIV-2 isolates. J Virol. 2005;79(14):8979–8990.
  • Gottlieb GS, Raugi DN, Smith RA. 90-90-90 for HIV-2? Ending the HIV-2 epidemic by enhancing care and clinical management of patients infected with HIV-2. Lancet HIV. 2018;5(7):e390–e399.
  • WHO. HIV/AIDS; 2019. Available from: https://www.who.int/health-topics/hiv-aids/#tab=tab_1
  • UNAIDS. 90-90-90: treatment for all; 2018. Available from: https://www.unaids.org/en/resources/909090
  • Sierra-Aragon S, Walter H. Targets for inhibition of HIV replication: entry, enzyme action, release and maturation. Intervirology. 2012;55(2):84–97.
  • Robina I, Moreno-Vargas AJ, Carmona AT, et al. Glycosidase inhibitors as potential HIV entry inhibitors? Curr Drug Metab. 2004;5(4):329–361.
  • Lofgren E, Fefferman NH, Naumov YN, et al. Influenza seasonality: underlying causes and modeling theories. J Virol. 2007;81(11):5429–5436.
  • Min JY, Subbarao K. Cellular targets for influenza drugs. Nat Biotechnol. 2010;28(3):239–240.
  • McAuley JL, Gilbertson BP, Trifkovic S, et al. Influenza virus neuraminidase structure and functions. Front Microbiol. 2019;10:39.
  • McKimm-Breschkin JL. Influenza neuraminidase inhibitors: antiviral action and mechanisms of resistance. Influenza Other Respir Viruses. 2013;7(Suppl. 1):25–36.
  • Greenberg SB. Respiratory consequences of rhinovirus infection. Arch Intern Med. 2003;163(3):278–284.
  • Foxman EF, Storer JA, Fitzgerald ME, et al. Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells. Proc Natl Acad Sci U S A. 2015;112(3):827–832.
  • Bochkov YA, Gern JE. Rhinoviruses and their receptors: implications for allergic disease. Curr Allergy Asthma Rep. 2016;16(4):30.
  • Ahmad ALM, Tyrrell DAJ. Synergism between anti-rhinovirus antivirals: various human interferons and a number of synthetic compounds. Antiviral Res. 1986;6(4):241–252.
  • Domingo E, Sheldon J, Perales C. Viral quasispecies evolution. Microbiol Mol Biol Rev. 2012;76(2):159–216.
  • Yasin SR, Al-Nakib W, Tyrrell DA. Pathogenicity for humans of human rhinovirus type 2 mutants resistant to or dependent on chalcone Ro 09-0410. Antimicrob Agents Chemother. 1990;34(6):963–966.
  • Kukhanova MK, Korovina AN, Kochetkov SN. Human herpes simplex virus: life cycle and development of inhibitors. Biochemistry (Mosc). 2014;79(13):1635–1652.
  • James C, Harfouche M, Welton NJ, et al. Herpes simplex virus: global infection prevalence and incidence estimates, 2016. Bull World Health Organ. 2020;98(5):315–329.
  • Whitley R. Herpes simplex virus. In: Booss ACTaJ, editor. Handbook of clinical neurology. Vol. 123. Netherlands: Elsevier; 2014. p. 252–263.
  • Coen DM, Schaffer PA. Antiherpesvirus drugs: a promising spectrum of new drugs and drug targets. Nat Rev Drug Discov. 2003;2(4):278–288.
  • Patil SA, Patil V, Patil R, et al. Identification of novel 5,6-dimethoxyindan-1-one derivatives as antiviral agents. Med Chem. 2017;13(8):787–795.
  • Mairuhu AT, Wagenaar J, Brandjes DP, et al. Dengue: an arthropod-borne disease of global importance. Eur J Clin Microbiol Infect Dis. 2004;23(6):425–433.
  • Martina BEE, Koraka P, Osterhaus ADME. Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev. 2009;22(4):564–581.
  • WHO. Dengue and severe dengue; 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
  • Silva EM, Conde JN, Allonso D, et al. Dengue virus nonstructural 3 protein interacts directly with human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and reduces its glycolytic activity. Sci Rep. 2019;9(1):2651.
  • Niyomrattanakit P, Winoyanuwattikun P, Chanprapaph S, et al. Identification of residues in the dengue virus type 2 NS2B cofactor that are critical for NS3 protease activation. J Virol. 2004;78(24):13708–13716.
  • Guirakhoo F, Pugachev K, Zhang Z, et al. Safety and efficacy of chimeric yellow Fever-dengue virus tetravalent vaccine formulations in nonhuman primates. J Virol. 2004;78(9):4761–4775.
  • Powers CN, Setzer WN. An in-silico investigation of phytochemicals as antiviral agents against dengue fever. Comb Chem High Throughput Screen. 2016;19(7):516–536.
  • Mukhametov A, Newhouse EI, Aziz NA, et al. Allosteric pocket of the dengue virus (serotype 2) NS2B/NS3 protease: in silico ligand screening and molecular dynamics studies of inhibition. J Mol Graph Model. 2014;52:103–113.
  • Congenital cytomegalovirus infection: update on treatment: scientific impact paper no. 56. BJOG. 2018;125(1):e1–e11.
  • Lee S, Chung YH, Lee C. US28, a virally-encoded GPCR as an antiviral target for human cytomegalovirus infection. Biomol Ther (Seoul). 2017;25(1):69–79.
  • Evers DL, Chao C-F, Wang X, et al. Human cytomegalovirus-inhibitory flavonoids: studies on antiviral activity and mechanism of action. Antiviral Res. 2005;68(3):124–134.
  • Elkhalifa D, Siddique AB, Qusa M, et al. Design, synthesis, and validation of novel nitrogen-based chalcone analogs against triple negative breast cancer. Eur J Med Chem. 2020;187:111954.
  • Beltramino R, Penenory A, Buceta AM. An open-label, randomized multicenter study comparing the efficacy and safety of Cyclo 3 Fort versus hydroxyethyl rutoside in chronic venous lymphatic insufficiency. Angiology. 2000;51(7):535–544.
  • Liang TJ. Hepatitis B: the virus and disease. Hepatology. 2009;49(5 Suppl.):S13–S21.
  • WHO. Hepatitis B key facts 2020; 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/hepatitis-b
  • Liu SH, Seto WK, Lai CL, et al. Hepatitis B: treatment choice and monitoring for response and resistance. Expert Rev Gastroenterol Hepatol. 2016;10(6):697–707.
  • Echeverría N, Moratorio G, Cristina J, et al. Hepatitis C virus genetic variability and evolution. World J Hepatol. 2015;7(6):831–845.
  • Wright D, Kortekaas J, Bowden TA, et al. Rift Valley fever: biology and epidemiology. J Gen Virol. 2019;100(8):1187–1199.
  • WHO. Rift Valley fever 2018; 2018. Available from: https://www.who.int/news-room/fact-sheets/detail/rift-valley-fever
  • Weaver SC, Charlier C, Vasilakis N, et al. Zika, chikungunya, and other emerging vector-borne viral diseases. Annu Rev Med. 2018;69:395–408.
  • CDC. Rift Valley fever (RVF) treatment 2020; 2020. Available from: https://www.cdc.gov/vhf/rvf/treatment/index.html
  • Pinkham C, Ahmed A, Bracci N, et al. Host-based processes as therapeutic targets for Rift Valley fever virus. Antiviral Res. 2018;160:64–78.
  • Aguilar PV, Estrada-Franco JG, Navarro-Lopez R, et al. Endemic Venezuelan equine encephalitis in the Americas: hidden under the dengue umbrella. Future Virol. 2011;6(6):721–740.
  • Gardner CL, Burke CW, Tesfay MZ, et al. Eastern and Venezuelan equine encephalitis viruses differ in their ability to infect dendritic cells and macrophages: impact of altered cell tropism on pathogenesis. J Virol. 2008;82(21):10634–10646.