319
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Detecting and targeting neurodegenerative disorders using electrospun nanofibrous matrices: current status and applications

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 476-490 | Received 13 Aug 2020, Accepted 01 Dec 2020, Published online: 05 Jan 2021

References

  • Chauhan NB, Mehla J. Ameliorative effects of nutraceuticals in neurological disorders. In: Ronald Ross Watson, Victor R. Preedy, editors. Bioactive nutraceuticals and dietary supplements in neurological and brain disease. New York (NY): Elsevier; 2015. p. 245–60.
  • Bayati A, Berman T. Localized vs. systematic neurodegeneration: a paradigm shift in understanding neurodegenerative diseases. Front Syst Neurosci. 2017;11:62.
  • Levenson RW, Sturm VE, Haase CM. Emotional and behavioral symptoms in neurodegenerative disease: a model for studying the neural bases of psychopathology. Annu Rev Clin Psychol. 2014;10(1):581–606.
  • Katsuno M, Sahashi K, Iguchi Y, et al. Preclinical progression of neurodegenerative diseases. Nagoya J Med Sci. 2018;80(3):289–298.
  • Siafaka PI, Özcan Bülbül E, Mutlu G, et al. Transdermal drug delivery systems and their potential on Alzheimer’s disease management. CNS Neurol Disord – Drug Targets. 2020;19:360–373.
  • Sancesario GM, Bernardini S. Diagnosis of neurodegenerative dementia: where do we stand, now? Ann Transl Med. 2018;6(17):340–340.
  • Kaerst L, Kuhlmann A, Wedekind D, et al. Cerebrospinal fluid biomarkers in Alzheimer’s disease, vascular dementia and ischemic stroke patients: a critical analysis. J Neurol. 2013;260(11):2722–2727.
  • Chui HC, Ramirez-Gomez L. Clinical and imaging features of mixed Alzheimer and vascular pathologies. Alzheimers Res Ther. 2015;7(1):21.
  • Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease. Jama. 2020;323(6):548–560.
  • Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3:17013.
  • Gironi M, Arnò C, Comi G, et al. Multiple sclerosis and neurodegenerative diseases. Immune rebalancing. New York (NY): Elsevier; 2016. p. 63–84.
  • Levin M, Gardner L, Douglas J, et al. Neurodegeneration in multiple sclerosis involves multiple pathogenic mechanisms. Degener Neurol Neuromuscul Dis. 2014;2014:49–63.
  • Ross CA, Tabrizi SJ. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011;10(1):83–98.
  • Chen X, Pan W. The treatment strategies for neurodegenerative diseases by integrative medicine. Integr Med Int. 2015;1(4):223–225.
  • Hernando S, Herran E, Pedraz JL, et al. Nanotechnology based approaches for neurodegenerative disorders: diagnosis and treatment. In: Sharma, Hari S., Muresanu, Dafin, Sharma, Aruna, editors. Drug and Gene Delivery to the Central Nervous System for Neuroprotection. Cham: Springer International Publishing; 2017. p. 57–87. https://doi.org/10.1007/978-3-319-57696-1_3.
  • Siafaka PI, Üstündağ Okur N, Karavas E, et al. Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting: current status and uses. IJMS. 2016;17(9):1440.
  • Siafaka PI, Üstündağ Okur N, Karantas ID, et al. Current update on nanoplatforms as therapeutic and diagnostic tools: a review for the materials used as nanotheranostics and imaging modalities. Asian J Pharm Sci. 2020;11:22.
  • Li H, Williams GR, Wu J, et al. Poly(N-isopropylacrylamide)/poly(L-lactic acid-co-ɛ-caprolactone) fibers loaded with ciprofloxacin as wound dressing materials. Mater Sci Eng C. 2017;79:245–254.
  • Siafaka PIPI, Barmbalexis P, Bikiaris DNDN. Novel electrospun nanofibrous matrices prepared from poly(lactic acid)/poly(butylene adipate) blends for controlled release formulations of an anti-rheumatoid agent. Eur J Pharm Sci. 2016;88:12–25.
  • Lee CH, Hung KC, Hsieh MJ, et al. Core-shell insulin-loaded nanofibrous scaffolds for repairing diabetic wounds. Nanomed Nanotechnol Biol Med. 2020;24:102123.
  • Ardekani NT, Khorram M, Zomorodian K, et al. Evaluation of electrospun poly (vinyl alcohol)-based nanofiber mats incorporated with Zataria multiflora essential oil as potential wound dressing. Int J Biol Macromol. 2019;125:743–750.
  • Gaharwar AK, Mihaila SM, Kulkarni AA, et al. Amphiphilic beads as depots for sustained drug release integrated into fibrillar scaffolds. J Control Release. 2014;187:66–73.
  • Xue J, Wu T, Dai Y, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev. 2019;119(8):5298–5415.
  • Siafaka PI, Betsiou M, Tsolou A, et al. Synthesis of folate- pegylated polyester nanoparticles encapsulating ixabepilone for targeting folate receptor overexpressing breast cancer cells. J Mater Sci Mater Med. 2015;26:1–14.
  • Ren W, Chen S, Liao Y, et al. Near-infrared fluorescent carbon dots encapsulated liposomes as multifunctional nano-carrier and tracer of the anticancer agent cinobufagin in vivo and in vitro. Colloids Surf B Biointerfaces. 2019;174:384–392.
  • Aso E, Martinsson I, Appelhans D, et al. Poly(propylene imine) dendrimers with histidine-maltose shell as novel type of nanoparticles for synapse and memory protection. Nanomedicine Nanotechnol Biol Med. 2019;17:198–209.
  • Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: a review. Arab J Chem. 2019;12(8):3576–3600.
  • Batool S, Hussain Z, Niazi MBK, et al. Biogenic synthesis of silver nanoparticles and evaluation of physical and antimicrobial properties of Ag/PVA/starch nanocomposites hydrogel membranes for wound dressing application. J Drug Deliv Sci Technol. 2019;52:403–414.
  • Siddiqi KS, Rahman Ur, Tajuddin A, et al. Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nanoscale Res Lett. 2016;11:498.
  • Kumar Bachheti R, Fikadu A, Bachheti A, et al. Biogenic fabrication of nanomaterials from flower-based chemical compounds, characterization and their various applications: a review. Saudi J Biol Sci. 2020;27(10):2551–2562.
  • Ura DP, Karbowniczek JE, Szewczyk PK, et al. Cell integration with electrospun PMMA nanofibers, microfibers, ribbons, and films: a microscopy study. Bioengineering. 2019;6(2):41.
  • Zhao X, Sun X, Yildirimer L, et al. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomater. 2017;49:66–77.
  • Németh C, Gyarmati B, Gacs J, et al. Fast dissolving nanofibrous matrices prepared by electrospinning of polyaspartamides. Eur Polym J. 2020;130:109624.
  • Siafaka P, Üstündağ Okur N, Mone M, et al. Two different approaches for oral administration of voriconazole loaded formulations: electrospun fibers versus β-cyclodextrin complexes. Int J Mol Sci. 2016;17(3):282.
  • Zhou X, Wang H, Zhang J, et al. Functional poly(ε-caprolactone)/chitosan dressings with nitric oxide-releasing property improve wound healing. Acta Biomater. 2017;54:128–137.
  • Chang M-J, Cui W-N, Liu J. Facile preparation of porous inorganic SiO2 nanofibrous membrane by electrospinning method. J Nanomater. 2017;2017:1–8.
  • Capulli AK, Macqueen LA, Sheehy SP, et al. Fibrous scaffolds for building hearts and heart parts ⋆. Adv Drug Deliv Rev. 2016;96:83–102.
  • Yu D, Li J, Williams GR, et al. Electrospun amorphous solid dispersions of poorly water-soluble drugs: a review. J Control Release. 2018;292:91–110.
  • Li H, Wang M. 18-Electrospinning and nanofibrous structures for biomedical applications. New York (NY): Elsevier Ltd.; 2021.
  • Tian J, Deng H, Huang M, et al. 15-Electrospun nanofibers for food and food packaging technology. New York (NY): Elsevier Inc.; 2019.
  • Babar AA, Iqbal N, Wang X, et al. 1-Introduction and historical overview. New York (NY): Elsevier Inc.; 2019.
  • Doostmohammadi M, Forootanfar H, Ramakrishna S. Regenerative medicine and drug delivery: progress via electrospun biomaterials. Mater Sci Eng C. 2020;109:110521.
  • Jamali S, Mostafavi H, Barati G, et al. Differentiation of mesenchymal stem cells-derived trabecular meshwork into dopaminergic neuron-like cells on nanofibrous scaffolds. Biologicals. 2017;50:49–54.
  • Terraf P, Babaloo H, Kouhsari SM. Directed differentiation of dopamine-secreting cells from Nurr1/GPX1 expressing murine embryonic stem cells cultured on matrigel-coated PCL scaffolds. Mol Neurobiol. 2017;54(2):1119–1128.
  • Garrudo FFF, Chapman CA, Hoffman PR, et al. Polyaniline-polycaprolactone blended nanofibers for neural cell culture. Eur Polym J. 2019;117:28–37.
  • Ebrahimi-Barough S, Hoveizi E, Norouzi Javidan A, et al. Investigating the neuroglial differentiation effect of neuroblastoma conditioned medium in human endometrial stem cells cultured on 3D nanofibrous scaffold. J Biomed Mater Res. 2015;103(8):2621–2627.
  • Gencturk A, Kahraman E, Güngör S, et al. Polyurethane/hydroxypropyl cellulose electrospun nanofiber mats as potential transdermal drug delivery system: characterization studies and in vitro assays. Artif Cells. Nanomedicine, Biotechnol. 2017;45(3):655–664.
  • AnjiReddy K, Karpagam S. Chitosan nanofilm and electrospun nanofiber for quick drug release in the treatment of Alzheimer’s disease: in vitro and in vivo evaluation. Int J Biol Macromol. 2017;105:131–142.
  • Ansari AQ, Ansari SJ, Khan MQ, et al. Electrospun Zein nanofibers as drug carriers for controlled delivery of Levodopa in Parkinson syndrome. Mater Res Express. 2019;6:075405.
  • Wang TY, Bruggeman KF, Kauhausen JA, et al. Functionalized composite scaffolds improve the engraftment of transplanted dopaminergic progenitors in a mouse model of Parkinson’s disease. Biomaterials. 2016;74:89–98.
  • Chemmarappally JM, Pegram HCN, Abeywickrama N, et al. A co-culture nanofiber scaffold model of neural cell degeneration in relevance to Parkinson’s disease. Sci Rep. 2020;10(1):14.
  • Moon S, Gil M, Lee KJ. Syringeless electrospinning toward versatile fabrication of nanofiber web. Sci Rep. 2017;7:41424.
  • Zhou H, Shi Z, Wan X, et al. The relationships between process parameters and polymeric nanofibers fabricated using a modified coaxial electrospinning. Nanomaterials. 2019;9(6):843.
  • Prabu GV, Dhurai B. A novel profiled multi-pin electrospinning system for nanofiber production and encapsulation of nanoparticles into nanofibers. Sci Rep. 2020;10(1):4302.
  • Hekmati AH, Rashidi A, Ghazisaeidi R, et al. Effect of needle length, electrospinning distance, and solution concentration on morphological properties of polyamide-6 electrospun nanowebs. Text Res J. 2013;83(14):1452–1466.
  • Li X, Bian F, Lin J, et al. Effect of electric field on the morphology and mechanical properties of electrospun fibers. RSC Adv. 2016;6(56):50666–50672.
  • Tsimpliaraki A, Zuburtikudis I, Marras SI, et al. Optimizing the nanofibrous morphology of electrospun poly[(butylene succinate)- co-(butylene adipate)]/clay nanocomposites and revealing the effect of the fiber nano-dimension on the attained material properties. Polym Int. 2011;60(5):859–871.
  • Morad MR, Rajabi A, Razavi M, et al. A very stable high throughput Taylor Cone-jet in. Sci Rep. 2016;6:38509.
  • Partheniadis I, Nikolakakis I, Laidmäe I, et al. A mini-review: needleless electrospinning of nanofibers for pharmaceutical and biomedical applications. Processes. 2020;8(6):673.
  • Munir M, Ali U. Classification of electrospinning methods. Nanorods and Nanocomposites. London: IntechOpen; 2020.
  • Haider A, Haider S, Kang I-K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem. 2018;11(8):1165–1188.
  • Y Abdel Tawwab M, Abdel-Hady BM, El-Moneim Rizk RA, et al. Effect of electrospinning parameters on the versatile production of polycaprolacton/gelatin nanofiber mats. Adv Nat Sci: Nanosci Nanotechnol. 2019;10(2):025009.
  • Steffens L, Morás AM, Arantes PR, et al. Electrospun PVA-Dacarbazine nanofibers as a novel nano brain-implant for treatment of glioblastoma: in silico and in vitro characterization. Eur J Pharm Sci. 2020;143:105183.
  • Xu W, Shen R, Yan Y, et al. Preparation and characterization of electrospun alginate/PLA nanofibers as tissue engineering material by emulsion eletrospinning. J Mech Behav Biomed Mater. 2017;65:428–438.
  • Okutan N, Terzi P, Altay F. Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocoll. 2014;39:19–26.
  • Kalinov K, Ignatova M, Maximova V, et al. Modification of electrospun poly(??-caprolactone) mats by formation of a polyelectrolyte complex between poly(acrylic acid) and quaternized chitosan for tuning of their antibacterial properties. Eur Polym J. 2014;50:18–29.
  • Yoon Y, Il Park KE, Lee SJ, et al. Fabrication of microfibrous and nano-/microfibrous scaffolds: melt and hybrid electrospinning and surface modification of poly(L-lactic acid) with plasticizer. Biomed Res Int. 2013;2013:1–10.
  • Beachley V, Wen X. Effect of electrospinning parameters on the nanofiber diameter and length. Mater Sci Eng C. 2009;29(3):663–668.
  • Najafi SJ, Nosraty H, Shokrieh MM, et al. The effect of electrospinning parameters on the morphology of glass nanofibers. J Text Inst. 2020;111(7):941–949.
  • Shao H, Fang J, Wang H, et al. Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly(vinylidene fluoride) nanofiber mats. RSC Adv. 2015;5(19):14345–14350.
  • Zhang H, Xi S, Han Y, et al. Determining electrospun morphology from the properties of protein–polymer solutions. Soft Matter. 2018;14(18):3455–3462.
  • Van der Schueren L, Steyaert I, De Schoenmaker B, et al. Polycaprolactone/chitosan blend nanofibers electrospun from an acetic acid/formic acid solvent system. Carbohydr Polym. 2012;88(4):1221–1226.
  • Nagy ZK, Nyúl K, Wagner I, et al. Electrospun water soluble polymer mat for ultrafast release of donepezil HCL. Express Polym Lett. 2010;4(12):763–772.
  • Yin A, Luo R, Li J, et al. Coaxial electrospinning multicomponent functional controlled-release vascular graft: optimization of graft properties. Colloids Surf B Biointerfaces. 2017;152:432–439.
  • Chen W, Wang C, Gao Y, et al. Incorporating chitin derived glucosamine sulfate into nanofibers via coaxial electrospinning for cartilage regeneration. Carbohydr Polym. 2020;229:115544.
  • Rafiei M, Jooybar E, Abdekhodaie MJ, et al. Construction of 3D fibrous PCL scaffolds by coaxial electrospinning for protein delivery. Mater Sci Eng C. 2020;113:110913.
  • Han D, Serra R, Gorelick N, et al. Multi-layered core-sheath fiber membranes for controlled drug release in the local treatment of brain tumor. Sci Rep. 2019;9(1):17936.
  • Zhang C, Feng F, Zhang H. Emulsion electrospinning: fundamentals, food applications and prospects. Trends Food Sci Technol. 2018;80:175–186.
  • Tao F, Cheng Y, Tao H, et al. Carboxymethyl chitosan/sodium alginate-based micron-fibers fabricated by emulsion electrospinning for periosteal tissue engineering. Mater Des. 2020;194:108849.
  • Ma L, Shi X, Zhang X, et al. Electrospinning of polycaprolacton/chitosan core-shell nanofibers by a stable emulsion system. Colloids Surf A Physicochem Eng Asp. 2019;583:123956.
  • Sarwar Z, Krugly E, Danilovas PP, et al. Fabrication and characterization of PEBA fibers by melt and solution electrospinning. J Mater Res Technol. 2019;8(6):6074–6085.
  • Morikawa K, Green M, Naraghi M. A novel approach for melt electrospinning of polymer fibers. Procedia Manuf. 2018;26:205–208.
  • Lian H, Meng Z. Melt electrospinning vs. solution electrospinning: a comparative study of drug-loaded poly (ε-caprolactone) fibers. Mater Sci Eng C. 2017;74:117–123.
  • Lin Y, Yao Y, Yang X, et al. Preparation of poly(ether sulfone) nanofibers by gas-jet/electrospinning. J Appl Polym Sci. 2008;107(2):909–917.
  • Liu W, Yao Y, Lin Y, et al. Electrospinning assisted by gas jet for preparing ultrafine poly(vinyl alcohol) fibers. Iran Polym J (English Ed). 2009;18:89–96.
  • Chen T, Sun HM, Wu LL. A melt blowing-electrospinning approach to fabricating nanofibers. Therm Sci. 2016;20(3):1010–1011.
  • Zhmayev E, Cho D, Joo YL. Nanofibers from gas-assisted polymer melt electrospinning. Polymer (Guildf). 2010;51(18):4140–4144.
  • Zhao F, Liu Y, Ding Y, et al. Effect of plasticizer and load on melt electrospinning of PLA. KEM. 2012;501:32–36.
  • Li H, Ding Y, Liu Y, et al. The preparation of polypropylene/polyvinyl alcohol ultra-fine fibers using melt electrospinning method. KEM. 2013;561:8–12.
  • Balogh A, Drávavölgyi G, Faragó K, et al. Plasticized drug-loaded melt electrospun polymer mats: characterization, thermal degradation, and release kinetics. J Pharm Sci. 2014;103(4):1278–1287.
  • Ibrahim YS, Hussein EA, Zagho MM, et al. Melt electrospinning designs for nanofiber fabrication for different applications. IJMS. 2019;20(10):2455.
  • Ballabh P, Braun A, Nedergaard M. The blood–brain barrier: an overview. Neurobiol Dis. 2004;16(1):1–13.
  • Abbott NJ, Rönnbäck L, Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006;7(1):41–53.
  • Abbott NJ, Patabendige AAK, Dolman DEM, et al. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37(1):13–25.
  • Małkiewicz MA, Szarmach A, Sabisz A, et al. Blood-brain barrier permeability and physical exercise. J Neuroinflammation. 2019;16(1):15.
  • Winkler EA, Bell RD, Zlokovic BV. Central nervous system pericytes in health and disease. Nat Neurosci. 2011;14(11):1398–1405.
  • Varatharaj A, Galea I. The blood-brain barrier in systemic inflammation. Brain Behav Immun. 2017;60:1–12.
  • Bülbül E, Karantas ID, Okur ME, et al. Schizophrenia; a review on promising drug delivery systems. Curr Pharm Des. 2020;26:3871–3883.
  • Özcan Bülbül E, Mesut B, Cevher E, et al. Product transfer from lab-scale to pilot-scale of quetiapine fumarate orodispersible films using quality by design approach. J Drug Deliv Sci Technol. 2019;54:101358.
  • O’Keeffe E, Campbell M. Modulating the paracellular pathway at the blood–brain barrier: current and future approaches for drug delivery to the CNS. Drug Discov Today Technol. 2016;20:35–39.
  • Azarmi M, Maleki H, Nikkam N, et al. Transcellular brain drug delivery: a review on recent advancements. Int J Pharm. 2020;586:119582.
  • Ramachandran R, Junnuthula VR, Gowd GS, et al. Theranostic 3-dimensional nano brain-implant for prolonged and localized treatment of recurrent glioma. Sci Rep. 2017;7(1):43271.
  • Crous-Bou M, Minguillón C, Gramunt N, et al. Alzheimer’s disease prevention: from risk factors to early intervention. Alzheimers Res Ther. 2017;9:71.
  • Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006–1014.
  • Selkoe DJ, American Physiological Society. Alzheimer disease: mechanistic understanding predicts novel therapies. Ann Intern Med. 2004;140(8):627–638.
  • Francis PT, Palmer AM, Snape M, et al. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry. 1999;66(2):137–147.
  • Boros BD, Greathouse KM, Gentry EG, et al. Dendritic spines provide cognitive resilience against Alzheimer’s disease. Ann Neurol. 2017;82(4):602–614.
  • Arenaza-Urquijo EM, Vemuri P. Resistance vs resilience to Alzheimer disease: clarifying terminology for preclinical studies. Neurology. 2018;90(15):695–703.
  • Hu W, Zhang X, Tung YC, et al. Hyperphosphorylation determines both the spread and the morphology of tau pathology. Alzheimers Dement. 2016;12(10):1066–1077.
  • Amato MP, Derfuss T, Hemmer B, et al.; 2016 ECTRIMS Focused Workshop Group. Environmental modifiable risk factors for multiple sclerosis: report from the 2016 ECTRIMS focused workshop. Mult Scler. 2018;24(5):590–603.
  • Magliozzi R, Howell OW, Reeves C, et al. A gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann Neurol. 2010;68(4):477–493.
  • Mcalpine D. The benign form of multiple sclerosis. A study based on 241 cases seen within three years of onset and followed up until the tenth year or more of the disease. Brain. 1961;84(2):186–203.
  • Waxman SG. Membranes, myelin, and the pathophysiology of multiple sclerosis. N Engl J Med. 1982;306(25):1529–1533.
  • Hughes AJ, Daniel SE, Lees AJ. Improved accuracy of clinical diagnosis of Lewy body Parkinson’s disease. Neurology. 2001;57(8):1497–1499.
  • Savica R, Cannon-Albright LA, Pulst S. Familial aggregation of Parkinson disease in Utah: a population-based analysis using death certificates. Neurol Genet. 2016;2(2):e65.
  • Reijnders JSAM, Ehrt U, Weber WEJ, et al. A systematic review of prevalence studies of depression in Parkinson’s disease. Mov Disord. 2008;23(2):183–189.
  • Gilks WP, Abou-Sleiman PM, Gandhi S, et al. A common LRRK2 mutation in idiopathic Parkinson’s disease. Lancet (London, England). 2005;365(9457):415–416.(05)17830-1.
  • Goetz CG. The history of Parkinson’s disease: early clinical descriptions and neurological therapies. Cold Spring Harb Perspect Med. 2011;1(1):a008862.
  • Goedert M, Spillantini MG, Del Tredici K, et al. 100 years of Lewy pathology. Nat Rev Neurol. 2013;9(1):13–24.
  • Salawu FK, Danburam A, Olokoba AB. Non-motor symptoms of Parkinson’s disease: diagnosis and management. Niger J Med. 2010;19:126–131.
  • Greenamyre JT, Hastings TG. Biomedicine. Parkinson’s – divergent causes, convergent mechanisms. Science. 2004;304(5674):1120–1122.
  • Videnovic A, Leurgans S, Fan W, et al. Daytime somnolence and nocturnal sleep disturbances in Huntington disease. Parkinsonism Relat Disord. 2009;15(6):471–474.
  • Gusella JF, Wexler NS, Conneally PM, et al. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature. 1983;306(5940):234–238.
  • Semaka A, Kay C, Doty C, et al. CAG size-specific risk estimates for intermediate allele repeat instability in Huntington disease. J Med Genet. 2013;50(10):696–703.
  • Aladag Tanik N, Demirkan E, Aykut Y. Guanine oxidation signal enhancement in DNA via a polyacrylonitrile nanofiber-coated and cyclic voltammetry-treated pencil graphite electrode. J Phys Chem Solids. 2018;118:73–79.
  • Luo B, Tian L, Chen N, et al. Electrospun nanofibers facilitate better alignment, differentiation, and long-term culture in an: in vitro model of the neuromuscular junction (NMJ). Biomater Sci. 2018;6(12):3262–3272.
  • Park SJ, Lee SH, Yang H, et al. Human dopamine receptor-conjugated multidimensional conducting polymer nanofiber membrane for dopamine detection. ACS Appl Mater Interfaces. 2016;8(42):28897–28903.
  • Arvand M, Ghodsi N. Electrospun TiO2 nanofiber/graphite oxide modified electrode for electrochemical detection of l-DOPA in human cerebrospinal fluid. Sensors Actuators, B Chem. 2014;204:393–401.
  • Veeralingam S, Badhulika S. Strain engineered biocompatible h-WO3 nanofibers based highly selective and sensitive chemiresistive platform for detection of Catechol in blood sample. Mater Sci Eng C. 2020;108:110365.
  • Reiner A, Deng Y-P. Disrupted striatal neuron inputs and outputs in Huntington’s disease. CNS Neurosci Ther. 2018;24(4):250–280.
  • Kamudzandu M, Yang Y, Roach P, et al. Efficient alignment of primary CNS neurites using structurally engineered surfaces and biochemical cues. RSC Adv. 2015;5(28):22053–22059.
  • Tort S, Han D, Steckl AJ. Self-inflating floating nanofiber membranes for controlled drug delivery. Int J Pharm. 2020;579:119164.
  • Garrudo FFF, Udangawa RN, Hoffman PR, et al. Polybenzimidazole nanofibers for neural stem cell culture. Mater Today Chem. 2019;14:100185.
  • Mohamadi F, Ebrahimi-Barough S, Nourani MR, et al. Enhanced sciatic nerve regeneration by human endometrial stem cells in an electrospun poly (ε-caprolactone)/collagen/NBG nerve conduit in rat. Artif Cells. Nanomedicine Biotechnol. 2017;46:1–43.
  • Seonwoo H, Jang KJ, Lee D, et al. Neurogenic differentiation of human dental pulp stem cells on graphene-polycaprolactone hybrid nanofibers. Nanomaterials. 2018;8(7):554.
  • Ghasemi Hamidabadi H, Rezvani Z, Nazm Bojnordi M, et al. Chitosan-intercalated montmorillonite/poly(vinyl alcohol) nanofibers as a platform to guide neuronlike differentiation of human dental pulp stem cells. ACS Appl Mater Interfaces. 2017;9(13):11392–11404.
  • Hoveizi E, Ebrahimi-Barough S, Tavakol S, et al. In vitro differentiation of human iPS cells into neural like cells on a biomimetic polyurea. Mol Neurobiol. 2017;54(1):601–607.
  • Bagher Z, Azami M, Ebrahimi-Barough S, et al. Differentiation of Wharton’s Jelly-derived mesenchymal stem cells into motor neuron-like cells on three-dimensional collagen-grafted nanofibers. Mol Neurobiol. 2016;53(4):2397–2408.
  • Diao HJ, Low WC, Milbreta U, et al. Nanofiber-mediated microRNA delivery to enhance differentiation and maturation of oligodendroglial precursor cells. J Control Release. 2015;208:85–92.
  • KarbalaeiMahdi A, Shahrousvand M, Javadi HR, et al. Neural differentiation of human induced pluripotent stem cells on polycaprolactone/gelatin bi-electrospun nanofibers. Mater Sci Eng C. 2017;78:1195–1202.
  • Wang L, Liu X, Fu J, et al. Release of methylene blue from graphene oxide-coated electrospun nanofibrous scaffolds to modulate functions of neural progenitor cells. Acta Biomater. 2019;88:346–356.
  • AnjiReddy K, Karpagam S. Hyperbranched cellulose polyester of oral thin film and nanofiber for rapid release of donepezil; preparation and in vivo evaluation. Int J Biol Macromol. 2019;124:871–887.
  • Horne J, McLoughlin L, Bridgers B, et al. Recent developments in nanofiber-based sensors for disease detection, immunosensing, and monitoring. Sensors Actuators Rep. 2020;2(1):100005.
  • Gibney E. Injectable brain implant spies on individual neurons. Nature. 2015;522(7555):137.
  • Gulino M, Kim D, Pané S, et al. Tissue response to neural implants: the use of model systems toward new design solutions of implantable microelectrodes. Front Neurosci. 2019;13:689.
  • Mangialasche F, Solomon A, Winblad B, et al. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol. 2010;9(7):702–716.
  • Sonawane SK, Ahmad A, Chinnathambi S. Protein-capped metal nanoparticles inhibit Tau Aggregation in Alzheimer’s disease. ACS Omega. 2019;4(7):12833–12840.
  • Harilal S, Jose J, Parambi DGT, et al. Advancements in nanotherapeutics for Alzheimer’s disease: current perspectives. J Pharm Pharmacol. 2019;71(9):1370–1383.
  • Mohammad-Beigi H, Hosseini A, Adeli M, et al. Mechanistic understanding of the interactions between nano-objects with different surface properties and α-synuclein. ACS Nano. 2019;13(3):3243–3256.
  • Riazifar M, Mohammadi MR, Pone EJ, et al. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders. ACS Nano. 2019;13(6):6670–6688.
  • Moradi SZ, Momtaz S, Bayrami Z, et al. Nanoformulations of herbal extracts in treatment of neurodegenerative disorders. Front Bioeng Biotechnol. 2020;8:238.
  • Singh AV, Ansari MHD, Rosenkranz D, et al. Artificial intelligence and machine learning in computational nanotoxicology: unlocking and empowering nanomedicine. Adv Healthcare Mater. 2020;9(17):1901862.
  • Myszczynska MA, Ojamies PN, Lacoste AMB, et al. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat Rev Neurol. 2020;16(8):440–456.
  • Signaevsky M, Prastawa M, Farrell K, et al. Artificial intelligence in neuropathology: deep learning-based assessment of tauopathy. Lab Invest. 2019;99(7):1019–1029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.