145
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Histone deacetylase 9 inhibition upregulates microRNA-92a to repress the progression of intracranial aneurysm via silencing Bcl-2-like protein 11

, , , , , & show all
Pages 761-770 | Received 22 Oct 2020, Accepted 16 Jan 2021, Published online: 08 Feb 2021

References

  • Meng H, Tutino VM, Xiang J, et al. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am J Neuroradiol. 2014;35:1254–1262.
  • Chen X, Liu Y, Tong H, et al. Meta-analysis of computed tomography angiography versus magnetic resonance angiography for intracranial aneurysm. Medicine (Baltimore). 2018;97:e10771.
  • Bunevicius A, Gendvilaite A, Deltuva VP, et al. The association between lunar phase and intracranial aneurysm rupture: myth or reality? Own data and systematic review. BMC Neurol. 2017;17:99.
  • Sun L, Zhao M, Zhang J, et al. MiR-29b downregulation induces phenotypic modulation of vascular smooth muscle cells: implication for intracranial aneurysm formation and progression to rupture. Cell Physiol Biochem. 2017;41:510–518.
  • Fan H, Yang C, Jia C, et al. miR-566 expression and immune changes in patients with intracranial aneurysm. Int J Clin Exp Pathol. 2020;13:685–691.
  • Fan W, Wen X, Zheng J, et al. LINC00162 participates in the pathogenesis of diabetic nephropathy via modulating the miR-383/HDAC9 signalling pathway. Artif Cells Nanomed Biotechnol. 2020;48:1047–1054.
  • Lu S, Li H, Li K, et al. HDAC9 promotes brain ischemic injury by provoking IκBα/NF-κB and MAPKs signaling pathways. Biochem Biophys Res Commun. 2018;503:1322–1329.
  • Shi W, Wei X, Wang Z, et al. HDAC9 exacerbates endothelial injury in cerebral ischaemia/reperfusion injury. J Cell Mol Med. 2016;20:1139–1149.
  • Lansdell TA, Fisher C, Simmonds K, et al. Rs10230207 genotype confers changes in HDAC9 and TWIST1, but not FERD3L in lymphoblasts from patients with intracranial aneurysm. Neurogenetics. 2019;20:83–89.
  • Huang J, Lu W, Doycheva DM, et al. IRE1α inhibition attenuates neuronal pyroptosis via miR-125/NLRP1 pathway in a neonatal hypoxic-ischemic encephalopathy rat model. J Neuroinflammation. 2020;17:152.
  • Feng X, Peng F, Zhang B, et al. Lower miR-143/145 and higher matrix metalloproteinase-9 levels in circulation may be associated with intracranial aneurysm formation and rupture: a pilot study. Clin Neurol Neurosurg. 2018;173:124–129.
  • Wang WH, Wang YH, Zheng LL, et al. MicroRNA-29a: a potential biomarker in the development of intracranial aneurysm. J Neurol Sci. 2016;364:84–89.
  • Yang L, Li T. LncRNA TUG1 regulates ApoM to promote atherosclerosis progression through miR-92a/FXR1 axis. J Cell Mol Med. 2020;24:8836–8848.
  • Li Y, Peng T, Li L, et al. MicroRNA-9 regulates neural apoptosis in methylmalonic acidemia via targeting BCL2L11. Int J Dev Neurosci. 2014;36:19–24.
  • de Oliveira GLV, Ferreira AF, Gasparotto EPL, et al. Defective expression of apoptosis-related molecules in multiple sclerosis patients is normalized early after autologous haematopoietic stem cell transplantation. Clin Exp Immunol. 2017;187:383–398.
  • Wei N, Xiao L, Xue R, et al. MicroRNA-9 mediates the cell apoptosis by targeting Bcl2l11 in ischemic stroke. Mol Neurobiol. 2016;53:6809–6817.
  • Niu H, Wang K, Zhang A, et al. miR-92a is a critical regulator of the apoptosis pathway in glioblastoma with inverse expression of pression of BCL2L11. Oncol Rep. 2012;28:1771–1777.
  • Yu G, Liu P, Shi Y, et al. Stimulation of endothelial progenitor cells by microRNA-31a-5p to induce endothelialization in an aneurysm neck after coil embolization by modulating the Axin1-mediated beta-catenin/vascular endothelial growth factor pathway. J Neurosurg. 2019.
  • Fan W, Liu Y, Li C, et al. microRNA-331-3p maintains the contractile type of vascular smooth muscle cells by regulating TNF-α and CD14 in intracranial aneurysm. Neuropharmacology. 2020;164:107858.
  • Lai XL, Deng ZF, Zhu XG, et al. Apc gene suppresses intracranial aneurysm formation and rupture through inhibiting the NF-kappaB signaling pathway mediated inflammatory response. Biosci Rep. 2019;39:BSR20181909.
  • Li XG, Wang YB. SRPK1 gene silencing promotes vascular smooth muscle cell proliferation and vascular remodeling via inhibition of the PI3K/Akt signaling pathway in a rat model of intracranial aneurysms. CNS Neurosci Ther. 2019;25:233–244.
  • Feng Z, Zhang X, Li L, et al. Tumor-associated macrophage-derived exosomal microRNA-155-5p stimulates intracranial aneurysm formation and macrophage infiltration. Clin Sci (Lond). 2019;133:2265–2282.
  • Wang Y, Li Q, Niu L, et al. Suppression of G6PD induces the expression and bisecting GlcNAc-branched N-glycosylation of E-Cadherin to block epithelial-mesenchymal transition and lymphatic metastasis. Br J Cancer. 2020;123:1315–1325.
  • Bhutiani N, Li Y, Zheng Q, et al. Electrochemotherapy with irreversible electroporation and FOLFIRINOX improves survival in murine models of pancreatic adenocarcinoma. Ann Surg Oncol. 2020;27:4348–4359.
  • Yang S, Wang P, Wang S, et al. miRNA-181a-5p enhances the sensitivity of cells to cisplatin in esophageal adenocarcinoma by targeting CBLB. Cancer Manag Res. 2020;12:4981–4990.
  • Shakespear MR, Halili MA, Irvine KM, et al. Histone deacetylases as regulators of inflammation and immunity. Trends Immunol. 2011;32:335–343.
  • Shin YW, Park KI, Moon J, et al. Association of bone mineral density with the risk of intracranial aneurysm. JAMA Neurol. 2018;75:179–186.
  • Zhou K, Ou Q, Wang G, et al. High long non-coding RNA NORAD expression predicts poor prognosis and promotes breast cancer progression by regulating TGF-beta pathway. Cancer Cell Int. 2019;19:63.
  • Gado MM, Mousa NO, Badawy MA, et al. Assessment of the diagnostic potential of miR-29a-3p and miR-92a-3p as circulatory biomarkers in acute myeloid leukemia. Asian Pac J Cancer Prev. 2019;20:3625–3633.
  • Salgado E, Bian X, Feng A, et al. HDAC9 overexpression confers invasive and angiogenic potential to triple negative breast cancer cells via modulating microRNA-206. Biochem Biophys Res Commun. 2018;503:1087–1091.
  • Kaluza D, Kroll J, Gesierich S, et al. Histone deacetylase 9 promotes angiogenesis by targeting the antiangiogenic microRNA-17-92 cluster in endothelial cells. Arterioscler Thromb Vasc Biol. 2013;33:533–543.
  • Fang YY, Tan MR, Zhou J, et al. miR-214-3p inhibits epithelial-to-mesenchymal transition and metastasis of endometrial cancer cells by targeting TWIST1. Onco Targets Ther. 2019;12:9449–9458.
  • Chauhan G, Debette S. Genetic risk factors for ischemic and hemorrhagic stroke. Curr Cardiol Rep. 2016;18:124.
  • Malhotra R, Mauer AC, Lino Cardenas CL, et al. HDAC9 is implicated in atherosclerotic aortic calcification and affects vascular smooth muscle cell phenotype. Nat Genet. 2019;51:1580–1587.
  • Arnlov J, Dluzen DF, Nowak C. Atherosclerotic aortic calcification-associated polymorphism in HDAC9 and associations with mortality, cardiovascular disease, and kidney disease. iScience. 2020;23:101253.
  • Ning Y, Ding J, Sun X, et al. HDAC9 deficiency promotes tumor progression by decreasing the CD8(+) dendritic cell infiltration of the tumor microenvironment. J Immunother Cancer. 2020;8:e000529.
  • Han X, Han X, Wang Z, et al. HDAC9 regulates ox-LDL-induced endothelial cell apoptosis by participating in inflammatory reactions. Front Biosci (Landmark Ed). 2016;21:907–917.
  • Wang W, Li Z, Zheng Y, et al. Circulating microRNA-92a level predicts acute coronary syndrome in diabetic patients with coronary heart disease. Lipids Health Dis. 2019;18:22.
  • Liu P, Su J, Song X, et al. miR-92a regulates the expression levels of matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 3 via sirtuin 1 signaling in hydrogen peroxide-induced vascular smooth muscle cells. Mol Med Rep. 2018;17:1041–1048.
  • Dai J, Ma B, Wen X, et al. Upregulation of miR-92a contributes to blocking goblet cell metaplasia by targeting MUC5AC in asthma. J Recept Signal Transduct Res. 2020;40:613–619.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.