821
Views
30
CrossRef citations to date
0
Altmetric
Review Articles

A review of nanocarrier-mediated drug delivery systems for posterior segment eye disease: challenges analysis and recent advances

, , &
Pages 687-702 | Received 11 Oct 2020, Accepted 14 Jan 2021, Published online: 01 Feb 2021

References

  • Bourne RRA, Flaxman SR, Braithwaite T, et al.; Vision Loss Expert Group. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob Health. 2017;5(9):e888–e897.
  • Varela-Fernandez R, Diaz-Tome V, Luaces-Rodriguez A, et al. Drug delivery to the posterior segment of the eye: biopharmaceutic and pharmacokinetic considerations. Pharmaceutics. 2020;12(3):269.
  • Edelhauser HF, Rowe-Rendleman CL, Robinson MR, et al. Ophthalmic drug delivery systems for the treatment of retinal diseases: basic research to clinical applications. Invest Ophthalmol Vis Sci. 2010;51(11):5403–5420.
  • Kaur IP, Kakkar S. Nanotherapy for posterior eye diseases. J Control Release. 2014;193:100–112.
  • Sampata KM, Garg SJ . Complications of intravitreal injections. Curr Opin Ophthalmol. 2010;21:178–183.
  • Suri R, Beg S, Kohli K. Target strategies for drug delivery bypassing ocular barriers. J Drug Deliv Sci Technol. 2020;55:101389.
  • Nayak K, Misra M. A review on recent drug delivery systems for posterior segment of eye. Biomed Pharmacother. 2018;107:1564–1582.
  • Enriquez de Salamanca A, Diebold Y, Calonge M, et al. Chitosan nanoparticles as a potential drug delivery system for the ocular surface: toxicity, uptake mechanism and in vivo tolerance. Invest Ophthalmol Vis Sci. 2006;47(4):1416–1425.
  • Johannsdottir S, Jansook P, Stefansson E, et al. Topical drug delivery to the posterior segment of the eye: dexamethasone concentrations in various eye tissues after topical administration for up to 15 days to rabbits. J Drug Deliv Sci Technol. 2018;45:449–454.
  • Prausnitz MR, Noonan JS. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci. 1998;87(12):1479–1488.
  • Ambati J, Canakis CS, Miller JW, et al. Diffusion of high molecular weight compounds through sclera. Investig Ophthalmol Vis Sci. 2000;41(5):1181–1185.
  • Pitkanen L, Ranta VP, Moilanen H, et al. Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity. Invest Ophthalmol Vis Sci. 2005;46(2):641–646.
  • Thakur A, Kadam RS, Kompella UB. Influence of drug solubility and lipophilicity on transscleral retinal delivery of six corticosteroids. Drug Metab Dispos. 2011;39(5):771–781.
  • Mannermaa E, Reinisalo M, Ranta VP, et al. Filter-cultured ARPE-19 cells as outer blood-retinal barrier model. Eur J Pharm Sci. 2010;40(4):289–296. 11
  • Imperiale JC, Acosta GB, Sosnik A. Polymer-based carriers for ophthalmic drug delivery. J Control Release. 2018;285:106–141.
  • Sugrue MF. The pharmacology of antiglaucoma drugs. Pharmacol Ther. 1989;43(1):91–138.
  • Lakhani P, Patil A, Majumdar S. Recent advances in topical nano drug-delivery systems for the anterior ocular segment. Ther Deliv. 2018;9(2):137–153.
  • Del Amo EM, Rimpela AK, Heikkinen E, et al. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res. 2017;57:134–185.
  • Robinson MR, Lee SS, Kim H, et al. A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide. Exp Eye Res. 2006;82(3):479–487.
  • Li J, Lan B, Li X, et al. Effect of intraocular pressure (IOP) and choroidal circulation on controlled episcleral drug delivery to retina/vitreous. J Control Release. 2016;243:78–85.
  • Amrite AC, Edelhauser HF, Singh SR, et al. Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration. Mol Vis. 2008;14:150–160.
  • Al-Ghananeem AM, Crooks PA. Phase I and phase II ocular metabolic activities and the role of metabolism in ophthalmic prodrug and codrug design and delivery. Molecules. 2007;12(3):373–388.
  • Nakano M, Lockhart CM, Kelly EJ, et al. Ocular cytochrome P450s and transporters: roles in disease and endobiotic and xenobiotic disposition. Drug Metab Rev. 2014;46(3):247–260.
  • Argikar UA, Dumouchel JL, Dunne CE, et al. Ocular non-P450 oxidative, reductive, hydrolytic, and conjugative drug metabolizing enzymes. Drug Metab Rev. 2017;49(3):372–394.
  • Kaur IP, Garg A, Singla AK, et al. Vesicular systems in ocular drug delivery: an overview. Int J Pharm. 2004;269(1):1–14.
  • Verstraelen J, Reichl S. Expression analysis of MDR1, BCRP and MRP3 transporter proteins in different in vitro and ex vivo cornea models for drug absorption studies. Int J Pharm. 2013;441(1-2):765–775.
  • Becker U, Ehrhardt C, Daum N, et al. Expression of ABC-transporters in human corneal tissue and the transformed cell line, HCE-T. J Ocul Pharmacol Ther. 2007;23(2):172–181.
  • Vellonen KS, Hellinen L, Mannermaa E, et al. Expression, activity and pharmacokinetic impact of ocular transporters. Adv Drug Deliv Rev. 2018;126:3–22.
  • Wang Y, Zhou L, Fang L, et al. Multifunctional carboxymethyl chitosan derivatives-layered double hydroxide hybrid nanocomposites for efficient drug delivery to the posterior segment of the eye. Acta Biomater. 2020;104:104–114.
  • Asasutjarit R, Managit C, Phanaksri T, et al. Formulation development and in vitro evaluation of transferrin-conjugated liposomes as a carrier of ganciclovir targeting the retina. Int J Pharm. 2020;577:119084.
  • Martens TF, Remaut K, Deschout H, et al. Coating nanocarriers with hyaluronic acid facilitates intravitreal drug delivery for retinal gene therapy. J Control Release. 2015;202:83–92.
  • Suen WL, Chau Y. Specific uptake of folate-decorated triamcinolone-encapsulating nanoparticles by retinal pigment epithelium cells enhances and prolongs antiangiogenic activity. J Control Release. 2013;167(1):21–28.
  • Cunha-Vaz J. The blood-ocular barriers. Surv Ophthalmol. 1979;23(5):279–296.
  • Freddo TF. A contemporary concept of the blood-aqueous barrier. Prog Retin Eye Res. 2013;32:181–195.
  • Kaur C, Foulds WS, Ling EA. Blood-retinal barrier in hypoxic ischaemic conditions: basic concepts, clinical features and management. Prog Retin Eye Res. 2008;27(6):622–647.
  • Brockhaus L, Goldblum D, Eggenschwiler L, et al. Revisiting systemic treatment of bacterial endophthalmitis: a review of intravitreal penetration of systemic antibiotics. Clin Microbiol Infect. 2019;25(11):1364–1369.
  • Wang Y, Xu X, Gu Y, et al. Recent advance of nanoparticle-based topical drug delivery to the posterior segment of the eye. Expert Opin Drug Deliv. 2018;15(7):687–701.
  • Thakur SS, Barnett NL, Donaldson MJ, et al. Intravitreal drug delivery in retinal disease: are we out of our depth? Expert Opin Drug Deliv. 2014;11(10):1575–1590.
  • Waite D, Wang Y, Jones D, et al. Posterior drug delivery via periocular route: challenges and opportunities. Ther Deliv. 2017;8(8):685–699.
  • Jung JH, Chae JJ, Prausnitz MR. Targeting drug delivery within the suprachoroidal space. Drug Discov Today. 2019;24(8):1654–1659.
  • Hughes PM, Olejnik O, Chang-Lin JE, et al. Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev. 2005;57(14):2010–2032.
  • Djebli N, Khier S, Griguer F, et al. Ocular drug distribution after topical administration: population pharmacokinetic model in rabbits. Eur J Drug Metab Pharmacokinet. 2017;42(1):59–68.
  • Kompella UB, Amrite AC, Pacha Ravi R, et al. Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog Retin Eye Res. 2013;36:172–198.
  • Gao JQ, Lv Q, Li LM, et al. Glioma targeting and blood-brain barrier penetration by dual-targeting doxorubincin liposomes. Biomaterials. 2013;34(22):5628–5639.
  • Sarao V, Veritti D, Boscia F, et al. Intravitreal steroids for the treatment of retinal diseases. Scientif World J. 2014;2014:989501.
  • Shah SS, Denham LV, Elison JR, et al. Drug delivery to the posterior segment of the eye for pharmacologic therapy. Expert Rev Ophthalmol. 2010;15(1):75–93.
  • Elsaid N, Jackson TL, Elsaid Z, et al. PLGA microparticles entrapping chitosan-based nanoparticles for the ocular delivery of ranibizumab. Mol Pharm. 2016;13(9):2923–2940.
  • Jiang P, Chaparro FJ, Cuddington CT, et al. Injectable biodegradable bi-layered capsule for sustained delivery of bevacizumab in treating wet age-related macular degeneration. J Control Release. 2020;320:442–456.
  • Ranta VP, Mannermaa E, Lummepuro K, et al. Barrier analysis of periocular drug delivery to the posterior segment. J Control Release. 2010;148(1):42–48.
  • Ghate D, Brooks W, McCarey BE, et al. Pharmacokinetics of intraocular drug delivery by periocular injections using ocular fluorophotometry. Invest Ophthalmol Vis Sci. 2007;48(5):2230–2237.
  • Shome D, Kalita D, Jain V, et al. Carboplatin loaded polymethylmethacrylate nano-particles in an adjunctive role in retinoblastoma: an animal trial. Indian J Ophthalmol. 2014;62(5):585–589.
  • Jung JH, Chiang B, Grossniklaus HE, et al. Ocular drug delivery targeted by iontophoresis in the suprachoroidal space using a microneedle. J Control Release. 2018;277:14–22.
  • You Q, Sokolov M, Grigartzik L, et al. How nanoparticle physicochemical parameters affect drug delivery to cells in the retina via systemic interactions. Mol Pharm. 2019;16(12):5068–5075.
  • Li J, Xue Y, Tian J, et al. Fluorinated-functionalized hyaluronic acid nanoparticles for enhanced photodynamic therapy of ocular choroidal melanoma by ameliorating hypoxia. Carbohydr Polym. 2020;237:116119.
  • Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother. 2018;103:598–613.
  • Yadav M, Schiavone N, Guzman-Aranguez A, et al. Atorvastatin-loaded solid lipid nanoparticles as eye drops: proposed treatment option for age-related macular degeneration (AMD). Drug Deliv Transl Res. 2020;10(4):919–944.
  • Tabatabaei SN, Derbali RM, Yang C, et al. Co-delivery of miR-181a and melphalan by lipid nanoparticles for treatment of seeded retinoblastoma. J Control Release. 2019;298:177–185.
  • Patel S, Ryals RC, Weller KK, et al. Lipid nanoparticles for delivery of messenger RNA to the back of the eye. J Control Release. 2019;303:91–100.
  • Himawan E, Ekstrom P, Buzgo M, et al. Drug delivery to retinal photoreceptors. Drug Discov Today. 2019;24(8):1637–1643.
  • Doktorovova S, Kovacevic AB, Garcia ML, et al. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: current evidence from in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2016;108:235–252.
  • Bhattacharjee A, Das PJ, Adhikari P, et al. Novel drug delivery systems for ocular therapy: with special reference to liposomal ocular delivery. Eur J Ophthalmol. 2019;29(1):113–126.
  • Agarwal R, Iezhitsa I, Agarwal P, et al. Liposomes in topical ophthalmic drug delivery: an update. Drug Deliv. 2016;23(4):1075–1091.
  • Blazaki S, Pachis K, Tzatzarakis M, et al. Novel liposome aggregate platform (LAP) system for sustained retention of drugs in the posterior ocular segment following intravitreal injection. Int J Pharm. 2020;576:118987.
  • Pachis K, Blazaki S, Tzatzarakis M, et al. Sustained release of intravitreal flurbiprofen from a novel drug-in-liposome-in-hydrogel formulation. Eur J Pharm Sci. 2017;109:324–333.
  • Khalil M, Hashmi U, Riaz R, et al. Chitosan coated liposomes (CCL) containing triamcinolone acetonide for sustained delivery: a potential topical treatment for posterior segment diseases. Int J Biol Macromol. 2020;143:483–491.
  • Cheng T, Li J, Cheng Y, et al. Triamcinolone acetonide-chitosan coated liposomes efficiently treated retinal edema as eye drops. Exp Eye Res. 2019;188:107805.
  • Lai S, Wei Y, Wu Q, et al. Liposomes for effective drug delivery to the ocular posterior chamber. J Nanobiotechnology. 2019;17(1):64.
  • Mu H, Wang Y, Chu Y, et al. Multivesicular liposomes for sustained release of bevacizumab in treating laser-induced choroidal neovascularization. Drug Deliv. 2018;25(1):1372–1383.
  • Zhang R, Qian J, Li X, et al. Treatment of experimental autoimmune uveoretinitis with intravitreal injection of infliximab encapsulated in liposomes. Br J Ophthalmol. 2017;101(12):1731–1738.
  • Lee J, Goh U, Lee HJ, et al. Effective retinal penetration of lipophilic and lipid-conjugated hydrophilic agents delivered by engineered liposomes. Mol Pharm. 2017;14(2):423–430.
  • Platania CBM, Fisichella V, Fidilio A, et al. Topical ocular delivery of TGF-beta1 to the back of the eye: implications in age-related neurodegenerative diseases. Int J Mol Sci. 2017;18(10):2076.
  • Li J, Cheng T, Tian Q, et al. A more efficient ocular delivery system of triamcinolone acetonide as eye drop to the posterior segment of the eye. Drug Deliv. 2019;26(1):188–198.
  • Bulbake U, Doppalapudi S, Kommineni N, et al. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(4):12.
  • Lajunen T, Nurmi R, Kontturi L, et al. Light activated liposomes: functionality and prospects in ocular drug delivery. J Control Release. 2016;244(Pt B):157–166.
  • Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today. 2008;13(3-4):144–151.
  • Nagarwal RC, Kant S, Singh PN, et al. Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release. 2009;136(1):2–13.
  • Pandit J, Sultana Y, Aqil M. Chitosan-coated PLGA nanoparticles of bevacizumab as novel drug delivery to target retina: optimization, characterization, and in vitro toxicity evaluation. Artif Cells Nanomed Biotechnol. 2017;45(7):1397–1407.
  • Chittasupho C, Posritong P, Ariyawong P. Stability, cytotoxicity, and retinal pigment epithelial cell binding of hyaluronic acid-coated PLGA nanoparticles encapsulating lutein. AAPS PharmSciTech. 2018;20(1):4.
  • Li F, Wen Y, Zhang Y, et al. Characterisation of 2-HP-β-cyclodextrin-PLGA nanoparticle complexes for potential use as ocular drug delivery vehicles. Artif Cells Nanomed Biotechnol. 2019;47(1):4097–4108.
  • Luo L, Yang J, Oh Y, et al. Controlled release of corticosteroid with biodegradable nanoparticles for treating experimental autoimmune uveitis. J Control Release. 2019;296:68–80.
  • Qiu F, Meng T, Chen Q, et al. Fenofibrate-loaded biodegradable nanoparticles for the treatment of experimental diabetic retinopathy and neovascular age-related macular degeneration. Mol Pharm. 2019;16(5):1958–1970.
  • Wang Y, Liu CH, Ji T, et al. Intravenous treatment of choroidal neovascularization by photo-targeted nanoparticles. Nat Commun. 2019;10(1):804.
  • Meng T, Kulkarni V, Simmers R, et al. Therapeutic implications of nanomedicine for ocular drug delivery. Drug Discov Today. 2019;24(8):1524–1538.
  • Singh Y, Meher JG, Raval K, et al. Nanoemulsion: concepts, development and applications in drug delivery. J Control Release. 2017;252:28–49.
  • Daull P, Lallemand F, Garrigue JS. Benefits of cetalkonium chloride cationic oil-in-water nanoemulsions for topical ophthalmic drug delivery. J Pharm Pharmacol. 2014;66(4):531–541.
  • Hegde RR, Verma A, Ghosh A. Microemulsion: new insights into the ocular drug delivery. ISRN Pharm. 2013;2013:826798.
  • Jiao J. Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Adv Drug Deliv Rev. 2008;60(15):1663–1673.
  • Singh M, Bharadwaj S, Lee KE, et al. Therapeutic nanoemulsions in ophthalmic drug administration: concept in formulations and characterization techniques for ocular drug delivery. J Control Release. 2020;328:895–916.
  • Ge Y, Zhang A, Sun R, et al. Penetratin-modified lutein nanoemulsion in-situ gel for the treatment of age-related macular degeneration. Expert Opin Drug Deliv. 2020;17(4):603–619.
  • Hagigit T, Abdulrazik M, Orucov F, et al. Topical and intravitreous administration of cationic nanoemulsions to deliver antisense oligonucleotides directed towards VEGF KDR receptors to the eye. J Control Release. 2010;145(3):297–305.
  • Mandal A, Bisht R, Rupenthal ID, et al. Polymeric micelles for ocular drug delivery: from structural frameworks to recent preclinical studies. J Control Release. 2017;248:96–116.
  • Pepic I, Lovric J, Filipovic-Grcic J. Polymeric micelles in ocular drug delivery: rationale, strategies and challenges. Chem Biochem Eng Q. 2012;26(4):365–377.
  • Sai N, Dong X, Huang P, et al. A novel gel-forming solution based on PEG-DSPE/solutol HS 15 mixed micelles and gellan gum for ophthalmic delivery of curcumin. Molecules. 2019;25(1):81.
  • Lin S, Ge C, Wang D, et al. Overcoming the anatomical and physiological barriers in topical eye surface medication using a peptide-decorated polymeric micelle. ACS Appl Mater Interfaces. 2019;11(43):39603–39612.
  • Han H, Yin Q, Tang X, et al. Development of mucoadhesive cationic polypeptide micelles for sustained cabozantinib release and inhibition of corneal neovascularization. J Mater Chem B. 2020;8(23):5143–5154.
  • Grimaudo MA, Pescina S, Padula C, et al. Topical application of polymeric nanomicelles in ophthalmology: a review on research efforts for the noninvasive delivery of ocular therapeutics. Expert Opin Drug Deliv. 2019;16(4):397–413.
  • Xu X, Sun L, Zhou L, et al. Functional chitosan oligosaccharide nanomicelles for topical ocular drug delivery of dexamethasone. Carbohydr Polym. 2020;227:115356.
  • Mandal A, Cholkar K, Khurana V, et al. Topical formulation of self-assembled antiviral prodrug nanomicelles for targeted retinal delivery. Mol Pharm. 2017;14(6):2056–2069.
  • Grimaudo MA, Pescina S, Padula C, et al. Poloxamer 407/TPGS mixed micelles as promising carriers for cyclosporine ocular delivery. Mol Pharm. 2018;15(2):571–584.
  • Mandal A, Gote V, Pal D, et al. Ocular pharmacokinetics of a topical ophthalmic nanomicellar solution of cyclosporine (Cequa®) for Dry Eye Disease . Pharm Res. 2019;36(2):36.
  • Rodríguez Villanueva J, Navarro MG, Rodríguez Villanueva L. Dendrimers as a promising tool in ocular therapeutics: latest advances and perspectives. Int J Pharm. 2016;511(1):359–366.
  • Lyu Z, Ding L, Huang AY-T, et al. Poly(amidoamine) dendrimers: covalent and supramolecular synthesis. Mater Today Chem. 2019;13:34–48.
  • Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev. 2005;57(15):2215–2237.
  • Iezzi R, Guru BR, Glybina IV, et al. Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration. Biomaterials. 2012;33(3):979–988.
  • Yang X, Wang L, Li L, et al. A novel dendrimer-based complex co-modified with cyclic RGD hexapeptide and penetratin for noninvasive targeting and penetration of the ocular posterior segment. Drug Deliv. 2019;26(1):989–1001.
  • Yavuz B, Pehlivan SB, Vural I, et al. In vitro/in vivo evaluation of dexamethasone-PAMAM dendrimer complexes for retinal drug delivery. J Pharm Sci. 2015;104(11):3814–3823.
  • Tai L, Liu C, Jiang K, et al. Noninvasive delivery of oligonucleotide by penetratin-modified polyplexes to inhibit protein expression of intraocular tumor. Nanomedicine. 2017;13(6):2091–2100.
  • Wu LP, Ficker M, Christensen JB, et al. Dendrimers in medicine: therapeutic concepts and pharmaceutical challenges. Bioconjug Chem. 2015;26(7):1198–1211.
  • Chou SJ, Yang P, Ban Q, et al. Dual supramolecular nanoparticle vectors enable CRISPR/Cas9-mediated knockin of retinoschisin 1 gene-A potential nonviral therapeutic solution for X-linked juvenile retinoschisis. Adv Sci (Weinh). 2020;7(10):1903432.
  • Wang Y, Shahi PK, Xie R, et al. A pH-responsive silica-metal-organic framework hybrid nanoparticle for the delivery of hydrophilic drugs, nucleic acids, and CRISPR-Cas9 genome-editing machineries. J Control Release. 2020;324:194–203.
  • Jiang K, Hu Y, Gao X, et al. Octopus-like flexible vector for noninvasive intraocular delivery of short interfering nucleic acids. Nano Lett. 2019;19(9):6410–6417.
  • Mishra G, Dash B, Pandey S. Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials. Appl Clay Sci. 2018;153:172–186.
  • Gu Y, Xu C, Wang Y, et al. Multifunctional nanocomposites based on liposomes and layered double hydroxides conjugated with glycylsarcosine for efficient topical drug delivery to the posterior segment of the eye. Mol Pharm. 2019;16(7):2845–2857.
  • Cabrera FJ, Wang DC, Reddy K, et al. Challenges and opportunities for drug delivery to the posterior of the eye. Drug Discov Today. 2019;24(8):1679–1684.
  • Rodrigues GA, Lutz D, Shen J, et al. Topical drug delivery to the posterior segment of the eye: addressing the challenge of preclinical to clinical translation. Pharm Res. 2018;35(12):245.
  • Mann BK, Stirland DL, Lee HK, et al. Ocular translational science: a review of development steps and paths. Adv Drug Deliv Rev. 2018;126:195–203.
  • Baum JL, Barza M, Shushan D, et al. Concentration of gentamicin in experimental corneal ulcers. Topical vs subconjunctival therapy. Arch Ophthalmol. 1974;92(4):315–317.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.