171
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

MicroRNA-185 activates PI3K/AKT signalling pathway to alleviate dopaminergic neuron damage via targeting IGF1 in Parkinson’s disease

, , , , , , , , & show all
Pages 875-883 | Received 02 Sep 2020, Accepted 02 Feb 2021, Published online: 23 Mar 2021

References

  • Liang H, Ding B, Liang J, et al. MicroRNA-10a inhibits A30P alpha-synuclein aggregation and toxicity by targeting proapoptotic protein BCL2L11. Int J Clin Exp Pathol. 2018;11(2):624–633.
  • Xu T, Lu X, Peng D, et al. Ultrasonic stimulation of the brain to enhance the release of dopamine – a potential novel treatment for Parkinson’s disease. Ultrason Sonochem. 2020;63:104955.
  • Metzger JM, Matsoff HN, Zinnen AD, et al. Post mortem evaluation of inflammation, oxidative stress, and PPARγ activation in a nonhuman primate model of cardiac sympathetic neurodegeneration. PLoS One. 2020;15(1):e0226999.
  • Buhidma Y, Rukavina K, Chaudhuri KR, et al. Potential of animal models for advancing the understanding and treatment of pain in Parkinson’s disease. NPJ Parkinsons Dis. 2020;6(1):1.
  • Hu X, et al. Topological changes in white matter connectivity network in patients with Parkinson’s disease and depression. Brain Imaging Behav. 2020;14(6):2559–2568.
  • Petkus AJ, Filoteo JV, Schiehser DM, et al. Mild cognitive impairment, psychiatric symptoms, and executive functioning in patients with Parkinson’s disease. Int J Geriatr Psychiatry. 2020;35(4):396–404.
  • Hamadjida A, Sid-Otmane L, Kwan C, et al. The highly selective mGlu2 receptor positive allosteric modulator LY-487,379 alleviates l-DOPA-induced dyskinesia in the 6-OHDA-lesioned rat model of Parkinson’s disease. Eur J Neurosci. 2020;51(12):2412–2422.
  • Cressatti M, Juwara L, Galindez JM, et al. Salivary microR-153 and microR-223 levels as potential diagnostic biomarkers of idiopathic Parkinson’s disease. Mov Disord. 2020;35(3):468–477.
  • Wang R, Yang Y, Wang H, et al. MiR-29c protects against inflammation and apoptosis in Parkinson’s disease model in vivo and in vitro by targeting SP1. Clin Exp Pharmacol Physiol. 2020;47(3):372–382.
  • Zhang J, et al. miR-let-7a suppresses alpha-Synuclein-induced microglia inflammation through targeting STAT3 in Parkinson’s disease. Biochem Biophys Res Commun. 2019;519(4):740–746.
  • Rahimmi A, et al. miR-185 and SEPT5 genes may contribute to Parkinson’s disease pathophysiology. Oxid Med Cell Longev. 2019;2019:5019815. DOI:10.1155/2019/5019815.
  • Wen Z, Zhang J, Tang P, et al. Overexpression of miR-185 inhibits autophagy and apoptosis of dopaminergic neurons by regulating the AMPK/mTOR signaling pathway in Parkinson’s disease. Mol Med Rep. 2018;17(1):131–137.
  • Wu Y, Jiang Y, Liu Q, et al. lncRNA H19 promotes matrix mineralization through up-regulating IGF1 by sponging miR-185-5p in osteoblasts. BMC Mol Cell Biol. 2019;20(1):48.
  • Bianchi VE, Locatelli V, Rizzi L. Neurotrophic and neuroregenerative effects of GH/IGF1. Int J Mol Sci. 2017;18(11):1–25.
  • Suzuki K, Suzuki S, Ishii Y, et al. Serum insulin-like growth factor-1 levels in neurodegenerative diseases. Acta Neurol Scand. 2019;139(6):563–567.
  • Xiao Y, Cen L, Mo M, et al. Association of IGF1 gene polymorphism with Parkinson’s disease in a Han Chinese population. J Gene Med. 2017;19(4):e2949.
  • Dyer AH, Vahdatpour C, Sanfeliu A, et al. The role of insulin-like growth factor 1 (IGF-1) in brain development, maturation and neuroplasticity. Neuroscience. 2016;325:89–99.
  • Salama RM, Abdel-Latif GA, Abbas SS, et al. Neuroprotective effect of crocin against rotenone-induced Parkinson’s disease in rats: interplay between PI3K/Akt/mTOR signaling pathway and enhanced expression of miRNA-7 and miRNA-221. Neuropharmacology. 2020;164:107900.
  • Jiang D, Peng Y. The protective effect of decoction of Rehmanniae via PI3K/Akt/mTOR pathway in MPP+-induced Parkinson’s disease model cells. J Recept Signal Transduct Res. 2021;41(1):74–84.
  • Domanska-Senderowska D, et al. MicroRNA profile and adaptive response to exercise training: a review. Int J Sports Med. 2019;40(4):227–235.
  • Cai L, Tu L, Li T, et al. Downregulation of lncRNA UCA1 ameliorates the damage of dopaminergic neurons, reduces oxidative stress and inflammation in Parkinson’s disease through the inhibition of the PI3K/Akt signaling pathway. Int Immunopharmacol. 2019;75:105734.
  • Guttler C, Altschüler J, Tanev K, et al. Levodopa-induced dyskinesia are mediated by cortical gamma oscillations in experimental Parkinsonism. Mov Disord. 2020.DOI:10.1002/mds.28403.
  • Siddu A, David LS, Lauinger N, et al. Beneficial effects of cysteamine in Thy1-α-Syn mice and induced pluripotent stem cells with a SNCA gene triplication. Neurobiol Dis. 2020;145:105042.
  • Lebsanft HB, Kovar KA, Schmidt WJ. 3,4-Methylenedioxymethamphetamine and naloxone in rat rotational behaviour and open field. Eur J Pharmacol. 2005;516(1):34–39.
  • Zhou H, Niu L, Xia X, et al. Wearable ultrasound improves motor function in an mptp mouse model of Parkinson’s disease. IEEE Trans Biomed Eng. 2019;66(11):3006–3013.
  • Kavanagh E, Burguillos MA, Carrillo-Jimenez A, et al. Deletion of caspase-8 in mouse myeloid cells blocks microglia pro-inflammatory activation and confers protection in MPTP neurodegeneration model. Aging. 2015;7(9):673–689.
  • Lu M, Tan L, Zhou X-G, et al. Secoisolariciresinol diglucoside delays the progression of aging-related diseases and extends the lifespan of Caenorhabditis elegans via DAF-16 and HSF-1. Oxid Med Cell Longev. 2020;2020:1293935.
  • Wu Q, Yi X. Down-regulation of long noncoding RNA MALAT1 protects hippocampal neurons against excessive autophagy and apoptosis via the PI3K/Akt signaling pathway in rats with epilepsy. J Mol Neurosci. 2018;65(2):234–245.
  • Wei J-L, Wu C-J, Chen J-J, et al. LncRNA NEAT1 promotes the progression of sepsis-induced myocardial cell injury by sponging miR-144-3p. Eur Rev Med Pharmacol Sci. 2020;24(2):851–861.
  • Wang W, Ge L, Xu X-J, et al. LncRNA NEAT1 promotes endometrial cancer cell proliferation, migration and invasion by regulating the miR-144-3p/EZH2 axis. Radiol Oncol. 2019;53(4):434–442.
  • Ding H, Huang Z, Chen M, et al. Identification of a panel of five serum miRNAs as a biomarker for Parkinson’s disease. Parkinsonism Relat Disord. 2016;22:68–73.
  • Sandhof CA, Hoppe SO, Druffel-Augustin S, et al. Reducing INS-IGF1 signaling protects against non-cell autonomous vesicle rupture caused by SNCA spreading. Autophagy. 2020;16(5):878–899.
  • Wu H, Li H, Shi Z, et al. Association between NMD3 and symptoms of Parkinson’s disease in Chinese patients. BMC Neurol. 2020;20(1):19.
  • Tabibkhooei A, Izadpanahi M, Arab A, et al. Profiling of novel circulating microRNAs as a non-invasive biomarker in diagnosis and follow-up of high and low-grade gliomas. Clin Neurol Neurosurg. 2020;190:105652.
  • Li SH, Su SY, Liu JL. Differential regulation of microRNAs in patients with ischemic stroke. Curr Neurovasc Res. 2015;12(3):214–221.
  • Croci L, Barili V, Chia D, et al. Local insulin-like growth factor I expression is essential for Purkinje neuron survival at birth. Cell Death Differ. 2011;18(1):48–59.
  • Bernhard FP, Heinzel S, Binder G, et al. Insulin-like growth factor 1 (IGF-1) in Parkinson’s disease: potential as trait-, progression- and prediction marker and confounding factors. PLoS One. 2016;11(3):e0150552.
  • Huang N, Zhang Y, Chen M, et al. Resveratrol delays 6-hydroxydopamine-induced apoptosis by activating the PI3K/Akt signaling pathway. Exp Gerontol. 2019;124:110653.
  • Hu M, Li F, Wang W. Vitexin protects dopaminergic neurons in MPTP-induced Parkinson’s disease through PI3K/Akt signaling pathway. Drug Des Devel Ther. 2018;12:565–573.
  • Ferensztajn-Rochowiak E, Kaczmarek M, Wójcicka M, et al. Glutamate-related antibodies and peripheral insulin-like growth factor in bipolar disorder and lithium prophylaxis. Neuropsychobiology. 2019;77(1):49–56.
  • Messingham KAN, Aust S, Helfenberger J, et al. Autoantibodies to collagen XVII are present in Parkinson’s disease and localize to tyrosine-hydroxylase positive neurons. J Invest Dermatol. 2016;136(3):721–723.
  • Haji Ghasem Kashani M, Ghorbanian MT, Hosseinpour L. Transplantation of deprenyl-induced tyrosine hydroxylase-positive cells improves 6-OHDA-lesion rat model of Parkinson’s disease: behavioral and immunohistochemical evaluation. Cell J. 2013;15(1):55–64.
  • Kim J, Jeong Y-H, Lee E-J, et al. Suppression of neuroinflammation by matrix metalloproteinase-8 inhibitor in aged normal and LRRK2 G2019S Parkinson’s disease model mice challenged with lipopolysaccharide. Biochem Biophys Res Commun. 2017;493(2):879–886.
  • Ojha S, Javed H, Azimullah S, et al. Neuroprotective potential of ferulic acid in the rotenone model of Parkinson’s disease. Drug Des Devel Ther. 2015;9:5499–5510.
  • Fuentes-Santamaria V, et al. Neuroglial involvement in abnormal glutamate transport in the cochlear nuclei of the Igf1 (-/-) mouse. Front Cell Neurosci. 2019;13:67.
  • Sadagurski M, Cheng Z, Rozzo A, et al. IRS2 increases mitochondrial dysfunction and oxidative stress in a mouse model of Huntington disease. J Clin Invest. 2011;121(10):4070–4081.
  • Li Y, Zhou J, Zhang O, et al. Bone marrow mesenchymal stem cells-derived exosomal microRNA-185 represses ventricular remolding of mice with myocardial infarction by inhibiting SOCS2. Int Immunopharmacol. 2020;80:106156.
  • Zou L, Chai J, Gao Y, et al. Down-regulated PLAC8 promotes hepatocellular carcinoma cell proliferation by enhancing PI3K/Akt/GSK3β/Wnt/β-catenin signaling. Biomed Pharmacother. 2016;84:139–146.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.