137
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Pressure-driven accumulation of Mn-doped mesoporous silica nanoparticles containing 5-aza-2-deoxycytidine and docetaxel at tumours with a dry cupping device

, , , , , , & show all
Pages 900-909 | Received 06 Oct 2020, Accepted 15 Feb 2021, Published online: 03 Mar 2021

References

  • Zaritski A, Castillo-Ecija H, Kumarasamy M, et al. Selective accumulation of galactomannan amphiphilic nanomaterials in pediatric solid tumor xenografts correlates with GLUT1 gene expression. ACS Appl Mater Interfaces. 2019;11(42):38483–38496.
  • Perry JL, Reuter KG, Luft JC, et al. Mediating passive tumor accumulation through particle size, tumor type, and location. Nano Lett. 2017;17(5):2879–2886.
  • Hu K, Miao L, Goodwin TJ, et al. Quercetin remodels the tumor microenvironment to improve the permeation, retention, and antitumor effects of nanoparticles. ACS Nano. 2017;11(5):4916–4925.
  • Zhang B, Jiang T, Tuo Y, et al. Captopril improves tumor nanomedicine delivery by increasing tumor blood perfusion and enlarging endothelial gaps in tumor blood vessels. Cancer Lett. 2017;410:12–19.
  • Wang B, Zhai Y, Shi J, et al. Simultaneously overcome tumor vascular endothelium and extracellular matrix barriers via a non-destructive size-controlled nanomedicine. J Control Release. 2017;268:225–236.
  • Lu Y, Palanikumar L, Choi ES, et al. Hypersound-enhanced intracellular delivery of drug-loaded mesoporous silica nanoparticles in a non-endosomal pathway. ACS Appl Mater Interfaces. 2019;11(22):19734–19742.
  • Beguin E, Gray MD, Logan KA, et al. Magnetic microbubble mediated chemo-sonodynamic therapy using a combined magnetic-acoustic device. J Control Release. 2020;317:23–33.
  • Liang Z, Yu H, Lai J, et al. An easy-to-prepare microshotgun for efficient transmembrane delivery by powering nanoparticles. J Control Release. 2020;321:119–131.
  • Huis In T, Veld RV, Ritsma L, et al. Photodynamic cancer therapy enhances accumulation of nanoparticles in tumor-associated myeloid cells. J Control Release. 2020;320:19–31.
  • Cao Y, Ma E, Cestellos-Blanco S, et al. Nontoxic nanopore electroporation for effective intracellular delivery of biological macromolecules. Proc Natl Acad Sci U S A. 2019;116(16):7899–7904.
  • Boopathy AV, Mandal A, Kulp DW, et al. Enhancing humoral immunity via sustained-release implantable microneedle patch vaccination. Proc Natl Acad Sci U S A. 2019;116(33):16473–16478.
  • Mazinani SA, Stuart JA, Yan H. Microwave-assisted delivery of an anticancer drug to cancer cells. RSC Adv. 2018;8(55):31465–31470.
  • Banerjee A, Chen R, Arafin S, et al. Intestinal iontophoresis from mucoadhesive patches: a strategy for oral delivery. J Control Release. 2019;297:71–78.
  • Miller MA, Chandra R, Cuccarese MF, et al. Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular bursts. Sci Transl Med. 2017;9:eaal0225.
  • Stapleton S, Dunne M, Milosevic M, et al. Radiation and heat improve the delivery and efficacy of nanotherapeutics by modulating intratumoral fluid dynamics. ACS Nano. 2018;12(8):7583–7600.
  • Matsumoto Y, Nichols JW, Toh K, et al. Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery. Nat Nanotechnol. 2016;11(6):533–538.
  • Wang D, Fu J, Shi Y, et al. The modulation of tumor vessel permeability by thalidomide and its impacts on different types of targeted drug delivery systems in a sarcoma mouse model. J Control Release. 2016;238:186–196.
  • Curry FE. Drug delivery: redefining tumour vascular barriers. Nat Nanotechnol. 2016;11(6):494–496.
  • Sowier A, Pyda P, Sowier S, et al. Postoperative negative-pressure drainage through a PEG tube can prevent pancreatic fistula after pancreatoduodenectomy. Hepatobiliary Pancreat Dis Int. 2020;19(1):85–87.
  • Gietzelt C, von Goscinski C, Lemke J, et al. Dynamics of structural reversal in Bruch's membrane opening-based morphometrics after glaucoma drainage device surgery. Graefes Arch Clin Exp Ophthalmol. 2020;258(6):1227–1236.
  • Wu SM, Wang XD, Zhang XJ, et al. The application of vacuum negative pressure cupping combing with pressure bandage in the treatment of deep pressure ulcers. Asian J Surg. 2020;43(8):858–859.
  • Miao Y, Xu J, Liu Y, et al. Comparative evaluation of the transdermal permeation effectiveness of Fu's cupping therapy on eight different types of model drugs. Curr Drug Deliv. 2020.DOI:10.2174/1567201817999201116192238
  • Gao C, Wang M, He L, et al. Alternations of hemodynamic parameters during Chinese cupping therapy assessed by an embedded near-infrared spectroscopy monitor. Biomed Opt Express. 2019;10(1):196–203.
  • Li T, Li Y, Lin Y, et al. Significant and sustaining elevation of blood oxygen induced by Chinese cupping therapy as assessed by near-infrared spectroscopy. Biomed Opt Express. 2017;8(1):223–229.
  • Lee A, Djamgoz MBA. Triple negative breast cancer: emerging therapeutic modalities and novel combination therapies. Cancer Treat Rev. 2018;62:110–122.
  • Hurtubise A, Momparler RL. Evaluation of antineoplastic action of 5-aza-2′-deoxycytidine (Dacogen) and docetaxel (Taxotere) on human breast, lung and prostate carcinoma cell lines. Anticancer Drugs. 2004;15(2):161–167.
  • Bates PJ, Reyes-Reyes EM, Malik MT, et al. G-quadruplex oligonucleotide AS1411 as a cancer-targeting agent: uses and mechanisms. Biochim Biophys Acta Gen Subj. 2017;1861(5 Pt B):1414–1428.
  • Wang L, Niu M, Zheng C, et al. A core–shell nanoplatform for synergistic enhanced sonodynamic therapy of hypoxic tumor via cascaded strategy. Adv Healthcare Mater. 2018;7(22):1800819.
  • Zhao F, Zhou J, Su X, et al. A smart responsive dual aptamers-targeted bubble-generating nanosystem for cancer triplex therapy and ultrasound imaging. Small. 2017;13(20):1603990.
  • Hetzke T, Bowen AM, Vogel M, et al. Binding of tetracycline to its aptamer determined by 2D-correlated Mn2+ hyperfine spectroscopy. J Magn Reson. 2019;303:105–114.
  • Yu L, Chen Y, Wu M, et al. "Manganese extraction" strategy enables tumor-sensitive biodegradability and theranostics of nanoparticles. J Am Chem Soc. 2016;138(31):9881–9894.
  • Wang L, Huo M, Chen Y, et al. Iron-engineered mesoporous silica nanocatalyst with biodegradable and catalytic framework for tumor-specific therapy. Biomaterials. 2018;163:1–13.
  • Hao Y, Zheng C, Wang L, et al. Tumor acidity-activatable manganese phosphate nanoplatform for amplification of photodynamic cancer therapy and magnetic resonance imaging. Acta Biomater. 2017;62:293–305.
  • Hao Y, Wang L, Zhao Y, et al. Targeted imaging and chemo-phototherapy of brain cancer by a multifunctional drug delivery system. Macromol Biosci. 2015;15(11):1571–1585.
  • Li X, Zhao W, Liu X, et al. Mesoporous manganese silicate coated silica nanoparticles as multi-stimuli-responsive T1-MRI contrast agents and drug delivery carriers. Acta Biomater. 2016;30:378–387.
  • Maleki A, Kettiger H, Schoubben A, et al. Mesoporous silica materials: from physico-chemical properties to enhanced dissolution of poorly water-soluble drugs. J Control Release. 2017;262:329–347.
  • Li S, Cheng C, Sagaltchik A, et al. Hydrogen evolution reaction catalysts: metal-organic precursor-derived mesoporous carbon spheres with homogeneously distributed molybdenum carbide/nitride nanoparticles for efficient hydrogen evolution in alkaline media. Adv Funct Mater. 2019;29(3):1970013.
  • Wu F, Li R, Yang M, et al. Gelatinases-stimuli nanoparticles encapsulating 5-fluorouridine and 5-aza-2′-deoxycytidine enhance the sensitivity of gastric cancer cells to chemical therapeutics. Cancer Lett. 2015;363(1):7–16.
  • Stapleton S, Milosevic M, Tannock IF, et al. The intra-tumoral relationship between microcirculation, interstitial fluid pressure and liposome accumulation. J Control Release. 2015;211:163–170.
  • Wang C, Zhang Y, Yang M, et al. Bloodletting puncture and cupping as an adjuvant therapy for breast cancer-related lymphedema in female adults: a non-randomized controlled pragmatic trial. J Tradit Chin Med Sci. 2018;5(3):255–263.
  • Pawar S, Shevalkar G, Vavia P. Glucosamine-anchored doxorubicin-loaded targeted nano-niosomes: pharmacokinetic, toxicity and pharmacodynamic evaluation. J Drug Target. 2016;24(8):730–743.
  • Manjappa AS, Kumbhar PS, Khopade PS, et al. Mixed micelles as nano polymer therapeutics of docetaxel: increased in vitro cytotoxicity and decreased in vivo toxicity. Curr Drug Deliv. 2018;15(4):564–575.
  • Pal PK, Samii A, Calne DB. Manganese neurotoxicity: a review of clinical features, imaging and pathology. Neurotoxicology. 1999;20(2–3):227–238.
  • Salehi F, Carrier G, Normandin L, et al. Assessment of bioaccumulation and neurotoxicity in rats with portacaval anastomosis and exposed to manganese phosphate: a pilot study. Inhal Toxicol. 2001;13(12):1151–1163.
  • Dorman DC, McManus BE, Marshall MW, et al. Old age and gender influence the pharmacokinetics of inhaled manganese sulfate and manganese phosphate in rats. Toxicol Appl Pharmacol. 2004;197(2):113–124.
  • Yildirimer L, Thanh NT, Loizidou M, et al. Toxicology and clinical potential of nanoparticles. Nano Today. 2011;6(6):585–607.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.