624
Views
14
CrossRef citations to date
0
Altmetric
Review Articles

Immunotoxins and nanobody-based immunotoxins: review and update

, ORCID Icon, & ORCID Icon
Pages 848-862 | Received 20 Dec 2020, Accepted 20 Feb 2021, Published online: 08 Mar 2021

References

  • Coulson A, Levy A, Gossell-Williams M. Monoclonal antibodies in cancer therapy: mechanisms, successes and limitations. West Indian Med J. 2014;63(6):650–654.
  • Ludwig DL, Pereira DS, Zhu Z, et al. Monoclonal antibody therapeutics and apoptosis. Oncogene. 2003;22(56):9097–9106.
  • Jain M, Chauhan S, Singh A, et al. Penetratin improves tumor retention of single-chain antibodies: a novel step toward optimization of radioimmunotherapy of solid tumors. Cancer Res. 2005;65(17):7840–7846.
  • Chames P, Van Regenmortel M, Weiss E, et al. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol. 2009;157(2):220–233.
  • Bell A, Wang ZJ, Arbabi-Ghahroudi M, et al. Differential tumor-targeting abilities of three single-domain antibody formats. Cancer Lett. 2010;289(1):81–90.
  • Bates A, Power CA. David vs. goliath: the structure, function, and clinical prospects of antibody fragments. Antibodies. 2019;8(2):28.
  • Akbari B, Farajnia S, Zarghami N, et al. Design, expression and evaluation of a novel humanized single chain antibody against epidermal growth factor receptor (EGFR). Protein Expr Purif. 2016;127:8–15.
  • Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–448.
  • Van Audenhove I, Gettemans J. Nanobodies as versatile tools to understand, diagnose, visualize and treat cancer. EBioMedicine. 2016;8:40–48.
  • Jovčevska I, Muyldermans S. The therapeutic potential of nanobodies. BioDrugs. 2020;34(1):11–26.
  • Pastan I, Hassan R, FitzGerald DJ, et al. Immunotoxin treatment of cancer. Annu Rev Med. 2007;58:221–237.
  • Reslan L, Dalle S, Dumontet C. Understanding and circumventing resistance to anticancer monoclonal antibodies. MAbs. 2009;1(3):222–229.
  • Becker N, Benhar I. Antibody-based immunotoxins for the treatment of cancer. Antibodies. 2012;1(1):39–69.
  • Simon N, FitzGerald D. Immunotoxin therapies for the treatment of epidermal growth factor receptor-dependent cancers. Toxins. 2016;8(5):137.
  • Kunwar S, Prados MD, Chang SM, et al. Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the Cintredekin Besudotox Intraparenchymal Study Group. J Clin Oncol. 2007;25(7):837–844.
  • Antignani A, Ho ECH, Bilotta MT, et al. Targeting receptors on cancer cells with protein toxins. Biomolecules. 2020;10(9):1331.
  • Leshem Y, Pastan I. Pseudomonas exotoxin immunotoxins and anti-tumor immunity: from observations at the patient’s bedside to evaluation in preclinical models. Toxins. 2019;11(1):20.
  • Cohen KA, Liu T, Bissonette R, et al. DAB389EGF fusion protein therapy of refractory glioblastoma multiforme. Curr Pharm Biotechnol. 2003;4(1):39–49.
  • Zielinski R, Lyakhov I, Jacobs A, et al. Affitoxin–a novel recombinant, HER2-specific, anti-cancer agent for targeted therapy of HER2-positive tumors. J Immunother. 2009;32(8):817.
  • Martin-Killias P, Stefan N, Rothschild S, et al. A novel fusion toxin derived from an EpCAM-specific designed ankyrin repeat protein has potent antitumor activity. Clin Cancer Res. 2011;17(1):100–110.
  • Weidle UH, Tiefenthaler G, Schiller C, et al. Prospects of bacterial and plant protein-based immunotoxins for treatment of cancer. Cancer Genomics Proteomics. 2014;11(1):25–38.
  • Alewine C, Hassan R, Pastan I. Advances in anticancer immunotoxin therapy. Oncologist. 2015;20(2):176–185.
  • Fuchs H, Weng A, Gilabert-Oriol R. Augmenting the efficacy of immunotoxins and other targeted protein toxins by endosomal escape enhancers. Toxins. 2016;8(7):200.
  • Grawunder U, Barth S. Next generation antibody drug conjugates (ADC) and immunotoxins. Amsterdam (The Netherlands): Springer; 2017.
  • Lin Y, Zhou Q, Lin Y, et al. Mesoporous carbon-enriched palladium nanostructures with redox activity for enzyme-free electrochemical immunoassay of brevetoxin B. Anal Chim Acta. 2015;887:67–74.
  • Lai W, Zhuang J, Tang D. Novel colorimetric immunoassay for ultrasensitive monitoring of brevetoxin B based on enzyme-controlled chemical conversion of sulfite to sulfate. J Agric Food Chem. 2015;63(7):1982–1989.
  • Lai W, Wei Q, Zhuang J, et al. Fenton reaction-based colorimetric immunoassay for sensitive detection of brevetoxin B. Biosens Bioelectron. 2016;80:249–256.
  • Lin Y, Zhou Q, Tang D, et al. Signal-on photoelectrochemical immunoassay for aflatoxin B1 based on enzymatic product-etching MnO2 nanosheets for dissociation of carbon dots. Anal Chem. 2017;89(10):5637–5645.
  • Lin Y, Zhou Q, Tang D, et al. Silver nanolabels-assisted ion-exchange reaction with CdTe quantum dots mediated exciton trapping for signal-on photoelectrochemical immunoassay of mycotoxins. Anal Chem. 2016;88(15):7858–7866.
  • Ghetie V, Vitetta ES. Chemical construction of immunotoxins. Mol Biotechnol. 2001;18(3):251–268.
  • Akbari B, Farajnia S, Ahdi Khosroshahi S, et al. Immunotoxins in cancer therapy: review and update. Int Rev Immunol. 2017;36(4):207–219.
  • Di Paolo C, Willuda J, Kubetzko S, et al. A recombinant immunotoxin derived from a humanized epithelial cell adhesion molecule-specific single-chain antibody fragment has potent and selective antitumor activity. Clin Cancer Res. 2003;9(7):2837–2848.
  • Allahyari H, Heidari S, Ghamgosha M, et al. Immunotoxin: a new tool for cancer therapy. Tumour Biol. 2017;39(2):1010428317692226.
  • Akbari B, Farajnia S, Zarghami N, et al. Construction, expression, and activity of a novel immunotoxin comprising a humanized antiepidermal growth factor receptor scFv and modified Pseudomonas aeruginosa exotoxin A. Anticancer Drugs. 2017;28(3):263–270.
  • Ahmadzadeh V, Tofigh R, Farajnia S, et al. The central role for microenvironment in B-cell malignancies: recent insights into synergistic effects of its therapeutic targeting and anti-CD20 antibodies. Int Rev Immunol. 2016;35(2):136–155.
  • Jen EY, Gao X, Li L, et al. FDA approval summary: tagraxofusp-erzs for treatment of blastic plasmacytoid dendritic cell neoplasm. Clin Cancer Res. 2020;26(3):532–536.
  • Kaminetzky D, Hymes KB. Denileukin diftitox for the treatment of cutaneous T-cell lymphoma. Biologics. 2008;2(4):717–724.
  • Frankel AE, Zuckero SL, Mankin AA, et al. Anti-CD3 recombinant diphtheria immunotoxin therapy of cutaneous T cell lymphoma. Curr Drug Targets. 2009;10(2):104–109.
  • Bachanova V, Frankel AE, Cao Q, et al. Phase I study of a bispecific ligand-directed toxin targeting CD22 and CD19 (DT2219) for refractory B-cell malignancies. Clin Cancer Res. 2015;21(6):1267–1272.
  • Frankel A, Liu JS, Rizzieri D, et al. Phase I clinical study of diphtheria toxin-interleukin 3 fusion protein in patients with acute myeloid leukemia and myelodysplasia. Leuk Lymphoma. 2008;49(3):543–553.
  • Padron E, Painter JS, Kunigal S, et al. GM-CSF-dependent pSTAT5 sensitivity is a feature with therapeutic potential in chronic myelomonocytic leukemia. Blood. 2013;121(25):5068–5077.
  • Rainov NG, Heidecke V. Clinical development of experimental therapies for malignant glioma. Sultan Qaboos Univ Med J. 2011;11(1):5–28.
  • Dhillon S. Moxetumomab pasudotox: first global approval. Drugs. 2018;78(16):1763–1767.
  • Heiss JD, Jamshidi A, Shah S, et al. Phase I trial of convection-enhanced delivery of IL13-Pseudomonas toxin in children with diffuse intrinsic pontine glioma. J Neurosurg Pediatr. 2018;23(3):333–342.
  • Zhu S, Liu Y, Wang PC, et al. Recombinant immunotoxin therapy of glioblastoma: smart design, key findings, and specific challenges. Biomed Res Int. 2017;2017:7929286.
  • Puri RK, Leland P, Obiri NI, et al. An improved circularly permuted interleukin 4-toxin is highly cytotoxic to human renal cell carcinoma cells. Introduction of gamma c chain in RCC cells does not improve sensitivity. Cell Immunol. 1996;171(1):80–86.
  • Mazor R, Kaplan G, Park D, et al. Rational design of low immunogenic anti CD25 recombinant immunotoxin for T cell malignancies by elimination of T cell epitopes in PE38. Cell Immunol. 2017;313:59–66.
  • Huang Z-Q, Buchsbaum DJ. Monoclonal antibodies in the treatment of pancreatic cancer. Immunotherapy. 2009;1(2):223–229.
  • Hassan R, Alewine C, Mian I, et al. Phase 1 study of the immunotoxin LMB-100 in patients with mesothelioma and other solid tumors expressing mesothelin. Cancer. 2020;126(22):4936–4947.
  • Wayne AS, Kreitman RJ, Findley HW, et al. Anti-CD22 immunotoxin RFB4(dsFv)-PE38 (BL22) for CD22-positive hematologic malignancies of childhood: preclinical studies and phase I clinical trial. Clin Cancer Res. 2010;16(6):1894–1903.
  • Kreitman RJ, Hassan R, Fitzgerald DJ, et al. Phase I trial of continuous infusion anti-mesothelin recombinant immunotoxin SS1P. Clin Cancer Res. 2009;15(16):5274–5279.
  • Baeuerle PA, Gires O. EpCAM (CD326) finding its role in cancer. Br J Cancer. 2007;96(3):417–423.
  • Gupta P, Han S-Y, Holgado-Madruga M, et al. Development of an EGFRvIII specific recombinant antibody. BMC Biotechnol. 2010;10:72–72.
  • Andersson Y, Engebraaten O, Juell S, et al. Phase I trial of EpCAM-targeting immunotoxin MOC31PE, alone and in combination with cyclosporin. Br J Cancer. 2015;113(11):1548–1555.
  • Groth C, van Groningen LFJ, Matos TR, et al. Phase I/II trial of a combination of anti-CD3/CD7 immunotoxins for steroid-refractory acute graft-versus-host disease. Biol Blood Marrow Transplant. 2019;25(4):712–719.
  • Herrera L, Bostrom B, Gore L, et al. A phase 1 study of combotox in pediatric patients with refractory B-lineage acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2009;31(12):936–941.
  • Li M, Liu Z-S, Liu X-L, et al. Clinical targeting recombinant immunotoxins for cancer therapy. Onco Targets Ther. 2017;10:3645–3665.
  • Borghaei H, Alpaugh K, Hedlund G, et al. Phase I dose escalation, pharmacokinetic and pharmacodynamic study of naptumomab estafenatox alone in patients with advanced cancer and with docetaxel in patients with advanced non-small-cell lung cancer. J Clin Oncol. 2009;27(25):4116–4123.
  • Alewine C, Ahmad M, Peer CJ, et al. Phase I/II study of the mesothelin-targeted immunotoxin LMB-100 with nab-paclitaxel for patients with advanced pancreatic adenocarcinoma. Clin Cancer Res. 2020;26(4):828–836.
  • Cao L, Li Q, Tong Z, et al. HER2-specific immunotoxins constructed based on single-domain antibodies and the improved toxin PE24X7. Int J Pharm. 2020;574:118939.
  • Yang X, Kessler E, Su LJ, et al. Diphtheria toxin-epidermal growth factor fusion protein DAB389EGF for the treatment of bladder cancer. Clin Cancer Res. 2013;19(1):148–157.
  • Mathew M, Zaineb KC, Verma RS. GM-CSF-DFF40: a novel humanized immunotoxin induces apoptosis in acute myeloid leukemia cells. Apoptosis. 2013;18(7):882–895.
  • Weaver M, Laske DW. Transferrin receptor ligand-targeted toxin conjugate (Tf-CRM107) for therapy of malignant gliomas. J Neurooncol. 2003;65(1):3–13.
  • Duvic M, Talpur R. Optimizing denileukin diftitox (Ontak) therapy. Future Oncol. 2008;4(4):457–469.
  • Syed YY. Tagraxofusp: first global approval. Drugs. 2019;79(5):579–583.
  • Rand RW, Kreitman RJ, Patronas N, et al. Intratumoral administration of recombinant circularly permuted interleukin-4-Pseudomonas exotoxin in patients with high-grade glioma. Clin Cancer Res. 2000;6(6):2157–2165.
  • Kunwar S, Chang S, Westphal M, et al. Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma†. Neuro Oncol. 2010;12(8):871–881.
  • Nygren PA. Alternative binding proteins: affibody binding proteins developed from a small three-helix bundle scaffold. FEBS J. 2008;275(11):2668–2676.
  • Binz HK, Amstutz P, Plückthun A. Engineering novel binding proteins from nonimmunoglobulin domains. Nat Biotechnol. 2005;23(10):1257–1268.
  • Zielinski R, Lyakhov I, Jacobs A, et al. Affitoxin-a novel recombinant, HER2-specific, anticancer agent for targeted therapy of HER2-positive tumors. J Immunother. 2009;32(8):817–825.
  • Zielinski R, Lyakhov I, Hassan M, et al. HER2-affitoxin: a potent therapeutic agent for the treatment of HER2-overexpressing tumors. Clin Cancer Res. 2011;17(15):5071–5081.
  • Plückthun A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu Rev Pharmacol Toxicol. 2015;55(1):489–511.
  • Polito L, Djemil A, Bortolotti M. Plant toxin-based immunotoxins for cancer therapy: a short overview. Biomedicines. 2016;4(2):12.
  • Weber A, Zimmermann C, Mausberg AK, et al. Pseudomonas aeruginosa and its bacterial components influence the cytokine response in thymocytes and splenocytes. Infect Immun. 2016;84(5):1413–1423.
  • Borowiec M, Gorzkiewicz M, Grzesik J, et al. Towards engineering novel PE-based immunotoxins by targeting them to the nucleus. Toxins. 2016;8(11):321.
  • Pastan I. Immunotoxins containing Pseudomonas exotoxin A: a short history. Cancer Immunol Immunother. 2003;52(5):338–341.
  • Weldon JE, Pastan I. A guide to taming a toxin-recombinant immunotoxins constructed from Pseudomonas exotoxin A for the treatment of cancer. FEBS J. 2011;278(23):4683–4700.
  • Nowakowska-Gołacka J, Sominka H, Sowa-Rogozińska N, et al. Toxins utilize the endoplasmic reticulum-associated protein degradation pathway in their intoxication process. Int J Mil Sci. 2019;20(6):1307.
  • Walczak CP, Bernardi KM, Tsai B. Endoplasmic reticulum-dependent redox reactions control endoplasmic reticulum-associated degradation and pathogen entry. Antioxid Redox Signal. 2012;16(8):809–818.
  • Wedekind JE, Trame CB, Dorywalska M, et al. Refined crystallographic structure of Pseudomonas aeruginosa exotoxin A and its implications for the molecular mechanism of toxicity. J Mol Biol. 2001;314(4):823–837.
  • Morlon-Guyot J, Mere J, Bonhoure A, et al. Processing of Pseudomonas aeruginosa exotoxin A is dispensable for cell intoxication. Infect Immun. 2009;77(7):3090–3099.
  • Holmes RK. Biology and molecular epidemiology of diphtheria toxin and the tox gene. J Infect Dis. 2000;181(1):S156–S167.
  • Wolff C, Wattiez R, Ruysschaert J-M, et al. Characterization of diphtheria toxin’s catalytic domain interaction with lipid membranes. Biochim Biophys Acta. 2004;1661(2):166–177.
  • Murphy JR. Mechanism of diphtheria toxin catalytic domain delivery to the eukaryotic cell cytosol and the cellular factors that directly participate in the process. Toxins. 2011;3(3):294–308.
  • Deng Q, Barbieri JT. Molecular mechanisms of the cytotoxicity of ADP-ribosylating toxins. Annu Rev Microbiol. 2008;62:271–288.
  • Shapira A, Benhar I. Toxin-based therapeutic approaches. Toxins. 2010;2(11):2519–2583.
  • Vinante F, Rigo A. Heparin-binding epidermal growth factor-like growth factor/diphtheria toxin receptor in normal and neoplastic hematopoiesis. Toxins. 2013;5(6):1180–1201.
  • Braun E, Sauter D. Furin-mediated protein processing in infectious diseases and cancer. Clin Transl Immunology. 2019;8(8):e1073.
  • Rodnin MV, Kyrychenko A, Kienker P, et al. Conformational switching of the diphtheria toxin T domain. J Mol Biol. 2010;402(1):1–7.
  • Wang J, London E. The membrane topography of the diphtheria toxin T domain linked to the A chain reveals a transient transmembrane hairpin and potential translocation mechanisms. Biochemistry. 2009;48(43):10446–10456.
  • Weldon JE, Xiang L, Chertov O, et al. A protease-resistant immunotoxin against CD22 with greatly increased activity against CLL and diminished animal toxicity. Blood. 2009;113(16):3792–3800.
  • Lord JM, Roberts LM, Robertus JD. Ricin: structure, mode of action, and some current applications. FASEB J. 1994;8(2):201–208.
  • Meneguelli de Souza LC, Carvalho LPd, Araújo JS, et al. Cell toxicity by ricin and elucidation of mechanism of Ricin inactivation. Int J Biol Macromol. 2018;113:821–828.
  • Schnell R, Borchmann P, Staak JO, et al. Clinical evaluation of ricin A-chain immunotoxins in patients with Hodgkin’s lymphoma. Ann Oncol. 2003;14(5):729–736.
  • Messmann RA, Vitetta ES, Headlee D, et al. A phase I study of combination therapy with immunotoxins IgG-HD37-deglycosylated ricin A chain (dgA) and IgG-RFB4-dgA (combotox) in patients with refractory CD19(+), CD22(+) B cell lymphoma. Clin Cancer Res. 2000;6(4):1302–1313.
  • Zhou Y, Li X-P, Kahn JN, et al. Functional assays for measuring the catalytic activity of ribosome inactivating proteins. Toxins. 2018;10(6):240.
  • Shi WW, Mak AN, Wong KB, et al. Structures and ribosomal interaction of ribosome-inactivating proteins. Molecules. 2016;21(11):1588.
  • Olsnes S, Kozlov JV. Ricin. Toxicon. 2001;39(11):1723–1728.
  • Botelho FD, dos Santos MC, Gonçalves AS, et al. Ligand-based virtual screening, molecular docking, molecular dynamics, and MM-PBSA calculations towards the identification of potential novel ricin inhibitors. Toxins. 2020;12(12):746.
  • Lord MJ, Jolliffe NA, Marsden CJ, et al. Ricin. Mechanisms of cytotoxicity. Toxicol Rev. 2003;22(1):53–64.
  • Sandvig K, Kavaliauskiene S, Skotland T. Clathrin-independent endocytosis: an increasing degree of complexity. Histochem Cell Biol. 2018;150(2):107–118.
  • Spooner RA, Lord JM. Ricin trafficking in cells. Toxins. 2015;7(1):49–65.
  • Stirpe F, Wawrzynczak E, Brown A, et al. Selective cytotoxic activity of immunotoxins composed of a monoclonal anti-Thy 1.1 antibody and the ribosome-inactivating proteins bryodin and momordin. Br J Cancer. 1988;58(5):558–561.
  • Puri M, Kaur I, Perugini MA, et al. Ribosome-inactivating proteins: current status and biomedical applications. Drug Discov Today. 2012;17(13–14):774–783.
  • Rosenblum MG, Kohr WA, Beattie KL, et al. Amino acid sequence analysis, gene construction, cloning, and expression of gelonin, a toxin derived from Gelonium multiflorum. J Interferon Cytokine Res. 1995;15(6):547–555.
  • Li Z, Qu Y, Li H, et al. Truncations of gelonin lead to a reduction in its cytotoxicity. Toxicology. 2007;231(2–3):129–136.
  • Kreitman RJ, Stetler-Stevenson M, Jaffe ES, et al. Complete remissions of adult T-cell leukemia with anti-CD25 recombinant immunotoxin LMB-2 and chemotherapy to block immunogenicity. Clin Cancer Res. 2016;22(2):310–318.
  • Hassan R, Miller AC, Sharon E, et al. Major cancer regressions in mesothelioma after treatment with an anti-mesothelin immunotoxin and immune suppression. Sci Transl Med. 2013;5(208):208ra147.
  • Manning ML, Mason-Osann E, Onda M, et al. Bortezomib reduces pre-existing antibodies to recombinant immunotoxins in mice. J Immunol. 2015;194(4):1695–1701.
  • Onda M, Ghoreschi K, Steward-Tharp S, et al. Tofacitinib suppresses antibody responses to protein therapeutics in murine hosts. J Immunol. 2014;193(1):48–55.
  • Meister S, Schubert U, Neubert K, et al. Extensive immunoglobulin production sensitizes myeloma cells for proteasome inhibition. Cancer Res. 2007;67(4):1783–1792.
  • Mossoba ME, Onda M, Taylor J, et al. Pentostatin plus cyclophosphamide safely and effectively prevents immunotoxin immunogenicity in murine hosts. Clin Cancer Res. 2011;17(11):3697–3705.
  • Hwang WYK, Foote J. Immunogenicity of engineered antibodies. Methods. 2005;36(1):3–10.
  • Harding FA, Stickler MM, Razo J, et al. The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs. 2010;2(3):256–265.
  • Mazor R, Onda M, Park D, et al. Dual B- and T-cell de-immunization of recombinant immunotoxin targeting mesothelin with high cytotoxic activity. Oncotarget. 2016;7(21):29916–29926.
  • Mazor R, Pastan I. Immunogenicity of immunotoxins containing Pseudomonas exotoxin A: causes, consequences, and mitigation [Review]. Front Immunol. 2020;11(1261):1261.
  • Nagata S, Pastan I. Removal of B cell epitopes as a practical approach for reducing the immunogenicity of foreign protein-based therapeutics. Adv Drug Deliv Rev. 2009;61(11):977–985.
  • Rostaing-Capaillon O, Casellas P. Parameters affecting tumor-specific delivery of anti-CD5 antibody-ricin A chain immunotoxins in vivo. Cancer Res. 1990;50(10):2909–2916.
  • Foxwell BMJ, Blakey DC, Brown ANF, et al. The preparation of deglycosylated ricin by recombination of glycosidase-treated A- and B-chains: effects of deglycosylation on toxicity and in vivo distribution. Biochimica et Biophysica Acta (BBA) - General Subjects. 1987;923(1):59–65.
  • Barta SK, Zou Y, Schindler J, et al. Synergy of sequential administration of a deglycosylated ricin A chain-containing combined anti-CD19 and anti-CD22 immunotoxin (Combotox) and cytarabine in a murine model of advanced acute lymphoblastic leukemia. Leuk Lymphoma. 2012;53(10):1999–2003.
  • Dälken B, Giesübel U, Knauer S, et al. Targeted induction of apoptosis by chimeric granzyme B fusion proteins carrying antibody and growth factor domains for cell recognition. Cell Death Differ. 2006;13(4):576–585.
  • Liu Y, Cheung LH, Thorpe P, et al. Mechanistic studies of a novel human fusion toxin composed of vascular endothelial growth factor (VEGF) 121 and the serine protease granzyme B: directed apoptotic events in vascular endothelial cells. Mol Cancer Ther. 2003;2(10):949–959.
  • Rousalova I, Krepela E. Granzyme B-induced apoptosis in cancer cells and its regulation (review). Int J Oncol. 2010;37(6):1361–1378.
  • Erickson HA, Jund MD, Pennell CA. Cytotoxicity of human RNase-based immunotoxins requires cytosolic access and resistance to ribonuclease inhibition. Protein Eng Des Sel. 2006;19(1):37–45.
  • Tsutsumi Y, Onda M, Nagata S, et al. Site-specific chemical modification with polyethylene glycol of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) improves antitumor activity and reduces animal toxicity and immunogenicity. Proc Natl Acad Sci USA. 2000;97(15):8548–8553.
  • Filpula D, Yang K, Basu A, et al. Releasable PEGylation of mesothelin targeted immunotoxin SS1P achieves single dosage complete regression of a human carcinoma in mice. Bioconjug Chem. 2007;18(3):773–784.
  • Wang H, Dai J, Li B, et al. Expression, purification, and characterization of an immunotoxin containing a humanized anti-CD25 single-chain fragment variable antibody fused to a modified truncated Pseudomonas exotoxin A. Protein Expr Purif. 2008;58(1):140–147.
  • Rose T, Moreau JL, Eckenberg R, et al. Structural analysis and modeling of a synthetic interleukin-2 mimetic and its interleukin-2Rbeta2 receptor. J Biol Chem. 2003;278(25):22868–22876.
  • Haag P, Viktorsson K, Lindberg ML, et al. Deficient activation of Bak and Bax confers resistance to gemtuzumab ozogamicin-induced apoptotic cell death in AML. Exp Hematol. 2009;37(6):755–766.
  • Linenberger ML. CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: progress in understanding cytotoxicity and potential mechanisms of drug resistance. Leukemia. 2005;19(2):176–182.
  • Walter RB, Raden BW, Hong TC, et al. Multidrug resistance protein attenuates gemtuzumab ozogamicin-induced cytotoxicity in acute myeloid leukemia cells. Blood. 2003;102(4):1466–1473.
  • McGrath MS, Rosenblum MG, Philips MR, et al. Immunotoxin resistance in multidrug resistant cells. Cancer Res. 2003;63(1):72–79.
  • Weldon J, Xiang L, Fitzgerald D, et al. Improved design of Pseudomonas exotoxin A-based immunotoxins. Mol Cancer Therap. 2007;6(11):A73.
  • Pastan I, Onda M, Weldon J, et al. Immunotoxins with decreased immunogenicity and improved activity. Leukemia & Lymphoma. 2011;52(2):87–90.
  • Reiter Y, Pastan I. Recombinant Fv immunotoxins and Fv fragments as novel agents for cancer therapy and diagnosis. Trends Biotechnol. 1998;16(12):513–520.
  • Brekke OH, Sandlie I. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat Rev Drug Discov. 2003;2(1):52–62.
  • Chiu ML, Goulet DR, Teplyakov A, et al. Antibody structure and function: the basis for engineering therapeutics. Antibodies. 2019;8(4):55.
  • Ren R, Cai G, Yu Z, et al. Metal-polydopamine framework: an innovative signal-generation tag for colorimetric immunoassay. Anal Chem. 2018;90(18):11099–11105.
  • Li L, Guo W, Lin Y, et al. Facile and feasible conductometric immunoanalytical assay for alpha-fetoprotein using platinum-functionalized graphitic carbon nitride nanosheets. Anal Methods. 2018;10(40):4886–4893.
  • Huang L, Chen J, Yu Z, et al. Self-powered temperature sensor with Seebeck Effect transduction for photothermal-thermoelectric coupled immunoassay. Anal Chem. 2020;92(3):2809–2814.
  • Nguyen VK, Hamers R, Wyns L, et al. Camel heavy-chain antibodies: diverse germline V(H)H and specific mechanisms enlarge the antigen-binding repertoire. Embo J. 2000;19(5):921–930.
  • Muyldermans S, Baral TN, Retamozzo VC, et al. Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol. 2009;128(1–3):178–183.
  • Wesolowski J, Alzogaray V, Reyelt J, et al. Single domain antibodies: promising experimental and therapeutic tools in infection and immunity. Med Microbiol Immunol. 2009;198(3):157–174.
  • Vu KB, Ghahroudi MA, Wyns L, et al. Comparison of llama VH sequences from conventional and heavy chain antibodies. Mol Immunol. 1997;34(16–17):1121–1131.
  • Luo Z, Qi Q, Zhang L, et al. Branched Polyethylenimine-Modified Upconversion Nanohybrid-Mediated Photoelectrochemical immunoassay with synergistic effect of dual-purpose copper ions. Anal Chem. 2019;91(6):4149–4156.
  • Chakravarty R, Goel S, Cai W. Nanobody: the “magic bullet” for molecular imaging? Theranostics. 2014;4(4):386–398.
  • Muyldermans S. Single domain camel antibodies: current status. J Biotechnol. 2001;74(4):277–302.
  • Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82:775–797.
  • Siontorou CG. Nanobodies as novel agents for disease diagnosis and therapy. Int J Nanomedicine. 2013;8:4215–4227.
  • Roovers RC, van Dongen GAMS, van Bergen En Henegouwen PMP. Nanobodies in therapeutic applications. Curr Opin Mol Ther. 2007;9(4):327–335.
  • Harmsen MM, De Haard HJ. Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol. 2007;77(1):13–22.
  • Hu Y, Liu C, Muyldermans S. Nanobody-based delivery systems for diagnosis and targeted tumor therapy. Front Immunol. 2017;8:1442–1442.
  • Sharifi J, Khirehgesh MR, Safari F, et al. EGFR and anti-EGFR nanobodies: review and update. J Drug Targeting. 2020:1–16.DOI:10.1080/1061186x.2020.1853756.
  • Arezumand R, Alibakhshi A, Ranjbari J, et al. Nanobodies as novel agents for targeting angiogenesis in solid cancers [review]. Front Immunol. 2017;8(1746):1746.
  • Baral TN, Magez S, Stijlemans B, et al. Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor. Nat Med. 2006;12(5):580–584.
  • Behdani M, Zeinali S, Karimipour M, et al. Development of VEGFR2-specific nanobody Pseudomonas exotoxin A conjugated to provide efficient inhibition of tumor cell growth. N Biotechnol. 2013;30(2):205–209.
  • Mirzaee M, Jalali-Javaran M, Moieni A, et al. Expression of VGRNb-PE immunotoxin in transplastomic lettuce (Lactuca sativa L.). Plant Mol Biol. 2018;97(1–2):103–112.
  • Tang J, Li J, Zhu X, et al. Novel CD7-specific nanobody-based immunotoxins potently enhanced apoptosis of CD7-positive malignant cells. Oncotarget. 2016;7(23):34070–34083.
  • Yu Y, Li J, Zhu X, et al. Humanized CD7 nanobody-based immunotoxins exhibit promising anti-T-cell acute lymphoblastic leukemia potential. Int J Nanomedicine. 2017;12:1969–1983.
  • Li T, Qi S, Unger M, et al. Immuno-targeting the multifunctional CD38 using nanobody. Sci Rep. 2016;6:27055.
  • Bachran C, Schröder M, Conrad L, et al. The activity of myeloid cell-specific VHH immunotoxins is target-, epitope-, subset- and organ dependent. Sci Rep. 2017;7(1):17916.
  • Geoghegan EM, Zhang H, Desai PJ, et al. Antiviral activity of a single-domain antibody immunotoxin binding to glycoprotein D of herpes simplex virus 2. Antimicrob Agents Chemother. 2015;59(1):527–535.
  • Deng C, Xiong J, Gu X, et al. Novel recombinant immunotoxin of EGFR specific nanobody fused with cucurmosin, construction and antitumor efficiency in vitro. Oncotarget. 2017;8(24):38568–38580.
  • Pirzer T, Becher KS, Rieker M, et al. Generation of potent anti-HER1/2 immunotoxins by protein ligation using split inteins. ACS Chem Biol. 2018;13(8):2058–2066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.