174
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Hyaluronic acid prodrug micelles for tumour therapy

, & ORCID Icon
Pages 22-30 | Received 09 Feb 2021, Accepted 15 Apr 2021, Published online: 14 Oct 2021

References

  • Cheng XF, Lu XF, Gou JH, et al. Interventional therapy combined with immune checkpoint inhibitors: emerging opportunities for cancer treatment in the era of immunotherapy. Cancer Treat Rev. 2019;74:49–60.
  • Cai J, Fu JR, Li RR, et al. A potential carrier for anti-tumor targeted delivery-hyaluronic acid nanoparticles. Carbohydr Polym. 2019;208:356–364.
  • Luo ZJ, Dai Y, Gao HL. Development and application of hyaluronic acid in tumor targeting drug delivery. Acta Pharm Sin B. 2019;09:1099–1112.
  • Khan RA, Yang XY, Du XY, et al. Chondroitin sulfate derived theranostic and therapeutic nanocarriers for tumor-targeted drug delivery. Carbohydr Polym. 2020;233:115837.
  • Nagla AK, Karen K. Role of targeted therapy and immune checkpoint blockers in advanced non-small cell lung cancer: a review. Oncologist. 2019;24(9):1270–1284.
  • Arpicco S, Milla P, Stella B, et al. Hyaluronic acid conjugates as vectors for the active targeting of drugs, genes and nanocomposites in cancer treatment. Molecules. 2014;19(3):3193–3230.
  • Bagalkot V, Lee IH, Yu MK, et al. A combined chemoimmunotherapy approach using a plasmid-doxorubicin complex. Mol Pharm. 2009;6(3):1019–1028.
  • Delia P, Sansotta G, Pontoriero A, et al. Clinical evaluation of low-molecular-weight hyaluronic acid-based treatment on onset of acute side effects in women receiving adjuvant radiotherapy after cervical surgery: a randomized clinical trial. Oncol Res Treat. 2019;42(4):217–223.
  • De Stefano I, Battaglia A, Zannoni GF, et al. Hyaluronic acid–paclitaxel: effects of intraperitoneal administration against CD44(+) human ovarian cancer xenografts. Cancer Chemother Pharm. 2010;68(1):107–116.
  • Gettinger SN, Choi J, Mani N, et al. A dormant TIL phenotype defines non-small cell lung carcinomas sensitive to immune checkpoint blockers. Nat Commun. 2018;9(1):3196.
  • Golshani R, Lopez L, Estrella V, et al. Hyaluronic acid synthase-1 expression regulates bladder cancer growth, invasion, and angiogenesis through CD44. Cancer Res. 2008;68(2):483–491.
  • Gotov O, Battogtokh G, Shin D, et al. Hyaluronic acid-coated cisplatin conjugated gold nanoparticles for combined cancer treatment. J Ind Eng Chem. 2018;65:236–243.
  • Lee SJ, Ghosh SC, Han HD, et al. Metronomic activity of CD44-targeted hyaluronic acid-paclitaxel in ovarian carcinoma. Clin Cancer Res. 2012;18(15):4114–4121.
  • Lee T, Lim E-K, Lee J, et al. Efficient CD44-targeted magnetic resonance imaging (MRI) of breast cancer cells using hyaluronic acid (HA)-modified MnFe2O4 nanocrystals. Nanoscale Res Lett. 2013;8(1):149.
  • Rothan HA, Ambikabothy J, Ramasamy TS, et al. A preliminary study in search of potential peptide candidates for a combinational therapy with cancer chemotherapy drug. Int J Pept Res Ther. 2019;25(1):115–122.
  • Safdar MH, Hussain Z, Abourehab MAS, et al. New developments and clinical transition of hyaluronic acid-based nanotherapeutics for treatment of cancer: reversing multidrug resistance, tumour-specific targetability and improved anticancer efficacy. Artif Cells Nanomed Biotechnol. 2018;46(8):1967–1980.
  • Sanmamed MF, Chester C, Melero I, et al. Defining the optimal murine models to investigate immune checkpoint blockers and their combination with other immunotherapies. Ann Oncol. 2016;27(7):1190–1198.
  • Serri C, Quagliariello V, Iaffaioli RV, et al. Combination therapy for the treatment of pancreatic cancer through hyaluronic acid-decorated nanoparticles loaded with quercetin and gemcitabine: a preliminary in vitro study. J Cell Physiol. 2019;234(4):4959–4969.
  • Kogan G, Soltes L, Stern R, et al. Hyaluronic acid a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett. 2006;29(1):17–25.
  • Shi XL, Li Y, Zhao LM, et al. Delivery of MTH1 inhibitor (TH287) and MDR1 siRNA via hyaluronic acid-based mesoporous silica nanoparticles for oral cancers treatment. Colloids Surf B. 2018;173:599–606.
  • Silva MNRda, Mendes A, Martins JRM, et al. Prospective evaluation of chondroitin sulfate, heparan sulfate and hyaluronic acid in prostate cancer. Int Braz J Urol. 2018;44(6):1139–1146.
  • Sun R, Champiat S, Dercle L, et al. Baseline lymphopenia should not be used as exclusion criteria in early clinical trials investigating immune checkpoint blockers (PD-1/PD-L1 inhibitors). Eur J Cancer. 2017;84:202–211.
  • Shi J, Kantoff PW, Wooster R, et al. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2016;17(1):20–37.
  • Qin SY, Zhang AQ, Cheng SX, et al. Drug self-delivery systems for cancer therapy. Biomaterials. 2017;112:234–247.
  • Fu CP, Li HL, Li NN, et al. Conjugating an anticancer drug onto thiolated hyaluronic acid by acid liable hydrazone linkage for its gelation and dual stimuli-response release. Carbohydr Polym. 2015;128:163–170.
  • Jacques B, Yves F, Jean-Loup RL. Use of monocytes derived cells, antigens and antibodies for optimal induction of immunotherapeutic efficiency. Pediatr Pol. 2006;68(3):424–426.
  • Xiao H, Chen JF, Zhang ZX. Influence of deposition temperature on the structure of Si3N4 thin film prepared by MWECR-PECVD. Plasma Sci Tech. 2004;6(5):2485–2488.
  • Yang XQ, Iyer AK, Singh A, et al. Cluster of differentiation 44 targeted hyaluronic acid based nanoparticles for MDR1 siRNA delivery to overcome drug resistance in ovarian cancer. Pharm Res-DORDR. 2014;32(6):2097–2109.
  • Jackson DS, Kellgren JH. Hyaluronic acid in Heberden’s nodes. Ann Rheum Dis. 1957;16(2):238–240.
  • Fernandez-Piñeiro I, Pensado A, Badiola I, et al. Development and characterisation of chondroitin sulfate- and hyaluronic acid-incorporated sorbitan ester nanoparticles as gene delivery systems. Eur J Pharm Biopharm. 2018;125:85–94.
  • Wang L, Wang Y, Jin Q, et al. Biomimic pH/reduction dual-sensitive reversibly cross-linked hyaluronic acid prodrug micelles for targeted intracellular drug delivery. Polymer. 2015;76:237–244.
  • Misra S, Heldin P, Hascall VC, et al. Hyaluronan-CD44 interactions as potential targets for cancer therapy. Febs J. 2011;278(9):1429–1443.
  • Saravanakumar G, Deepagan VG, Jayakumar R, et al. Hyaluronic acid-based conjugates for tumor-targeted drug delivery and imaging. J Biomed Nanotechnol. 2014;10(1):17–31.
  • Zhong Y, Goltsche K, Cheng L, et al. Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts in vivo. Biomaterials. 2016;84:250–261.
  • Gao Z, Li YJ, Zhang Y, et al. CD44-targeted Cu (II) delivery 2D nanoplatform for sensitized disulfiram chemotherapy to triple-negative breast cancer. Nanoscale. 2020;12:8139–8146.
  • Platt VM, Szoka FC. Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm. 2008;5(4):474–486.
  • Lee JY, Chung SJ, Cho HJ, et al. Iodinated hyaluronic acid oligomer-based nanoassemblies for tumor-targeted drug delivery and cancer imaging. Biomaterials. 2016;85:218–231.
  • Zhang X, Zhao M, Cao N, et al. Construction of a tumor microenvironment pH-responsive cleavable PEGylated hyaluronic acid nano-drug delivery system for colorectal cancer treatment. Biomater Sci. 2020;8:1885–1896.
  • Lu B, Xiao F, Wang Z, et al. Redox-sensitive hyaluronic acid polymer prodrug nanoparticles for enhancing intracellular drug self-delivery and targeted cancer therapy. ACS Biomater Sci Eng. 2020;6:4106–4115.
  • Dheer D, Gupta R, Singh D, et al. Hyaluronic acid-tacrolimus bioconjugate: synthesis, characterization and pharmacokinetic investigation of an acid-responsive macromolecular prodrug. ACS Appl Bio Mater. 2019;2(11):4728–4739.
  • Auzenne E, Ghosh SC, Khodadadian M, et al. Hyaluronic acid- paclitaxel: antitumor efficacy against CD44(+) human ovarian carcinoma xenografts. Neoplasia. 2007;9(6):479–486.
  • Leonelli F, La Bella A, Migneco L, et al. Design, synthesis and applications of hyaluronic acid–paclitaxel bioconjugates. Molecules. 2008;13(2):360–378.
  • Chen YJ, Peng FJ, Song XD, et al. Conjugation of paclitaxel to C-6 hexanediamine-modified hyaluronic acid for targeted drug delivery to enhance antitumor efficacy. Carbohydr Polym. 2018;181:150–158.
  • Jin X, Asghar S, Zhang M, et al. N-acetylcysteine modified hyaluronic acid–paclitaxel conjugate for efficient oral chemotherapy through mucosal bioadhesion ability. Colloids Surf B. 2018;172:655–664.
  • Wang W, Li M, Zhang Z, et al. Design, synthesis and evaluation of multi-functional tLyP-1-hyaluronic acid-paclitaxel conjugate endowed with broad anticancer scope. Carbohydr Polym. 2017;156:97–107.
  • Campisi Monica, Renier Davide. ONCOFID™-P a hyaluronic acid paclitaxel conjugate for the treatment of refractory bladder cancer and peritoneal carcinosis. CBC. 2011;7(1):27–32.
  • Yin T, Wang Y, Chu X, et al. Free adriamycin-loaded pH/reduction dual-responsive hyaluronic acid-adriamycin prodrug micelles for efficient cancer therapy. ACS Appl Mater Interfaces. 2018;10:35693–35704.
  • Gao F, Zhang C, Qiu WX, et al. PD-1 blockade for improving the antitumor efficiency of polymer–doxorubicin nanoprodrug. Small. 2018;14(37):1802403.
  • Abd Elwakil MM, Mabrouk MT, Helmy MW, et al. Inhalable lactoferrin–chondroitin nanocomposites for combined delivery of doxorubicin and ellagic acid to lung carcinoma. Nanomedicine. 2018;13:2015–2035.
  • Ma BX, Zhuang WH, Wang YN, et al. pH-sensitive doxorubicin-conjugated prodrug micelles with charge-conversion for cancer therapy. Acta Biomater. 2018;70:186–196.
  • Wang L, Tian B, Zhang J, et al. Coordinated pH/redox dual-sensitive and hepatoma-targeted multifunctional polymeric micelle system for stimuli-triggered doxorubicin release: synthesis, characterization and in vitro evaluation. Int J Pharm. 2016;501(1–2):221–235.
  • Yin Y, Fu C, Li M, et al. A pH-sensitive hyaluronic acid prodrug modified with lactoferrin for glioma dual-targeted treatment. Mater Sci Eng C-Bio S. 2016;67:159–169.
  • Liao J, Zheng H, Fei Z, et al. Tumor-targeting and pH-responsive nanoparticles from hyaluronic acid for the enhanced delivery of doxorubicin. Int J Biol Macromol. 2018;113:737–747.
  • Lin LH, Chen CW, Zhu YQ. Synthesis and cytotoxicity of quercetin/hyaluronic acid containing ether block segment. Colloid Surf A. 2020;586:124230.
  • Zhang L. Quercetin inhibits human breast cancer cell proliferation and induces apoptosis via Bcl-2 and Bax regulation. Mol Med Rep. 2012;5:1453–1456.
  • Youn HS, Jeong JC, Jeong YS, et al. Quercetin potentiates apoptosis by inhibiting nuclear factor-kappaB signaling in H460 lung cancer cells. Biol Pharm Bull. 2013;36(6):944–951.
  • Pang X, Lu Z, Du H, et al. Hyaluronic acid-quercetin conjugate micelles: synthesis, characterization, in vitro and in vivo evaluation. Colloids Surf B. 2014;123:778–786.
  • Xu C, Ding Y, Ni J, et al. Tumor-targeted docetaxel-loaded hyaluronic acid-quercetin polymeric micelles with p-gp inhibitory property for hepatic cancer therapy. RSC Adv. 2016;6(33):27542–27556.
  • Liu D, Chen Z. The effect of curcumin on breast cancer cells. J Breast Cancer. 2013;16(2):133.
  • Chen HW, Lee JY, Huang JY, et al. Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1. Cancer Res. 2008;68(18):7428–7438.
  • Tian C, Asghar S, Xu Y, et al. The effect of the molecular weight of hyaluronic acid on the physicochemical characterization of hyaluronic acid–curcumin conjugates and in vitro evaluation in glioma cells. Colloids Surf B. 2018;165:45–55.
  • Manju S, Sreenivasan K. Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability. J Colloid Interface Sci. 2011;359(1):318–325.
  • Hu JB, Li SJ, Kang XQ, et al. CD44-targeted hyaluronic acid–curcumin prodrug protects renal tubular epithelial cell survival from oxidative stress damage. Carbohydr Polym. 2018;193:268–280.
  • Sun W, Du Y, Liang X, et al. Synergistic triple-combination therapy with hyaluronic acid-shelled PPy/CPT nanoparticles results in tumor regression and prevents tumor recurrence and metastasis in 4T1 breast cancer. Biomaterials. 2019;217:119264.
  • Chen Z, He N, Chen M, et al. Tunable conjugation densities of camptothecin on hyaluronic acid for tumor targeting and reduction-triggered release. Acta Biomater. 2016;43:195–207.
  • Venditto VJ, Simanek EE. Cancer therapies utilizing the camptothecins: a review of the in vivo literature. Mol Pharm. 2010;7(2):307–349.
  • Camacho KM, Kumar S, Menegatti S, et al. Synergistic antitumor activity of camptothecin–doxorubicin combinations and their conjugates with hyaluronic acid. J Control Release. 2015;210:198–207.
  • Camacho KM, Menegatti S, Mitragotri S. Low-molecular-weight polymer–drug conjugates for synergistic anticancer activity of camptothecin and doxorubicin combinations. Nanomedicine. 2016;11(9):1139–1151.
  • Zhang Y, Yang D, Chen H, et al. Reduction-sensitive fluorescence enhanced polymeric prodrug nanoparticles for combinational photothermal-chemotherapy. Biomaterials. 2018;163:14–24.
  • Yang T, Yu S, Liu L, et al. Dual polymeric prodrug co-assembled nanoparticles with precise ratiometric co-delivery of cisplatin and metformin for lung cancer chemoimmunotherapy. Biomater Sci. 2020;8:5698.
  • Tao B, Yin ZN. Synthesis of HA-SS-MP: a prodrug with high specificity for cancer cells. Nat Prod Commun. 2020;15(6):1934578X2093276.
  • Zhang X, Xu HX, Newaz Z, et al. Synthesis and characterization of a pH- and enzyme-sensitive poly (ethylene glycol)-hyaluronic acid-melphalan prodrug. J Bioact Compat Pol. 2013;28(6):527–539.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.