444
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Progress in tumour-targeted drug delivery based on cell-penetrating peptides

, , , , &
Pages 46-60 | Received 07 Dec 2020, Accepted 17 Apr 2021, Published online: 04 May 2021

References

  • Green M, Loewenstein PM. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell. 1988;55(6):1179–1188.
  • Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 1988;55(6):1189–1193.
  • Xu J, Khan AR, Fu M, et al. Cell-penetrating peptide: a means of breaking through the physiological barriers of different tissues and organs. J Control Release. 2019;309:106–124.
  • Lang J, Zhao X, Qi Y, et al. Reshaping prostate tumor microenvironment to suppress metastasis via cancer-associated fibroblast inactivation with peptide-assembly-based nanosystem. ACS Nano. 2019;13(11):12357–12371.
  • McErlean EM, Ziminska M, McCrudden CM, et al. Rational design and characterisation of a linear cell penetrating peptide for non-viral gene delivery. J Control Release. 2021;330:1288–1299.
  • Nam SH, Jang J, Cheon DH, et al. pH-Activatable cell penetrating peptide dimers for potent delivery of anticancer drug to triple-negative breast cancer. J Control Release. 2021;330:898–906.
  • Shi XG, Song HJ, Wang CR, et al. Co-assembled and self-delivered epitope/CpG nanocomplex vaccine augments peptide immunogenicity for cancer immunotherapy. Chemical Engineering Journal. 2020;399:125854.
  • Vale N, Duarte D, Silva S, et al. Cell-penetrating peptides in oncologic pharmacotherapy: a review. Pharmacol Res. 2020;162:105231.
  • Liu D, Angelova A, Liu J, et al. Self-assembly of mitochondria-specific peptide amphiphiles amplifying lung cancer cell death through targeting the VDAC1-hexokinase-II complex. J Mater Chem B. 2019;7(30):4706–4716.
  • Zhang L, Zhang Y, Tai L, et al. Functionalized cell nucleus-penetrating peptide combined with doxorubicin for synergistic treatment of glioma. Acta Biomater. 2016;42:90–101.
  • Shi NQ, Li Y, Zhang Y, et al. Intelligent "peptide-gathering mechanical arm" tames wild "trojan-horse" peptides for the controlled delivery of cancer nanotherapeutics. ACS Appl Mater Interfaces. 2017;9(48):41767–41781.
  • He X, Chen X, Liu L, et al. Sequentially triggered nanoparticles with tumor penetration and intelligent drug release for pancreatic cancer therapy. Adv Sci. 2018;5(5):1701070.
  • Shi K, Wang Y, Zhou X, et al. Tumor microenvironment targeting with dual stimuli-responsive nanoparticles based on small heat shock proteins for antitumor drug delivery. Acta Biomater. 2020;114:369–383.
  • Gessner I, Neundorf I. Nanoparticles modified with cell-penetrating peptides: conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy. Int J Mol Sci. 2020;21(7):2536.
  • Cerrato CP, Kunnapuu K, Langel U. Cell-penetrating peptides with intracellular organelle targeting. Expert Opin Drug Deliv. 2017;14(2):245–255.
  • Kardani K, Milani A, S HS, et al. Cell penetrating peptides: the potent multi-cargo intracellular carriers. Expert Opin Drug Deliv. 2019;16(11):1227–1258.
  • Wei Y, Zhang M, Jiao P, et al. Intracellular paclitaxel delivery facilitated by a dual-functional CPP with a hydrophobic hairpin tail. ACS Appl Mater Interfaces. 2021;13(4):4853–4860.
  • Kim GC, Ahn JH, Oh JH, et al. Photoswitching of cell penetration of amphipathic peptides by control of alpha-helical conformation. Biomacromolecules. 2018;19(7):2863–2869.
  • Chiarpotti MV, Longo GS, Del Pópolo MG. Nanoparticles modified with cell penetrating peptides: assessing adsorption on membranes containing acidic lipids. Colloids Surf B Biointerfaces. 2021;197:111373.
  • Ramírez PG, Del Pópolo MG, Vila JA, et al. Thermodynamics of cell penetrating peptides on lipid membranes: sequence and membrane acidity regulate surface binding. Phys Chem Chem Phys. 2020;22(40):23399–23410.
  • Xie J, Bi Y, Zhang H, et al. Cell-penetrating peptides in diagnosis and treatment of human diseases: from preclinical research to clinical application. Front Pharmacol. 2020;11:697.
  • Yi A, Sim D, Lee YJ, et al. Development of elastin-like polypeptide for targeted specific gene delivery in vivo. J Nanobiotechnol. 2020;18(1):15.
  • Nadal-Bufí F, Henriques ST. How to overcome endosomal entrapment of cell‐penetrating peptides to release the therapeutic potential of peptides? Pept Sci. 2020;112(6):24168.
  • Ha M, Nam SH, Sim K, et al. Highly efficient photothermal therapy with cell-penetrating peptide-modified bumpy Au triangular nanoprisms using low laser power and low probe dose. Nano Lett. 2021;21(1):731–739.
  • Kim AS, Melemenidis S, Gustavsson AK, et al. Increased local tumor control through nanoparticle-mediated, radiation-triggered release of nitrite, an important precursor for reactive nitrogen species. Phys Med Biol. 2020;65(19):195003.
  • Deng X, Mai R, Zhang C, et al. Discovery of novel cell-penetrating and tumor-targeting peptide-drug conjugate (PDC) for programmable delivery of paclitaxel and cancer treatment. Eur J Med Chem. 2021; 2021-Mar-05213:113050–113050.
  • Yan X, Li S, Qu Y, et al. Redox-responsive multifunctional polypeptides conjugated with au nanoparticles for tumor-targeting gene therapy and their 1 + 1 > 2 synergistic effects. ACS Biomater Sci Eng. 2020;6(1):463–473.
  • Hua Q, Qiang Z, Chu M, et al. Polymeric drug delivery system with actively targeted cell penetration and nuclear targeting for cancer therapy. ACS Appl Bio Mater. 2019;2(4):1724–1731.
  • Xiang Y, Shan W, Huang Y. Improved anticancer efficacy of doxorubicin mediated by human-derived cell-penetrating peptide dNP2. Int J Pharm. 2018;551(1–2):14–22.
  • Liu X, Liu J, Liu D, et al. A cell-penetrating peptide-assisted nanovaccine promotes antigen cross-presentation and anti-tumor immune response. Biomater Sci. 2019;7(12):5516–5527.
  • Yoo J, Rejinold NS, Lee D, et al. CD44-mediated methotrexate delivery by hyaluronan-coated nanoparticles composed of a branched cell-penetrating peptide. ACS Biomater Sci Eng. 2020;6(1):494–504.
  • Iwasaki T, Murakami N, Kawano T. A polylysine-polyhistidine fusion peptide for lysosome-targeted protein delivery. Biochem Biophys Res Commun. 2020;533(4):905–912.
  • Al-Husaini K, Elkamel E, Han XX, et al. Therapeutic potential of a cell penetrating peptide (CPP, NP1) mediated siRNA delivery: evidence in 3D spheroids of colon cancer cells. Can J Chem Eng. 2020;98(6):1240–1254.
  • Tu ZX, Donskyi EG, Qiao HS, et al. Graphene oxide-cyclic R10 peptide nuclear translocation nanoplatforms for the surmounting of multiple-drug resistance. Adv Funct Mater. 2020;30(35):2000933. Jun 26.
  • Weng H, Bejjanki NK, Zhang J, et al. TAT peptide-modified cisplatin-loaded iron oxide nanoparticles for reversing cisplatin-resistant nasopharyngeal carcinoma. Biochem Biophys Res Commun. 2019;511(3):597–603.
  • Carnevale KJF, Muroski ME, Vakil PN, et al. Selective uptake into drug resistant mammalian cancer by cell penetrating peptide-mediated delivery. Bioconjugate Chem. 2018;29(10):3273–3284.
  • Zhao H, Wu M, Zhu L, et al. Cell-penetrating peptide-modified targeted drug-loaded phase-transformation lipid nanoparticles combined with low-intensity focused ultrasound for precision theranostics against hepatocellular carcinoma. Theranostics. 2018;8(7):1892–1910.
  • Caravan P, Ellison JJ, McMurry TJ, et al. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev. 1999;99(9):2293–2352.
  • Chen YX, Fu Y, Li XD, et al. Peptide-functionalized NaGdF4 nanoparticles for tumor-targeted magnetic resonance imaging and effective therapy. RSC Adv. 2019;9(30):17093–17100.
  • Yuan Y, Zhang J, Qi X, et al. Furin-mediated intracellular self-assembly of olsalazine nanoparticles for enhanced magnetic resonance imaging and tumour therapy. Nat Mater. 2019;18(12):1376–1383.
  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
  • Wang X, Zhao Y, Dong S, et al. Cell-penetrating peptide and transferrin co-modified liposomes for targeted therapy of glioma. Molecules. 2019;24(19):3540.
  • Griffith JI, Rathi S, Zhang W, et al. Addressing BBB heterogeneity: a new paradigm for drug delivery to brain tumors. Pharmaceutics. 2020;12(12):1205.
  • Banks WA. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov. 2016;15(4):275–292.
  • Tian Y, Mi G, Chen Q, et al. Acid-induced activated cell-penetrating peptide-modified cholesterol-conjugated polyoxyethylene sorbitol oleate mixed micelles for pH-triggered drug release and efficient brain tumor targeting based on a charge reversal mechanism. ACS Appl Mater Interfaces. 2018;10(50):43411–43428.
  • Xiang Y, Duan XH, Feng LB, et al. tLyp-1-conjugated GSH-sensitive biodegradable micelles mediate enhanced pUNO1-hTRAILa/curcumin co-delivery to gliomas. Chem Eng J. 2019;374:392–404.
  • Jana A, Narula P, Chugh A, et al. Efficient delivery of anti-miR-210 using Tachyplesin, a cell penetrating peptide, for glioblastoma treatment. Int J Pharm. 2019;572:118789.
  • Zhang Z, Yu P, Gou Y, et al. Novel brain-tumor-inhibiting copper(II) compound based on a human serum albumin (HSA)-cell penetrating peptide conjugate. J Med Chem. 2019;62(23):10630–10644.
  • Hsu SPC, Dhawan U, Tseng YY, et al. Glioma-sensitive delivery of angiopep-2 conjugated iron gold alloy nanoparticles ensuring simultaneous tumor imaging and hyperthermia mediated cancer theranostics. Appl Mater Today. 2020;18:100510.
  • Thorne RG, Pronk GJ, Padmanabhan V, et al. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004; 2004127(2):481–496.
  • Taki H, Kanazawa T, Akiyama F, et al. Intranasal delivery of camptothecin-loaded tat-modified nanomicells for treatment of intracranial brain tumors. Pharmaceuticals. 2012;5(10):1092–1102.
  • Kanazawa T, Taki H, Okada H. Nose-to-brain drug delivery system with ligand/cell-penetrating peptide-modified polymeric nano-micelles for intracerebral gliomas. Eur J Pharm Biopharm. 2020;152:85–94.
  • Kanazawa T, Akiyama F, Kakizaki S, et al. Delivery of siRNA to the brain using a combination of nose-to-brain delivery and cell-penetrating peptide-modified nano-micelles. Biomaterials. 2013;34(36):9220–9226.
  • Mehta AM, Sonabend AM, Bruce JN. Convection-enhanced delivery. Neurotherapeutics. 2017;14(2):358–371.
  • Zhou Z, Singh R, Souweidane MM. Convection-enhanced delivery for diffuse intrinsic pontine glioma treatment. CN. 2016;15(1):116–128.
  • Pang HH, Chen PY, Wei KC, et al. Convection-enhanced delivery of a virus-like nanotherapeutic agent with dual-modal imaging for besiegement and eradication of brain tumors. Theranostics. 2019;9(6):1752–1763.
  • Miller AJ, Mihm MC, Jr., Melanoma N. Melanoma. N Engl J Med. 2006;355(1):51–65.
  • Wang MZ, Niu J, Ma HJ, et al. Transdermal siRNA delivery by pH-switchable micelles with targeting effect suppress skin melanoma progression. J Control Release. 2020;322:95–107.
  • Huang S, Zhang Y, Wang L, et al. Improved melanoma suppression with target-delivered TRAIL and Paclitaxel by a multifunctional nanocarrier. J Control Release. 2020;325:10–24.
  • Li N, Peng LH, Chen X, et al. Transcutaneous vaccines: novel advances in technology and delivery for overcoming the barriers. Vaccine. 2011;29(37):6179–6190.
  • Jiang T, Wang T, Li T, et al. Enhanced transdermal drug delivery by transfersome-embedded oligopeptide hydrogel for topical chemotherapy of melanoma. ACS Nano. 2018;12(10):9693–9701.
  • Ruan W, Zhai Y, Yu K, et al. Coated microneedles mediated intradermal delivery of octaarginine/BRAF siRNA nanocomplexes for anti-melanoma treatment. Int J Pharm. 2018;553(1-2):298–309.
  • Shen Y, Qiu L. Effective oral delivery of gp100 plasmid vaccine against metastatic melanoma through multi-faceted blending-by-blending nanogels. Nanomedicine. 2019;22:102114.
  • Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158–171.
  • Tanaka HY, Kano MR. Stromal barriers to nanomedicine penetration in the pancreatic tumor microenvironment. Cancer Sci. 2018;109(7):2085–2092.
  • Elechalawar CK, Hossen MN, Shankarappa P, et al. Targeting pancreatic cancer cells and stellate cells using designer nanotherapeutics in vitro. IJN. 2020;15:991–1003.
  • Apte MV, Wilson JS, Lugea A, et al. A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology. 2013;144(6):1210–1219.
  • Schnittert J, Kuninty PR, Bystry TF, et al. Anti-microRNA targeting using peptide-based nanocomplexes to inhibit differentiation of human pancreatic stellate cells. Nanomedicine. 2017;12(12):1369–1384.
  • Yuan Y, Li E, Zhao J, et al. Highly penetrating nanobubble polymer enhances LINC00511-siRNA delivery for improving the chemosensitivity of triple-negative breast cancer. Anticancer Drugs. 2021;32(2):178–188.
  • Huang HL, Lin WJ. Dual peptide-modified nanoparticles improve combination chemotherapy of etoposide and siPIK3CA against drug-resistant small cell lung carcinoma. Pharmaceutics. 2020;12(3):254.
  • Zhao H, Chen M, Zhao Z, et al. A multicomponent-based microemulsion for boosting ovarian cancer therapy through dual modification with transferrin and SA-R6H4. Drug Deliv Transl Res. 2020.DOI:https://doi.org/10.1007/s13346-020-00859-5
  • Dufourc EJ, Buchoux S, Toupe J, et al. Membrane interacting peptides: from killers to helpers. CPPS. 2012;13(7):620–631.
  • Cai L, Yang C, Jia W, et al. Endo/lysosome-escapable delivery depot for improving BBB transcytosis and neuron targeted therapy of Alzheimer's disease. Adv Funct Mater. 2020;30(27):1909999.
  • Chen X, Xu K, Yu J, et al. Peptide modified polycations with pH triggered lytic activity for efficient gene delivery. Biomater Sci. 2020;8(22):6301–6308.
  • Nadal-Bufi F, Henriques ST. How to overcome endosomal entrapment of cell-penetrating peptides to release the therapeutic potential of peptides? Pept Sci. 2020;112(6):e24168.
  • Sonawane ND, Szoka FC, Jr., Verkman AS. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem. 2003;278(45):44826–44831.
  • Li C, Cao XW, Zhao J, et al. Effective therapeutic drug delivery by GALA3, an endosomal escape peptide with reduced hydrophobicity. J Membrane Biol. 2020;253(2):139–152.
  • Poillot C, Dridi K, Bichraoui H, et al. D-maurocalcine, a pharmacologically inert efficient cell-penetrating peptide analogue. J Biol Chem. 2010;285(44):34168–34180.
  • Li P, Zheng Y, Ran H, et al. Ultrasound triggered drug release from 10-hydroxycamptothecin-loaded phospholipid microbubbles for targeted tumor therapy in mice. J Control Release. 2012;162(2):349–354.
  • Lim S, Kim WJ, Kim YH, et al. Identification of a novel cell-penetrating peptide from human phosphatidate phosphatase LPIN3. Mol Cells. 2012;34(6):577–582.
  • Aguilera TA, Olson ES, Timmers MM, et al. Systemic in vivo distribution of activatable cell penetrating peptides is superior to that of cell penetrating peptides. Integr Biol. 2009;1(5-6):371–381.
  • Lee SH, Castagner B, Leroux JC. Is there a future for cell-penetrating peptides in oligonucleotide delivery?. Eur J Pharm Biopharm. 2013;85(1):5–11.
  • Guo X, Wei X, Chen Z, et al. Multifunctional nanoplatforms for subcellular delivery of drugs in cancer therapy. Prog Mater Sci. 2020;107:100599.
  • Kim YH, Han ME, Oh SO. The molecular mechanism for nuclear transport and its application. Anat Cell Biol. 2017;50(2):77–85.
  • Peng H, Tang J, Zheng R, et al. Nuclear-targeted multifunctional magnetic nanoparticles for photothermal therapy. Adv Healthc Mater. 2017;6(7):1601289.
  • Nischan N, Herce HD, Natale F, et al. Covalent attachment of cyclic TAT peptides to GFP results in protein delivery into live cells with immediate bioavailability. Angew Chem Int Ed Engl. 2015;54(6):1950–1953.
  • Nodling AR, Mills EM, Li X, et al. Cyanine dye mediated mitochondrial targeting enhances the anti-cancer activity of small-molecule cargoes. Chem Commun. 2020;56(34):4672–4675.
  • Klimpel A, Neundorf I. Bifunctional peptide hybrids targeting the matrix of mitochondria. J Control Release. 2018;291:147–156.
  • Yamada Y, Harashima H. Mitochondrial drug delivery systems for macromolecule and their therapeutic application to mitochondrial diseases. Adv Drug Deliv Rev. 2008;60(13–14):1439–1462. Oct-
  • Li Q, Yang J, Chen C, et al. A novel mitochondrial targeted hybrid peptide modified HPMA copolymers for breast cancer metastasis suppression. J Control Release. 2020;325:38–51.
  • Zhang J, Sun A, Xu R, et al. Cell-penetrating and endoplasmic reticulum-locating TAT-IL-24-KDEL fusion protein induces tumor apoptosis. J Cell Physiol. 2016;231(1):84–93.
  • Serulla M, Ichim G, Stojceski F, et al. TAT-RasGAP317-326 kills cells by targeting inner-leaflet-enriched phospholipids. Proc Natl Acad Sci USA. 2020;117(50):31871–31881.
  • Perche F. Stimuli-sensitive cell penetrating peptide-modified nanocarriers. Processes. 2019;7(10):727.
  • Shi NQ, Qi XR, Xiang B, et al. A survey on "Trojan Horse" peptides: opportunities, issues and controlled entry to "Troy”. J Control Release. 2014;194:53–70.
  • Fernandes C, Suares D, Yergeri MC. Tumor microenvironment targeted nanotherapy. Front Pharmacol. 2018;9:1230.
  • Matsumura S, Aoki I, Saga T, et al. A tumor-environment-responsive nanocarrier that evolves its surface properties upon sensing matrix metalloproteinase-2 and initiates agglomeration to enhance T(2) relaxivity for magnetic resonance imaging. Mol Pharmaceutics. 2011;8(5):1970–1974.
  • Bremmer SC, McNeil AJ, Soellner MB. Enzyme-triggered gelation: targeting proteases with internal cleavage sites. Chem Commun. 2014;50(14):1691–1693.
  • Isaacson KJ, Martin Jensen M, Subrahmanyam NB, et al. Matrix-metalloproteinases as targets for controlled delivery in cancer: an analysis of upregulation and expression. J Control Release. 2017;259:62–75.
  • Guo F, Fu Q, Zhou K, et al. Matrix metalloprotein-triggered, cell penetrating peptide-modified star-shaped nanoparticles for tumor targeting and cancer therapy. J Nanobiotechnol. 2020;18(1):48.
  • Tang B, Zaro JL, Shen Y, et al. Acid-sensitive hybrid polymeric micelles containing a reversibly activatable cell-penetrating peptide for tumor-specific cytoplasm targeting. J Control Release. 2018;279:147–156.
  • Yang Y, Yang Y, Xie X, et al. Preparation and characterization of photo-responsive cell-penetrating peptide-mediated nanostructured lipid carrier. J Drug Target. 2014;22(10):891–900.
  • Hambley TW, Hait WN. Is anticancer drug development heading in the right direction? Cancer Res. 2009;69(4):1259–1262.
  • Yang Y, Yang Y, Xie X, et al. Dual-modified liposomes with a two-photon-sensitive cell penetrating peptide and NGR ligand for siRNA targeting delivery. Biomaterials. 2015;48:84–96.
  • Wang Y, Li X, Zhou Y, et al. Preparation of nanobubbles for ultrasound imaging and intracelluar drug delivery. Int J Pharm. 2010;384(1-2):148–153.
  • Xie X, Lin W, Liu H, et al. Ultrasound-responsive nanobubbles contained with peptide-camptothecin conjugates for targeted drug delivery. Drug Deliv. 2016;23(8):2756–2764.
  • Jing H, Cheng W, Li S, et al. Novel cell-penetrating peptide-loaded nanobubbles synergized with ultrasound irradiation enhance EGFR siRNA delivery for triple negative Breast cancer therapy. Colloids Surf B Biointerfaces. 2016;146:387–395.
  • Raucher D, Chilkoti A. Enhanced uptake of a thermally responsive polypeptide by tumor cells in response to its hyperthermia-mediated phase transition. Cancer Res. 2001;61(19):7163–7170.
  • Li NK, Garcia Quiroz F, Hall CK, et al. Molecular description of the LCST behavior of an elastin-like polypeptide. Biomacromolecules. 2014;15(10):3522–3530.
  • Walker LR, Ryu JS, Perkins E, et al. Fusion of cell-penetrating peptides to thermally responsive biopolymer improves tumor accumulation of p21 peptide in a mouse model of pancreatic cancer. Drug Des Devel Ther. 2014;8:1649–1658.
  • van Oppen L, Pille J, Stuut C, et al. Octa-arginine boosts the penetration of elastin-like polypeptide nanoparticles in 3D cancer models. Eur J Pharm Biopharm. 2019;137:175–184.
  • Fu H, Shi K, Hu G, et al. Tumor-targeted paclitaxel delivery and enhanced penetration using TAT-decorated liposomes comprising redox-responsive poly(ethylene glycol). J Pharm Sci. 2015;104(3):1160–1173.
  • Elliott G, O'Hare P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell. 1997;88(2):223–233.
  • Yu Y, Zu C, He D, et al. pH-dependent reversibly activatable cell-penetrating peptides improve the antitumor effect of artemisinin-loaded liposomes. J Colloid Interface Sci. 2021;586:391–403.
  • Wang Y, Li J, Chen JJ, et al. Multifunctional nanoparticles loading with docetaxel and gdc0941 for reversing multidrug resistance mediated by PI3K/Akt signal pathway. Mol Pharmaceutics. 2017;14(4):1120–1132.
  • Laxman K, Reddy BPK, Robinson A, et al. Cell-penetrating peptide-conjugated BF2 -oxasmaragdyrins as NIRF imaging and photothermal agents. ChemMedChem. 2020;15(19):1783–1787.
  • Yu SL, Koo H, Lee HY, et al. Recombinant cell-permeable HOXA9 protein inhibits NSCLC cell migration and invasion. Cell Oncol. 2019;42(3):275–285.
  • Ding C, Wu K, Wang W, et al. Synthesis of a cell penetrating peptide modified superparamagnetic iron oxide and MRI detection of bladder cancer. Oncotarget. 2017;8(3):4718–4729.
  • Derossi D, Joliot AH, Chassaing G, et al. The 3rd helix of the antennapedia homeodomain translocates through biological-membranes. J Biol Chem. 1994;269(14):10444–10450.
  • Oehlke J, Scheller A, Wiesner B, et al. Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochimica Et Biophysica Acta-Biomembranes. 1998;1414(1–2):127–139.
  • Pooga M, Hallbrink M, Zorko M, et al. Cell penetration by transportan. FASEB J. 1998;12(1):67–77.
  • Oh JH, Chong SE, Nam S, et al. Multimeric amphipathic alpha-helical sequences for rapid and efficient intracellular protein transport at nanomolar concentrations. Adv Sci. 2018;5(8):1800240.
  • Watkins CL, Brennan P, Fegan C, et al. Cellular uptake, distribution and cytotoxicity of the hydrophobic cell penetrating peptide sequence PFVYLI linked to the proapoptotic domain peptide PAD. J Control Release. 2009;140(3):237–244.
  • Nakayama F, Yasuda T, Umeda S, et al. Fibroblast growth factor-12 (FGF12) translocation into intestinal epithelial cells is dependent on a novel cell-penetrating peptide domain: involvement of internalization in the in vivo role of exogenous FGF12. J Biol Chem. 2011;286(29):25823–25834.
  • Wei Y, Ma L, Zhang L, et al. Noncovalent interaction-assisted drug delivery system with highly efficient uptake and release of paclitaxel for anticancer therapy. IJN. 2017;12:7039–7051.
  • Kunnapuu K, Veiman KL, Porosk L, et al. Tumor gene therapy by systemic delivery of plasmid DNA with cell-penetrating peptides. FASEB Bioadv. 2019;1(2):105–114.
  • Taha AAA, Jawad SMH, Al-Barram LFA. Improvement of cancer therapy by TAT peptide conjugated gold nanoparticles. J Clust Sci. 2019;30(2):403–414.
  • Niu S, Williams GR, Wu J, et al. A chitosan-based cascade-responsive drug delivery system for triple-negative breast cancer therapy. J Nanobiotechnol. 2019;17(1):95.
  • Wen J, Liu F, Tao B, et al. GSH-responsive anti-mitotic cell penetrating peptide-linked podophyllotoxin conjugate for improving water solubility and targeted synergistic drug delivery. Bioorg Med Chem Lett. 2019;29(8):1019–1022.
  • Gregory JV, Kadiyala P, Doherty R, et al. Systemic brain tumor delivery of synthetic protein nanoparticles for glioblastoma therapy. Nat Commun. 2020;11(1):5687.
  • Chen X, Niu S, Bremner DH, et al. Co-delivery of doxorubicin and oleanolic acid by triple-sensitive nanocomposite based on chitosan for effective promoting tumor apoptosis. Carbohydr Polym. 2020;247:116672.
  • Dos Santos Rodrigues B, Kanekiyo T, Singh J. In vitro and in vivo characterization of CPP and transferrin modified liposomes encapsulating pDNA. Nanomedicine. 2020;28:102225.
  • Kong L, Zhang SM, Chu JH, et al. Tumor microenvironmental responsive liposomes simultaneously encapsulating biological and chemotherapeutic drugs for enhancing antitumor efficacy of NSCLC. IJN. 2020;15:6451–6468.
  • Yoon HY, Yang HM, Kim CH, et al. Enhanced intracellular delivery of BCG cell wall skeleton into bladder cancer cells using liposomes functionalized with folic acid and Pep-1 peptide. Pharmaceutics. 2019;11(12):652.
  • Guo H, Li F, Qiu H, et al. Synergistically enhanced mucoadhesive and penetrable polypeptide nanogel for efficient drug delivery to orthotopic bladder cancer. Research. 2020;2020:1–14.
  • Saito A, Yamamoto S, Ochi R, et al. An azide-tethered cremophor (R) ELP surfactant allowing facile post-surface functionalization of nanoemulsions. BCSJ. 2020;93(4):568–575.
  • Gao G, Jiang YW, Jia HR, et al. From perinuclear to intranuclear localization: a cell-penetrating peptide modification strategy to modulate cancer cell migration under mild laser irradiation and improve photothermal therapeutic performance. Biomaterials. 2019;223:119443.
  • You Y, Wang N, He L, et al. Designing dual-functionalized carbon nanotubes with high blood-brain-barrier permeability for precise orthotopic glioma therapy. Dalton Trans. 2019;48(5):1569–1573.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.