1,336
Views
12
CrossRef citations to date
0
Altmetric
Review Articles

New advances in brain-targeting nano-drug delivery systems for Alzheimer's disease

, , , , & ORCID Icon
Pages 61-81 | Received 04 Jan 2021, Accepted 03 May 2021, Published online: 20 May 2021

References

  • Livingston G, Sommerlad A, Orgeta V, et al. Dementia prevention, intervention, and care. Lancet. 2017;390(10113):2673–2734.
  • Carter M, Simms G, Weaver D. The development of new therapeutics for Alzheimer's disease. Clin Pharmacol Ther. 2010;88(4):475–486. 10/01
  • 2019 Alzheimer's disease facts and figures. Alzheimer's Dementia. 2019;15(3):321–387.
  • Aisen PS, Cummings J, Jack CR, et al. On the path to 2025: understanding the Alzheimer's disease continuum. Alzheimers Res Ther. 2017;9(1):60.
  • Li H, Liu C-C, Zheng H, et al. Amyloid, tau, pathogen infection and antimicrobial protection in Alzheimer's disease – conformist, nonconformist, and realistic prospects for AD pathogenesis. Transl Neurodegener. 2018;7(1):34.
  • Wang L, Yin Y-L, Liu X-Z, et al. Current understanding of metal ions in the pathogenesis of Alzheimer's disease. Transl Neurodegener. 2020;9(1):10.
  • Han ZJ, Xue WW, Tao L, et al. Identification of novel immune-relevant drug target genes for Alzheimer's disease by combining ontology inference with network analysis. CNS Neurosci Ther. 2018;24(12):1253–1263.
  • O'Neal-Moffitt G, Delic V, Bradshaw PC, et al. Prophylactic melatonin significantly reduces Alzheimer's neuropathology and associated cognitive deficits independent of antioxidant pathways in AβPP(swe)/PS1 mice. Mol Neurodegener. 2015;10(1):27.
  • Breydo L, Kurouski D, Rasool S, et al. Structural differences between amyloid beta oligomers. Biochem Biophys Res Commun. 2016;477(4):700–705.
  • McGowan E, Pickford F, Kim J, et al. Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron. 2005;47(2):191–199.
  • Zhou Y, Sun Y, Ma Q-H, et al. Alzheimer's disease: amyloid-based pathogenesis and potential therapies. Cell Stress. 2018;2(7):150–161.
  • Droste P, Frenzel A, Steinwand M, et al. Structural differences of amyloid-β fibrils revealed by antibodies from phage display. BMC Biotechnol. 2015;15:57–57.
  • Garai K, Posey AE, Li X, et al. Inhibition of amyloid beta fibril formation by monomeric human transthyretin. Protein Sci. 2018;27(7):1252–1261.
  • Wang Y, Mandelkow E. Tau in physiology and pathology. Nat Rev Neurosci. 2016;17(1):5–21.
  • Iqbal K, Liu F, Gong CX. Tau and neurodegenerative disease: the story so far. Nat Rev Neurol. 2016;12(1):15–27.
  • Ittner A, Chua SW, Bertz J, et al. Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer's mice. Science. 2016;354(6314):904–908.
  • Kent SA, Spires-Jones TL, Durrant CS. The physiological roles of tau and Aβ: implications for Alzheimer’s disease pathology and therapeutics. Acta Neuropathol. 2020;140(4):417–447.
  • Akbar M, Essa MM, Daradkeh G, et al. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res. 2016;1637:34–55.
  • Zhang L-n, Sun Y-J, Pan S, et al. Na+-K+-ATPase, a potent neuroprotective modulator against Alzheimer disease. Fundam Clin Pharmacol. 2013;27(1):96–103.
  • Pera M, Larrea D, Guardia-Laguarta C, et al. Increased localization of APP-C99 in mitochondria-associated ER membranes causes mitochondrial dysfunction in Alzheimer disease. Embo J. 2017;36(22):3356–3371.
  • Lustbader JW, Cirilli M, Lin C, et al. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease. Science. 2004;304(5669):448–452.
  • Chen J, Yan S. Pathogenic role of mitochondral amyloid-β peptide. Expert Rev Neurother. 2007;7(11):1517–1525.
  • Subhramanyam CS, Wang C, Hu Q, et al. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol. 2019;94:112–120.
  • Bachiller S, Jiménez-Ferrer I, Paulus A, et al. Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response. Front Cell Neurosci. 2018;12:488.
  • Hemonnot AL, Hua J, Ulmann L, et al. Microglia in Alzheimer disease: well-known targets and new opportunities. Front Aging Neurosci. 2019;11:233.
  • Kaur D, Sharma V, Deshmukh R. Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacol. 2019;27(4):663–677. 08/01;
  • Rogers J, Lue L-F. Microglial chemotaxis, activation, and phagocytosis of amyloid beta-peptide as linked phenomena in Alzheimer's disease. Neurochem Int. 2001;39(5–6):333–340. 11/01
  • Lídia P, Célia F. Therapeutic strategies targeting amyloid-946; in Alzheimer’s disease. Curr Alzheimer Res. 2019;16(5):418–452.
  • Lopalco A, Denora N. Nanoformulations for drug delivery: safety, toxicity, and efficacy. Methods Mol Biol. 2018;1800:347–365.
  • Fu X, Shi Y, Qi T, et al. Precise design strategies of nanomedicine for improving cancer therapeutic efficacy using subcellular targeting. Signal Transduct Target Ther. 2020;5(1):262.
  • Guo X, Wang L, Wei X, et al. Polymer-based drug delivery systems for cancer treatment. J Polym Sci Part A: Polym Chem. 2016;54(22):3525–3550. 2016/11/15
  • Barenholz Y. Doxil® – the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–134.
  • Khan AR, Yang X, Fu M, et al. Recent progress of drug nanoformulations targeting to brain. J Control Release. 2018;291:37–64.
  • Zhou Y, Peng Z, Seven ES, et al. Crossing the blood–brain barrier with nanoparticles. J Control Release. 2018;270:290–303.
  • Cheng R, Meng F, Deng C, et al. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials. 2013;34(14):3647–3657.
  • Trompetero A, Gordillo A, Del Pilar MC, et al. Alzheimer's disease and Parkinson's disease: a review of current treatment adopting a nanotechnology approach. Curr Pharm Des. 2018;24(1):22–45.
  • Vasile C. Chapter 1 – polymeric nanomaterials: recent developments, properties and medical applications. In: Vasile C, editor. Polymeric nanomaterials in nanotherapeutics.; 2019. p. 1–66.
  • Peluffo H, Unzueta U, Negro-Demontel ML, et al. BBB-targeting, protein-based nanomedicines for drug and nucleic acid delivery to the CNS. Biotechnol Adv. 2015;33(2):277–287.
  • Koffie R, Farrar C, Saidi L-J, et al. Nanoparticles enhance brain delivery of blood–brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. Proc Natl Acad Sci USA. 2011;108(46):18837–18842.
  • Reimold I, Domke D, Bender J, et al. Delivery of nanoparticles to the brain detected by fluorescence microscopy. Eur J Pharm Biopharm. 2008;70(2):627–632.
  • Loureiro JA, Gomes B, Fricker G, et al. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer's disease treatment. Colloids Surf B Biointerfaces. 2016;145:8–13.
  • Kuo Y-C, Chen IY, Rajesh R. Use of functionalized liposomes loaded with antioxidants to permeate the blood–brain barrier and inhibit β-amyloid-induced neurodegeneration in the brain. J Taiwan Inst Chem Eng. 2018;87:1–14.
  • Gong L, Zhang X, Ge K, et al. Carbon nitride-based nanocaptor: an intelligent nanosystem with metal ions chelating effect for enhanced magnetic targeting phototherapy of Alzheimer's disease. Biomaterials. 2021;267:120483.
  • Han Y, Gao C, Wang H, et al. Macrophage membrane-coated nanocarriers co-modified by RVG29 and TPP improve brain neuronal mitochondria-targeting and therapeutic efficacy in Alzheimer's disease mice. Bioact Mater. 2021;6(2):529–542.
  • Ren C, Li D, Zhou Q, et al. Mitochondria-targeted TPP-MoS(2) with dual enzyme activity provides efficient neuroprotection through M1/M2 microglial polarization in an Alzheimer's disease model. Biomaterials. 2020;232:119752.
  • Cheng CS, Liu TP, Chien FC, et al. Codelivery of plasmid and curcumin with mesoporous silica nanoparticles for promoting neurite outgrowth. ACS Appl Mater Interfaces. 2019;11(17):15322–15331.
  • Chen R, Zhao X, Hu K. Physically open BBB. In: Gao H, Gao X, editors. Brain targeted drug delivery system. London: Academic Press; 2019. p. 197–217.
  • Förster C. Tight junctions and the modulation of barrier function in disease. Histochem Cell Biol. 2008;130(1):55–70.
  • Cai Z, Liu Z, Xiao M, et al. Chronic cerebral hypoperfusion promotes amyloid-beta pathogenesis via activating β/γ-secretases. Neurochem Res. 2017;42(12):3446–3455.
  • Nelson AR, Sweeney MD, Sagare AP, et al. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer's disease. Biochim Biophys Acta. 2016;1862(5):887–900.
  • Aliev G, Li Y, Palacios HH, et al. Oxidative stress-induced mitochondrial damage as a hallmark for drug development in the context of the neurodegeneration, cardiovascular, and cerebrovascular diseases. In: Laher I, editor. Systems biology of free radicals and antioxidants. Berlin, Heidelberg: Springer; 2014. p. 2083–2126.
  • Grammas P, Moore P, Weigel PH. Microvessels from Alzheimer's disease brains kill neurons in vitro. Am J Pathol. 1999;154(2):337–342.
  • Marini BL, Benitez LL, Zureick AH, et al. Blood–brain barrier-adapted precision medicine therapy for pediatric brain tumors. Transl Res. 2017;188:27.e1–27.e14.
  • Ballabh P, Braun A, Nedergaard M. The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16(1):1–13.
  • Zhang T, Li W, Meng G, et al. Strategies for transporting nanoparticles across the blood–brain barrier. Biomater Sci. 2016;4(2):219–229.
  • Doran KS, Fulde M, Gratz N, et al. Host-pathogen interactions in bacterial meningitis. Acta Neuropathol. 2016;131(2):185–209.
  • Gao H. 18 - Perspective on brain targeting drug delivery systems. In: Gao H, Gao X, editors. Brain targeted drug delivery system. London: Academic Press; 2019. p. 455–467.
  • Gao H. Introduction and overview. In: Gao H, Gao X, editors. Brain targeted drug delivery system. London: Academic Press; 2019. p. 1–4.
  • Liu Y-L, Chen D, Shang P, et al. A review of magnet systems for targeted drug delivery. J Control Release. 2019;302:90–104.
  • Deng Y, Zhang X, Shen H, et al. Application of the nano-drug delivery system in treatment of cardiovascular diseases. Front Bioeng Biotechnol. 2020;7:489.
  • Castro M, Lindqvist D. Liposome-mediated delivery of challenging chemicals to aid environmental assessment of bioaccumulative (B) and toxic (T) properties. Sci Rep. 2020;10(1):9725.
  • Prozeller D, Rosenauer C, Morsbach S, et al. Immunoglobulins on the surface of differently charged polymer nanoparticles. Biointerphases. 2020;15(3):031009.
  • Li G, Shao K, Umeshappa CS. Recent progress in blood–brain barrier transportation research. In: Gao H, Gao X, editors. Brain targeted drug delivery system. London: Academic Press; 2019. p. 33–51.
  • O'Kane RL, Viña JR, Simpson I, et al. Cationic amino acid transport across the blood–brain barrier is mediated exclusively by system y+. Am J Physiol Endocrinol Metab. 2006;291(2):E412–E419.
  • Li R, He Y, Zhang S, et al. Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharm Sin B. 2018;8(1):14–22.
  • Zhu X, Jin K, Huang Y, et al. Brain drug delivery by adsorption-mediated transcytosis. In: Gao H, Gao X, editors. Brain targeted drug delivery system. London: Academic Press; 2019. p. 159–183.
  • Cai L, Yang C, Jia W, et al. Endo/lysosome-escapable delivery depot for improving BBB transcytosis and neuron targeted therapy of Alzheimer's disease. Adv Funct Mater. 2020;30(27):1909999.
  • Loureiro JA, Andrade S, Duarte A, et al. Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer's disease. Molecules. 2017;22(2):277.
  • Chen Z-L, Huang M, Wang X-R, et al. Transferrin-modified liposome promotes α-mangostin to penetrate the blood–brain barrier. Nanomed Nanotechnol Biol Med. 2016;12(2):421–430.
  • Bouchoucha M, Béliveau E, Kleitz F, et al. Antibody-conjugated mesoporous silica nanoparticles for brain microvessel endothelial cells targeting. J Mater Chem B. 2017;5(37):7721–7735.
  • Yin T, Yang L, Liu Y, et al. Sialic acid (SA)-modified selenium nanoparticles coated with a high blood–brain barrier permeability peptide-B6 peptide for potential use in Alzheimer's disease. Acta Biomater. 2015;25:172–183.
  • Agwa MM, Abdelmonsif DA, Khattab SN, et al. Self- assembled lactoferrin-conjugated linoleic acid micelles as an orally active targeted nanoplatform for Alzheimer's disease. Int J Biol Macromol. 2020;162:246–261.
  • Gothwal A, Kumar H, Nakhate KT, et al. Lactoferrin coupled lower generation PAMAM dendrimers for brain targeted delivery of memantine in aluminum-chloride-induced Alzheimer's disease in mice. Bioconj Chem. 2019;30(10):2573–2583.
  • Meng Q, Wang A, Hua H, et al. Intranasal delivery of huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer's disease. Int J Nanomedicine. 2018;13:705–718.
  • Kuo YC, Tsao CW. Neuroprotection against apoptosis of SK-N-MC cells using RMP-7- and lactoferrin-grafted liposomes carrying quercetin. Int J Nanomedicine. 2017;12:2857–2869.
  • Etman SM, Elnaggar YSR, Abdelmonsif DA, et al. Oral brain-targeted microemulsion for enhanced piperine delivery in Alzheimer's disease therapy: in vitro appraisal, in vivo activity, and nanotoxicity. AAPS PharmSciTech. 2018;19(8):3698–3711.
  • Liu Y, An S, Li J, et al. Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in Alzheimer's disease mice. Biomaterials. 2016;80:33–45.
  • Lu Y, Guo Z, Zhang Y, et al. Microenvironment remodeling micelles for Alzheimer's disease therapy by early modulation of activated microglia. Adv Sci. 2019;6(4):1801586. 12/01;
  • Yang P, Sheng D, Guo Q, et al. Neuronal mitochondria-targeted micelles relieving oxidative stress for delayed progression of Alzheimer's disease. Biomaterials. 2020;238:119844.
  • Yang H, Mu W, Wei D, et al. A novel targeted and high-efficiency nanosystem for combinational therapy for Alzheimer's disease. Adv Sci. 2020;7(19):1902906 2020/10/01
  • Gartziandia O, Herran E, Pedraz J, et al. Chitosan coated nanostructured lipid carriers for brain delivery of proteins by intranasal administration. Colloids Surf B Biointerfaces. 2015;134:304–313.
  • Karimzadeh M, Rashidi L, Ganji F. Mesoporous silica nanoparticles for efficient rivastigmine hydrogen tartrate delivery into SY5Y cells. Drug Dev Ind Pharm. 2017;43(4):628–636.
  • Ren C, Li D, Zhou Q, et al. Mitochondria-targeted TPP-MoS2 with dual enzyme activity provides efficient neuroprotection through M1/M2 microglial polarization in an Alzheimer's disease model. Biomaterials. 2020;232:119752.
  • Zhou Y, Zhu F, Liu Y, et al. Blood–brain barrier – penetrating siRNA nanomedicine for Alzheimer’s disease therapy. Sci Adv. 2020;6(41):eabc7031.
  • Xie J, Gonzalez-Carter D, Tockary TA, et al. Dual-sensitive nanomicelles enhancing systemic delivery of therapeutically active antibodies specifically into the brain. ACS Nano. 2020;14(6):6729–6742.
  • Liu R, Yang J, Liu L, et al. An ‘amyloid-β cleaner’ for the treatment of Alzheimer's disease by normalizing microglial dysfunction. Adv Sci. 2020;7(2):1901555.
  • Wang H, Xu X, Pan Y-C, et al. Recognition and removal of amyloid-β by a heteromultivalent macrocyclic coassembly: a potential strategy for the treatment of Alzheimer's disease. Adv Mater. 2021;33(4):2006483.
  • Liu Z, Ma M, Yu D, et al. Target-driven supramolecular self-assembly for selective amyloid-β photooxygenation against Alzheimer's disease. Chem Sci. 2020;11(40):11003–11008.
  • Ding S, Khan AI, Cai X, et al. Overcoming blood–brain barrier transport: Advances in nanoparticle-based drug delivery strategies . Mater Today. 2020;37:112–125.
  • Sun C, Ding Y, Zhou L, et al. Noninvasive nanoparticle strategies for brain tumor targeting. Nanomed Nanotechnol Biol Med. 2017;13(8):2605–2621.
  • Fan K, Jia X, Zhou M, et al. Ferritin nanocarrier traverses the blood brain barrier and kills glioma. ACS Nano. 2018;12(5):4105–4115.
  • Nie Y, Schaffert D, Rödl W, et al. Dual-targeted polyplexes: one step towards a synthetic virus for cancer gene therapy. J Control Release. 2011;152(1):127–134.
  • Paris-Robidas S, Émond V, Tremblay C, et al. In vivo labeling of brain capillary endothelial cells after intravenous injection of monoclonal antibodies targeting the transferrin receptor. Mol Pharmacol. 2011;80(1):32–39.
  • Pardridge WM, Boado RJ, Patrick DJ, et al. Blood–brain barrier transport, plasma pharmacokinetics, and neuropathology following chronic treatment of the rhesus monkey with a brain penetrating humanized monoclonal antibody against the human transferrin receptor. Mol Pharm. 2018;15(11):5207–5216.
  • Adachi M, Kai K, Yamaji K, et al. Transferrin receptor 1 overexpression is associated with tumour de-differentiation and acts as a potential prognostic indicator of hepatocellular carcinoma. Histopathology. 2019;75(1):63–73.
  • Gopalan D, Pandey A, Udupa N, et al. Receptor specific, stimuli responsive and subcellular targeted approaches for effective therapy of Alzheimer: role of surface engineered nanocarriers. J Control Release. 2020;319:183–200.
  • Pardridge WM. Targeting neurotherapeutic agents through the blood–brain barrier. Arch Neurol. 2002;59(1):35–40.
  • Oh S, Kim BJ, Singh NP, et al. Synthesis and anti-cancer activity of covalent conjugates of artemisinin and a transferrin-receptor targeting peptide. Cancer Lett. 2009;274(1):33–39.
  • Li Y, Cam J, Bu G. Low-density lipoprotein receptor family. Mol Neurobiol. 2001;23(1):53–67.
  • Beffert U, Stolt PC, Herz J. Functions of lipoprotein receptors in neurons. J Lipid Res. 2004;45(3):403–409.
  • Deane R, Sagare A, Zlokovic BV. The role of the cell surface LRP and soluble LRP in blood–brain barrier Abeta clearance in Alzheimer's disease. Curr Pharm Des. 2008;14(16):1601–1605.
  • Cuzzo LM, Ross-Cisneros FN, Yee KM, et al. Low-density lipoprotein receptor-related protein is decreased in optic neuropathy of Alzheimer disease. J Neuroophthalmol. 2011;31(2):139–146.
  • Demeule M, Currie JC, Bertrand Y, et al. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. J Neurochem. 2008;106(4):1534–1544.
  • Meng F, Asghar S, Xu Y, et al. Design and evaluation of lipoprotein resembling curcumin-encapsulated protein-free nanostructured lipid carrier for brain targeting. Int J Pharm. 2016;506(1–2):46–56.
  • Grau A, Willig V, Fogel W, et al. Assessment of plasma lactoferrin in Parkinson's disease. Mov Disord. 2001;16(1):131–134.
  • Faucheux BA, Nillesse N, Damier P, et al. Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson disease. Proc Natl Acad Sci USA. 1995;92(21):9603–9607.
  • Meng F, Asghar S, Gao S, et al. A novel LDL-mimic nanocarrier for the targeted delivery of curcumin into the brain to treat Alzheimer's disease. Colloids Surf B Biointerfaces. 2015;134:88–97.
  • Werner H, LeRoith D. Insulin and insulin-like growth factor receptors in the brain: Physiological and pathological aspects. Eur Neuropsychopharmacol. 2014;24(12):1947–1953. 12/01;
  • Pardridge WM. Delivery of biologics across the blood–brain barrier with molecular trojan horse technology. BioDrugs. 2017;31(6):503–519.
  • Lee J, Pilch PF. The insulin receptor: structure, function, and signaling. Am J Physiol. 1994;266(2 Pt 1):C319–34.
  • Betzer O, Shilo M, Motiei M. Insulin-coated gold nanoparticles as an effective approach for bypassing the blood–brain barrier. Proc. SPIE 10891, Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVI, 108911H (5 March 2019); 2019.
  • Ulbrich K, Knobloch T, Kreuter J. Targeting the insulin receptor: nanoparticles for drug delivery across the blood–brain barrier (BBB). J Drug Target. 2011;19(2):125–132. 04/01
  • Krishnapuram R, Kirk-Ballard H, Dhurandhar EJ, et al. Insulin receptor-independent upregulation of cellular glucose uptake. Int J Obes. 2013;37(1):146–153.
  • Hawkins BT, Egleton RD, Davis TP. Modulation of cerebral microvascular permeability by endothelial nicotinic acetylcholine receptors. Am J Physiol Heart Circ Physiol. 2005;289(1):H212–H219.
  • Wang H, Chen F, Du Y-F, et al. Targeted inhibition of RAGE reduces amyloid-β influx across the blood–brain barrier and improves cognitive deficits in db/db mice. Neuropharmacology. 2018;131:143–153.
  • Cui S, Xiong F, Hong Y, et al. APPswe/Aβ regulation of osteoclast activation and RAGE expression in an age-dependent manner. J Bone Miner Res. 2011;26(5):1084–1098.
  • Šimić G, Španić E, Langer HL, et al. Blood–brain barrier and innate immunity in the pathogenesis of Alzheimer's disease. In: Teplow DB, editor. Progress in molecular biology and translational science.2019;168: 99–145.
  • Kong Y, Liu C, Zhou Y, et al. Progress of RAGE molecular imaging in Alzheimer's disease. Front Aging Neurosci. 2020;12:227.
  • Ma M, Gao N, Li X, et al. A biocompatible second near-infrared nanozyme for spatiotemporal and non-invasive attenuation of amyloid deposition through scalp and skull. ACS Nano. 2020;14(8):9894–9903.
  • Lalatsa A, Barbu E. Carbohydrate nanoparticles for brain delivery. International review of neurobiology. 2016;130:115–153.
  • McGee W, McLuckey S. The ornithine effect in peptide cation dissociation. J Mass Spectrom. 2013;48(7):856–861.
  • Shuvaev VV, Brenner JS, Muzykantov VR. Targeted endothelial nanomedicine for common acute pathological conditions. J Control Release. 2015;219:576–595.
  • Lu W, Sun Q, Wan J, et al. Cationic albumin-conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Res. 2006;66(24):11878–11887. 01/01
  • Lu W, Zhang Y, Tan YZ, et al. Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery. J Control Release. 2005;107(3):428–448.
  • Ramalingam P, Ko YT. Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: pharmacokinetic and brain distribution evaluations. Pharm Res. 2015;32(2):389–402.
  • Baumann D, Bachert C, Högger P. Development of a novel model for comparative evaluation of intranasal pharmacokinetics and effects of anti-allergic nasal sprays. Eur J Pharm Biopharm. 2012;80(1):156–163.
  • Severino P, Souto EB, Pinho S, et al. Hydrophilic coating of mitotane-loaded lipid nanoparticles: Preliminary studies for mucosal adhesion. Pharm Dev Technol. 2013;18(3):577–581. 09/29;
  • Elnaggar YSR, Etman SM, Abdelmonsif DA, et al. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer's disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci. 2015;104(10):3544–3556.
  • Huang M, Gu X, Gao X. Nanotherapeutic strategies for the treatment of neurodegenerative diseases. In: Gao H, Gao X, editors. Brain targeted drug delivery system. London: Academic Press; 2019. p. 321–356.
  • Weissenböck A, Wirth M, Gabor F. WGA-grafted PLGA-nanospheres: preparation and association with Caco-2 single cells. J Control Release. 2004;99(3):383–392.
  • Green M, Loewenstein PM. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell. 1988;55(6):1179–1188.
  • Rádis-Baptista G, Campelo IS, Morlighem JRL, et al. Cell-penetrating peptides (CPPs): From delivery of nucleic acids and antigens to transduction of engineered nucleases for application in transgenesis. J Biotechnol. 2017;252:15–26.
  • Liang JF, Yang VC. Insulin-cell penetrating peptide hybrids with improved intestinal absorption efficiency. Biochem Biophys Res Commun. 2005;335(3):734–738.
  • Kamei N, Morishita M, Takayama K. Importance of intermolecular interaction on the improvement of intestinal therapeutic peptide/protein absorption using cell-penetrating peptides. J Control Release. 2009;136(3):179–186.
  • Stalmans S, Bracke N, Wynendaele E, et al. Cell-penetrating peptides selectively cross the blood–brain barrier in vivo. PLoS One. 2015;10(10):e0139652.
  • Brooks H, Lebleu B, Vivès E. Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev. 2005;57(4):559–577.
  • Futaki S. Arginine-rich peptides: potential for intracellular delivery of macromolecules and the mystery of the translocation mechanisms. Int J Pharm. 2002;245(1–2):1–7.
  • Cao Q, Meng T, Man J, et al. aFGF promotes neurite growth by regulating GSK3β-CRMP2 signaling pathway in cortical neurons damaged by amyloid-β. J Alzheimers Dis. 2019;72(1):97–109.
  • Li B, Yu D, Xu Z. Activated protein C inhibits amyloid β production via promoting expression of ADAM-10. Brain Res. 2014;1545:35–44.
  • Yang H, Mu W, Wei D, et al. A novel targeted and high‐efficiency nanosystem for combinational therapy for Alzheimer's disease. Adv Sci. 2020;7(19):1902906.
  • Hu C, Tao L, Cao X, et al. The solute carrier transporters and the brain: physiological and pharmacological implications. Asian J Pharm Sci. 2020;15(2):131–144.
  • Adkins CE, Mittapalli RK, Manda VK, et al. P-glycoprotein mediated efflux limits substrate and drug uptake in a preclinical brain metastases of breast cancer model. Front Pharmacol. 2013;4:136–136.
  • Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 1976;455(1):152–162.
  • Gerardi D, Tinucci-Costa M, Silveira A, et al. Expression of P-glycoprotein, multidrug resistance-associated protein, glutathione-S-transferase pi and p53 in canine transmissible venereal tumor. Pesq Vet Bras. 2014;34(1):71–78.
  • Kuhnke D, Jedlitschky G, Grube M, et al. MDR1-P-glycoprotein (ABCB1) mediates transport of Alzheimer’s amyloid-β peptides—implications for the mechanisms of Aβ clearance at the blood–brain barrier. Brain Pathol. 2007;17(4):347–353.
  • Bu X, Lin J-Y, Cheng J, et al. Engineering endogenous ABC transporter with improving ATP supply and membrane flexibility enhances the secretion of β-carotene in Saccharomyces cerevisiae. Biotechnol Biofuels. 2020;13(1):168.
  • Cirrito J, Deane R, Fagan A, et al. P-glycoprotein deficiency at the blood–brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest. 2005;115(11):3285–3290.
  • Storck S, Meister S, Nahrath J, et al. Endothelial LRP1 transports amyloid-β1–42 across the blood–brain barrier. J Clin Investig. 2015;126(1):123–136.
  • Chai AB, Leung GKF, Callaghan R, et al. P-glycoprotein: a role in the export of amyloid-β in Alzheimer's disease? FEBS J. 2020;287(4):612–625.
  • Gallo JM, Li S, Guo P, et al. The effect of P-glycoprotein on paclitaxel brain and brain tumor distribution in mice. Cancer Res. 2003;63(16):5114.
  • Kemper EM, van Zandbergen AE, Cleypool C, et al. Increased penetration of paclitaxel into the brain by inhibition of P-Glycoprotein. Clin Cancer Res. 2003;9(7):2849–2855.
  • Deeken JF, Löscher W. The blood–brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res. 2007;13(6):1663–1674.
  • Fellner S, Bauer B, Miller DS, et al. Transport of paclitaxel (Taxol) across the blood–brain barrier in vitro and in vivo. J Clin Invest. 2002;110(9):1309–1318.
  • Koziara JM, Lockman PR, Allen DD, et al. Paclitaxel nanoparticles for the potential treatment of brain tumors. J Control Release. 2004;99(2):259–269.
  • Malmo J, Sandvig A, Vårum KM, et al. Nanoparticle mediated P-glycoprotein silencing for improved drug delivery across the blood–brain barrier: a siRNA-chitosan approach. PLOS One. 2013;8(1):e54182.
  • Scheepers A, Joost HG, Schürmann A. The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. J Parenter Enteral Nutr. 2004;28(5):364–371.
  • Winkler EA, Nishida Y, Sagare AP, et al. GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration. Nat Neurosci. 2015;18(4):521–530.
  • Tajes M, Ramos-Fernández E, Weng-Jiang X, et al. The blood–brain barrier: structure, function and therapeutic approaches. Mol Membr Biol. 2014;31(5):152–116.
  • Agrawal M, Ajazuddin, Tripathi DK, et al. Recent advancements in liposomes targeting strategies to cross blood–brain barrier (BBB) for the treatment of Alzheimer's disease. J Control Release. 2017;260:61–77.
  • Gromnicova R, Davies H, Sreekanthreddy P, et al. Glucose-coated gold nanoparticles transfer across human brain endothelium and enter astrocytes in vitro. PLOS One. 2013;8(12):e81043.
  • Tamba BI, Streinu V, Foltea G, et al. Tailored surface silica nanoparticles for blood–brain barrier penetration: preparation and in vivo investigation. Arabian J Chem. 2018;11(6):981–990.
  • Malm T, Loppi S, Kanninen KM. Exosomes in Alzheimer's disease. Neurochem Int. 2016;97:193–199.
  • Wang H, Sui H, Zheng Y, et al. Curcumin-primed exosomes potently ameliorate cognitive function in AD mice by inhibiting hyperphosphorylation of Tau protein through the AKT/GSK-3β pathway. Nanoscale. 2019;11(15):7481–7420.
  • Sardar Sinha M, Ansell-Schultz A, Civitelli L, et al. Alzheimer's disease pathology propagation by exosomes containing toxic amyloid-beta oligomers. Acta Neuropathol. 2018;136(1):41–56.
  • Losurdo M, Pedrazzoli M, D'Agostino C, et al. Intranasal delivery of mesenchymal stem cell-derived extracellular vesicles exerts immunomodulatory and neuroprotective effects in a 3xTg model of Alzheimer's disease. Stem Cells Transl Med. 2020;9(9):1068–1084.
  • Yang L, Zhai Y, Hao Y, et al. The regulatory functionality of exosomes derived from hUMSCs in 3D culture for Alzheimer's disease therapy. Small. 2020;16(3):e1906273.
  • Cui GH, Guo HD, Li H, et al. RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimer's disease. Immun Ageing. 2019;16:10.
  • Pan J, He R, Huo Q, et al. Brain microvascular endothelial cell derived exosomes potently ameliorate cognitive dysfunction by enhancing the clearance of Aβ through up-regulation of P-gp in mouse model of AD. Neurochem Res. 2020;45(9):2161–2172.
  • Chackerian B, Rangel M, Hunter Z, et al. Virus and virus-like particle-based immunogens for Alzheimer's disease induce antibody responses against amyloid-β without concomitant T cell responses. Vaccine. 2006;24(37–39):6321–6331.
  • Van Braeckel-Budimir N, Haijema BJ, Leenhouts K. Bacterium-like particles for efficient immune stimulation of existing vaccines and new subunit vaccines in mucosal applications. Front Immunol. 2013;4:282.
  • García-Arriaza J, Marín MQ, Merchán-Rubira J, et al. Tauopathy analysis in P301S mouse model of Alzheimer disease immunized with DNA and MVA Poxvirus-based vaccines expressing human full-length 4R2N or 3RC tau proteins. Vaccines. 2020;8(1):127.
  • Patrick GN, Zukerberg L, Nikolic M, et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature. 1999;402(6762):615–622.
  • He Y, Pan S, Xu M, et al. Adeno-associated virus 9-mediated Cdk5 inhibitory peptide reverses pathologic changes and behavioral deficits in the Alzheimer's disease mouse model. FASEB J. 2017;31(8):3383–3392.
  • Xu M, Huang Y, Song P, et al. AAV9-mediated Cdk5 inhibitory peptide reduces hyperphosphorylated tau and inflammation and ameliorates behavioral changes caused by overexpression of p25 in the brain. J Alzheimers Dis. 2019;70(2):573–585.
  • Huang Y, Huang W, Huang Y, et al. Cdk5 inhibitory peptide prevents loss of neurons and alleviates behavioral changes in p25 transgenic mice. J Alzheimers Dis. 2020;74(4):1231–1242.
  • Liu Y, Luo J, Chen X-J, et al. Cell membrane coating technology: a promising strategy for biomedical applications. Nano-Micro Lett. 2019;11(1):100.
  • Gao C, Chu X, Gong W, et al. Neuron tau-targeting biomimetic nanoparticles for curcumin delivery to delay progression of Alzheimer’s disease. J Nanobiotechnol. 2020;18(1):18. 12/01;
  • Shao X, Cui W, Xie X, et al. Treatment of Alzheimer's disease with framework nucleic acids. Cell Prolif. 2020;53(4):e12787.
  • Sinha M, Ansell-Schultz A, Civitelli L, et al. Alzheimer’s disease pathology propagation by exosomes containing toxic amyloid-beta oligomers. Acta Neuropathol. 2018;136:41–56
  • Guo JW, Guan PP, Ding WY, et al. Erythrocyte membrane-encapsulated celecoxib improves the cognitive decline of Alzheimer's disease by concurrently inducing neurogenesis and reducing apoptosis in APP/PS1 transgenic mice. Biomaterials. 2017;145:106–127.
  • He Y, Pan S, Xu M, et al. Adeno-associated virus 9–mediated Cdk5 inhibitory peptide reverses pathologic changes and behavioral deficits in the Alzheimer's disease mouse model. FASEB J. 2017;31(8):313383–313392.
  • Ji M, Xie X, Dong Qun L, et al. Engineered hepatitis B core virus-like particle carrier for precise and personalized Alzheimer's disease vaccine preparation via fixed-point coupling. Appl Mater Today. 2020;19:100575.
  • Sonawane SK, Ahmad A, Chinnathambi S. Protein-capped metal nanoparticles inhibit tau aggregation in Alzheimer’s disease. ACS Omega. 2019;4(7):12833–12840.
  • Gao C, Wang Y, Sun J, et al. Neuronal mitochondria-targeted delivery of curcumin by biomimetic engineered nanosystems in Alzheimer's disease mice. Acta Biomater. 2020;108:285–299.
  • Iranifar E, Seresht BM, Momeni F, et al. Exosomes and microRNAs: new potential therapeutic candidates in Alzheimer disease therapy. J Cell Physiol. 2019;234(3):2296–2305.
  • Yin Q, Ji X, Lv R, et al. Targetting exosomes as a new biomarker and therapeutic approach for Alzheimer's disease. Clin Interv Aging. 2020;15:195–205.
  • Cai Z-Y, Xiao M, Quazi S, et al. Exosomes: a novel therapeutic target for Alzheimer’s disease? Neural Regener Res. 2018;13(5):930–935.
  • Cui G-h, Guo H-d, Li H, et al. RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimer’s disease. Immun Ageing. 2019;16(1):10.
  • Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B. 2016;6(4):287–296.
  • Chung YH, Cai H, Steinmetz NF. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv Drug Deliv Rev. 2020;156:214–235.
  • Fan LW, Kaizaki A, Tien LT, et al. Celecoxib attenuates systemic lipopolysaccharide-induced brain inflammation and white matter injury in the neonatal rats. Neuroscience. 2013;240(14).
  • Jang J-H, Surh Y-J. Β-Amyloid-induced apoptosis is associated with cyclooxygenase-2 up-regulation via the mitogen-activated protein kinase–NF-κB signaling pathway. Free Radic Biol Med. 2005;38(12):1604–1613.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.