138
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Improving selective targeting to cancer-associated fibroblasts by modifying liposomes with arginine based materials

&
Pages 94-107 | Received 05 Apr 2021, Accepted 07 Jun 2021, Published online: 25 Jun 2021

References

  • Zahid M, Robbins PD. Cell-type specific penetrating peptides: therapeutic promises and challenges. Molecules. 2015;20(7):13055–13070.
  • Deb PK, Al-Attraqchi O, Chandrasekaran B, et al. Protein/peptide drug delivery systems: practical considerations in pharmaceutical product development. In: Rakesh Tekade, editor. Basic fundamentals of drug delivery. London (UK): Elsevier; 2019. p. 651–684.
  • Patel SG, Sayers EJ, He L, et al. Cell-penetrating peptide sequence and modification dependent uptake and subcellular distribution of green florescent protein in different cell lines. Sci Rep. 2019;9(1):1–9.
  • Hirose H, Takeuchi T, Osakada H, et al. Transient focal membrane deformation induced by arginine-rich peptides leads to their direct penetration into cells. Mol Ther. 2012;20(5):984–993.
  • Tanaka G, Nakase I, Fukuda Y, et al. CXCR4 stimulates macropinocytosis: implications for cellular uptake of arginine-rich cell-penetrating peptides and HIV. Chem Biol. 2012;19(11):1437–1446.
  • Futaki S, Hirose H, Nakase I. Arginine-rich peptides: methods of translocation through biological membranes. Curr Pharm Des. 2013;19(16):2863–2868.
  • Futaki S, Nakase I, Tadokoro A, et al. Arginine-rich peptides and their internalization mechanisms. Biochem Soc Trans. 2007;35(Pt 4):784–787.
  • Wender PA, Mitchell DJ, Pattabiraman K, et al. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci U S A. 2000;97(24):13003–13008.
  • Mitchell DJ, Steinman L, Kim DT, et al. Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res. 2000;56(5):318–325.
  • Kim H-K, Davaa E, Myung C-S, et al. Enhanced siRNA delivery using cationic liposomes with new polyarginine-conjugated PEG-lipid. Int J Pharm. 2010;392(1–2):141–147.
  • Chen Y, Bathula SR, Yang Q, et al. Targeted nanoparticles deliver siRNA to melanoma. J Invest Dermatol. 2010;130(12):2790–2798.
  • Li L, Song H, Luo K, et al. Gene transfer efficacies of serum-resistant amino acids-based cationic lipids: dependence on headgroup, lipoplex stability and cellular uptake. Int J Pharm. 2011;408(1–2):183–190.
  • Barenholz YC. Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–134.
  • Barenholz Y. Doxil—the first FDA-approved nano-drug: from an idea to a product. In: Dan Peer, editor. Handbook of harnessing biomaterials in nanomedicine. Singapore: Jenny Stanford Publishing; 2012. p. 335–398.
  • Zhong H, Chan G, Hu Y, et al. A comprehensive map of FDA-approved pharmaceutical products. Pharmaceutics. 2018;10(4):263.
  • Safra T. Cardiac safety of liposomal anthracyclines. Oncologist. 2003;8(S2):17–24.
  • Neuberger K, Boddupalli A, Bratlie KM. Effects of arginine-based surface modifications of liposomes for drug delivery in Caco-2 colon carcinoma cells. Biochem Eng J. 2018;139:8–14.
  • Storm G, Belliot SO, Daemen T, et al. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev. 1995;17(1):31–48.
  • Lestini BJ, Sagnella SM, Xu Z, et al. Surface modification of liposomes for selective cell targeting in cardiovascular drug delivery. J Control Release. 2002;78(1–3):235–247.
  • Nguyen TX, Huang L, Gauthier M, et al. Recent advances in liposome surface modification for oral drug delivery. Nanomedicine (Lond). 2016;11(9):1169–1185.
  • Chang H-I, Yeh M-K. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine. 2012;7:49–60.
  • Bygd HC, Ma L, Bratlie KM. Physicochemical properties of liposomal modifiers that shift macrophage phenotype. Mater Sci Eng C Mater Biol Appl. 2017;79:237–244.
  • Ma L, Bygd HC, Bratlie KM. Improving selective targeting to macrophage subpopulations through modifying liposomes with arginine based materials. Integr Biol (Camb). 2017;9(1):58–67.
  • Bygd HC, Forsmark KD, Bratlie KM. Altering in vivo macrophage responses with modified polymer properties. Biomaterials. 2015;56:187–197.
  • Akilbekova D, Philiph R, Graham A, et al. Macrophage reprogramming: influence of latex beads with various functional groups on macrophage phenotype and phagocytic uptake in vitro. J Biomed Mater Res A. 2015;103(1):262–268.
  • Wang D, Bratlie KM. Influence of polymer chemistry on cytokine secretion from polarized macrophages. ACS Biomater Sci Eng. 2015;1(3):166–174.
  • Nagata S, Tanaka M. Programmed cell death and the immune system. Nat Rev Immunol. 2017;17(5):333–340.
  • Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13.
  • Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14–20.
  • Lee H-M, Lee E, Yeo S-Y, et al. Drug repurposing screening identifies bortezomib and panobinostat as drugs targeting cancer associated fibroblasts (CAFs) by synergistic induction of apoptosis. Invest New Drugs. 2018;36(4):545–560.
  • Liu T, Zhou L, Li D, et al. Cancer-associated fibroblasts build and secure the tumor microenvironment. Front Cell Dev Biol. 2019;7:60.
  • Botti G, Cerrone M, Scognamiglio G, et al. Microenvironment and tumor progression of melanoma: new therapeutic prospectives. J Immunotoxicol. 2013;10(3):235–252.
  • Bu L, Baba H, Yasuda T, et al. Functional diversity of cancer-associated fibroblasts in modulating drug resistance . Cancer Sci. 2020;111(10):3468–3477.
  • Sun Y, Campisi J, Higano C, et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med. 2012;18(9):1359–1368.
  • Sun Y, Zhu D, Chen F, et al. SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment. Oncogene. 2016;35(33):4321–4334.
  • Zhang D, Li L, Jiang H, et al. Tumor-stroma IL1β-IRAK4 feedforward circuitry drives tumor fibrosis, chemoresistance, and poor prognosis in pancreatic cancer. Cancer Res. 2018;78(7):1700–1712.
  • Zhai J, Shen J, Xie G, et al. Cancer-associated fibroblasts-derived IL-8 mediates resistance to cisplatin in human gastric cancer. Cancer Lett. 2019;454:37–43.
  • Lotti F, Jarrar AM, Pai RK, et al. Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J Exp Med. 2013;210(13):2851–2872.
  • Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–348.
  • O'Connell JT, Sugimoto H, Cooke VG, et al. VEGF-A and tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc Natl Acad Sci U S A. 2011;108(38):16002–16007.
  • Bergers G, Brekken R, McMahon G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000;2(10):737–744.
  • Muñoz-Galván S, Gutierrez G, Perez M, et al. MAP17 (PDZKIP1) expression determines sensitivity to the proteasomal inhibitor bortezomib by preventing cytoprotective autophagy and NFκB activation in breast cancer. Mol Cancer Ther. 2015;14(6):1454–1465.
  • Moser C, Müller M, Kaeser MD, et al. Influenza virosomes as vaccine adjuvant and carrier system. Expert Rev Vaccines. 2013;12(7):779–791.
  • Toffoli G, Viel A, Tumiotto L, et al. Sensitivity pattern of normal and Ha-ras transformed NIH3T3 fibroblasts to antineoplastic drugs. Tumori. 1989;75(5):423–428.
  • Chen X, Ding G, Gao Q, et al. A human anti-c-Met Fab fragment conjugated with doxorubicin as targeted chemotherapy for hepatocellular carcinoma. PLoS One. 2013;8(5):e63093.
  • Wang Y, Cui Y, Zhao Y, et al. Fluorescent carbon dot-gated multifunctional mesoporous silica nanocarriers for redox/enzyme dual-responsive targeted and controlled drug delivery and real-time bioimaging. Eur J Pharm Biopharm. 2017;117:105–115.
  • The Free Chemical Database, Royal Society of Chemistry; 2021; [Internet]. Available from: www.chemspider.com
  • Yagi N, Ogawa Y, Kodaka M, et al. A surface-modified functional liposome capable of binding to cell membranes. Chem Commun. 1999;17:1687–1688.
  • Connor J, Huang L. pH-sensitive immunoliposomes as an efficient and target-specific carrier for antitumor drugs. Cancer Res. 1986;46(7):3431–3435.
  • Ropert C, Malvy C, Couvreur P. Inhibition of the Friend retrovirus by antisense oligonucleotides encapsulated in liposomes: mechanism of action. Pharm Res. 1993;10(10):1427–1433.
  • Holmberg EG, Reuer QR, Geisert EE, et al. Delivery of plasmid DNA to glial cells using pH-sensitive immunoliposomes. Biochem Biophys Res Commun. 1994;201(2):888–893.
  • Templeton NS, Lasic DD, Frederik PM, et al. Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol. 1997;15(7):647–652.
  • Kocic H, Arsic I, Stankovic M, et al. Proliferative, anti-apoptotic and immune-enhancing effects of l-arginine in culture of skin fibroblasts. J Biol Regul Homeost Agents. 2017;31(3):667–672.
  • Mirahmadi N, Babaei MH, Vali AM, et al. Effect of liposome size on peritoneal retention and organ distribution after intraperitoneal injection in mice. Int J Pharm. 2010;383(1–2):7–13.
  • Şalva E, Turan SÖ, Eren F, et al. The enhancement of gene silencing efficiency with chitosan-coated liposome formulations of siRNAs targeting HIF-1α and VEGF. Int J Pharm. 2015;478(1):147–154.
  • Ahsan F, Rivas IP, Khan MA, et al. Targeting to macrophages: role of physicochemical properties of particulate carriers—liposomes and microspheres—on the phagocytosis by macrophages. J Control Release. 2002;79(1–3):29–40.
  • Campos-Martorell M, Cano-Sarabia M, Simats A, et al. Charge effect of a liposomal delivery system encapsulating simvastatin to treat experimental ischemic stroke in rats. Int J Nanomedicine. 2016;11:3035–3048.
  • Krasnici S, Werner A, Eichhorn ME, et al. Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. Int J Cancer. 2003;105(4):561–567.
  • Patil S, Sandberg A, Heckert E, et al. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials. 2007;28(31):4600–4607.
  • Epstein-Barash H, Gutman D, Markovsky E, et al. Physicochemical parameters affecting liposomal bisphosphonates bioactivity for restenosis therapy: internalization, cell inhibition, activation of cytokines and complement, and mechanism of cell death. J Control Release. 2010;146(2):182–195.
  • Nishiya T, Lam RTT, Eng F, et al. Mechanistic study on toxicity of positively charged liposomes containing stearylamine to blood. Artif Cells Blood Substit Immobil Biotechnol. 1995;23(4):505–512.
  • Smistad G, Jacobsen J, Sande SA. Multivariate toxicity screening of liposomal formulations on a human buccal cell line. Int J Pharm. 2007;330(1–2):14–22.
  • Kelly C, Jefferies C, Cryan S-A. Targeted liposomal drug delivery to monocytes and macrophages. J Drug Deliv. 2011;2011:727241.
  • Maruyama K. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv Drug Deliv Rev. 2011;63(3):161–169.
  • Rehman TU, Khirallah J, Demirel E, et al. Development of acoustically active nanocones using the host–guest interaction as a new histotripsy agent. ACS Omega. 2019;4(2):4176–4184.
  • Mikada M, Sukhbaatar A, Miura Y, et al. Evaluation of the enhanced permeability and retention effect in the early stages of lymph node metastasis. Cancer Sci. 2017;108(5):846–852.
  • Firestein GS, Budd RC, Gabriel SE, et al. Kelley and Firestein’s textbook of rheumatology e-book. Philadelphia (PA): Elsevier Health Sciences; 2016.
  • Alkasalias T, Moyano-Galceran L, Arsenian-Henriksson M, et al. Fibroblasts in the tumor microenvironment: shield or spear? Int J Mol Sci. 2018;19(5):1532.
  • Sun Q, Zhang B, Hu Q, et al. The impact of cancer-associated fibroblasts on major hallmarks of pancreatic cancer. Theranostics. 2018;8(18):5072–5087.
  • Hessmann E, Patzak MS, Klein L, et al. Fibroblast drug scavenging increases intratumoural gemcitabine accumulation in murine pancreas cancer. Gut. 2018;67(3):497–507.
  • Provenzano PP, Cuevas C, Chang AE, et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;21(3):418–429.
  • Pries AR, Höpfner M, Le Noble F, et al. The shunt problem: control of functional shunting in normal and tumour vasculature. Nat Rev Cancer. 2010;10(8):587–593.
  • Hesler RA, Huang JJ, Starr MD, et al. TGF-β-induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3. Carcinogenesis. 2016;37(11):1041–1051.
  • Rice AJ, Cortes E, Lachowski D, et al. Matrix stiffness induces epithelial-mesenchymal transition and promotes chemoresistance in pancreatic cancer cells. Oncogenesis. 2017;6(7):e352.
  • Abraham SA, Waterhouse DN, Mayer LD, et al. The liposomal formulation of doxorubicin. Methods Enzymol. 2005; 391: 71–97.
  • Public Health England. Contraindications and special considerations (chapter 6). In: Mary Ramsay, editor. The Green Book: immunisation against infectious disease. London (UK); 2006.
  • Salatin S, Yari Khosroushahi A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J Cell Mol Med. 2017;21(9):1668–1686.
  • Zhang R, Qin X, Kong F, et al. Improving cellular uptake of therapeutic entities through interaction with components of cell membrane. Drug Deliv. 2019;26(1):328–342.
  • Krämer SD, Aschmann HE, Hatibovic M, et al. When barriers ignore the "rule-of-five". Adv Drug Deliv Rev. 2016;101:62–74.
  • Chagas CM, Moss S, Alisaraie L. Drug metabolites and their effects on the development of adverse reactions: revisiting Lipinski's Rule of Five. Int J Pharm. 2018;549(1–2):133–149.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.