418
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Nanoliposomes as drug delivery systems: safety concerns

, , , , , , , & show all
Pages 313-325 | Received 21 Sep 2021, Accepted 09 Oct 2021, Published online: 26 Oct 2021

References

  • Su C, Liu Y, He Y, et al. Analytical methods for investigating in vivo fate of nanoliposomes: a review. J Pharm Anal. 2018;8(4):219–225.
  • Chang HI, Yeh MK. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomed. 2012;7:49–60.
  • Liu X, Tang I, Wainberg ZA, et al. Safety considerations of cancer nanomedicine – a key step towards translation. Small. 2020;16(36):e2000673.
  • Khabriev RU. Rukovodstvo po eksperimental'nomu (doklinicheskomu) izucheniyu novyh farmakologicheskih veshchestv [Guidelines for the experimental (preclinical) study of new pharmacological substances]. 2nd ed. Moscow: rev. and add. M. JSC Publishing house Medicine; 2005.
  • Bovina EM, Romanov BK, Kazakov AS, et al. Nanorazmernye lekarstvennye sredstva: osobennosti ocenki bezopasnosti [Nanoscale drugs: features of safety assessment. Safety and risk of pharmacotherapy]. Bezopasnost' i Risk Farmakoterapii. 2019;7(3):127–138.
  • Sharma A, Madhunapantula SV, Robertson GP. Toxicological considerations when creating nanoparticle-based drugs and drug delivery systems. Expert Opin Drug Metab Toxicol. 2012;8(1):47–69.
  • De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3(2):133–149.
  • Puri A, Loomis K, Smith B, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst. 2009;26(6):523–580.
  • Etheridge ML, Campbell SA, Erdman AG, et al. The big picture on small medicine: the state of nanomedicine products approved for use or in clinical trials. Nanomedicine. 2013;9(1):1–14.
  • Zoghi A, Khosravi-Darani K, Omri A. Process variables and design of experiments in liposome and nanoliposome research. Mini Rev Med Chem. 2018;18(4):324–344.
  • Aguilar-Pérez KM, Avilés-Castrillo JI, Medina DI, et al. Insight into nanoliposomes as smart nanocarriers for greening the twenty-first century biomedical settings. Front Bioeng Biotechnol. 2020;8:579536.
  • Zarrabi A, Alipoor Amro Abadi M, Khorasani S, et al. Nanoliposomes and tocosomes as multifunctional nanocarriers for the encapsulation of nutraceutical and dietary molecules. Molecules. 2020;25(3):638.
  • Wickline SA, Lanza GM. Nanotechnology for molecular imaging and targeted therapy. Circulation. 2003;107(8):1092–1095.
  • Nune SK, Gunda P, Thallapally PK, et al. Nanoparticles for biomedical imaging. Expert Opin Drug Deliv. 2009;6(11):1175–1194.
  • Rajabi M, Mousa SA. Lipid nanoparticles and their application in nanomedicine. Curr Pharm Biotechnol. 2016;17(8):662–672.
  • Stafford RJ, Shetty A, Elliott AM, et al. MR temperature imaging of nanoshell mediated laser ablation. Int J Hyperthermia. 2011;27(8):782–790.
  • Clift MJD, Rothen-Rutishauser B, Brown DM, et al. The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol Appl Pharmacol. 2008;232(3):418–427.
  • Litzinger DC, Buiting AMJ, van Rooijen N, et al. Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes. Biochim Biophys Acta. 1994;1190(1):99–107.
  • DP, Hirsch LR, Halas NJ, et al. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 2004;209(2):171–176.
  • Storm G, Oussoren C, Pam P, et al. Liposome technology. Vol. III, 2nd ed. Boca Raton (FL): CRC Press; 1993.
  • Kuntz E. The "essential" phospholipids in hepatology-50 years of experimental and clinical experience. In: Gundermann KJ, Schumacher R, editors. 50th anniversary of phospholipid research (EPL). Bingen am Rhein: wbnVerlag; 1990. p. 49–68.
  • Rosseneu M, Declercq B, Vandamme D, et al. Influence of oral polyunsaturated and saturated phospholipid treatment on the lipid composition and fatty acid profile of chimpanzee lipoproteins. Atherosclerosis. 1979;32(2):141–153.
  • Hassan HH, Blain S, Boucher B, et al. Structural modification of plasma HDL by phospholipids promotes efficient ABCA1-mediated cholesterol release. J Lipid Res. 2005;46(7):1457–1465.
  • Torkhovskaya TI, Kudinov VA, Zakharova TS, et al. High density lipoproteins phosphatidylcholine as a regulator of reverse cholesterol transport. Russ J Bioorg Chem. 2018;44(6):608–618.
  • Di Paolo B, Chakrabarti E, Maher JF. Phosphatidylcholine does not affect peritoneal transport of intact rabbits. Perit Dial Int. 1989;9(3):211–213.
  • Podymova SD. Bolezni pecheni [Diseases of the liver]. Moscow: Medicine; 1984.
  • Lüchtenborg C, Niederhaus B, Brügger B, et al. Lipid profiles of five essential phospholipid preparations for the treatment of nonalcoholic fatty liver disease: a comparative study. Lipids. 2020;55(3):271–278.
  • Archakov AI, Sel'tsovskiĭ AP, Lisov VI, et al. Phosphogliv: mechanism of therapeutic action and clinical efficacy. Vopr Med Khim. 2002;48(2):39–53.
  • Allen TM. Interactions of liposomes and other drug carriers with the mononuclear phagocyte system. In: Gregoriadis G, editor. Liposomes as drug carriers. New York (NY); Chichester: J Wiley; 1988.
  • Toffano G, Bruni A. Pharmacological properties of phospholipid liposomes. Pharmacol Res Commun. 1980;12(9):829–845.
  • Zbinden G, Wunderli-Allenspach H, Grimm L. Assessment of thrombogenic potential of liposomes. Toxicology. 1989;54(3):273–280.
  • Adams DH, Joyce G, Richardson VJ, et al. Liposome toxicity in the mouse central nervous system. J Neurol Sci. 1977;31(2):173–179.
  • Mayhew E, Ito M, Lazo R. Toxicity of non-drug-containing liposomes for cultured human cells. Exp Cell Res. 1987;171(1):195–202.
  • Rustum Y, Dave C, Mayhew E, et al. Role of liposome type and route of administration in the antitumor activity of liposome-entrapped 1-beta-D-arabinofuranosyl-cytosine against mouse L1210 leukemia. Cancer Res. 1979;39:1390–1395.
  • Farhood H, Gao X, Son K, et al. Cationic liposomes for direct gene transfer in therapy of cancer and other diseases. Ann N Y Acad Sci. 1994;716(1 Gene Therapy):23–35.
  • Shum P, Kim JM, Thompson DH. Phototriggering of liposomal drug delivery systems. Adv Drug Deliv Rev. 2001;53(3):273–284.
  • Zolnik BS, Gonzalez-Fernandez A, Sadrieh N, et al. Nanoparticles and the immune system. Endocrinology. 2010;151(2):458–465.
  • Heurtault B, Saulnier P, Pech B, et al. Physico-chemical stability of colloidal lipid particles. Biomaterials. 2003; 24(23):4283–4300.
  • Parnham MJ, Wetzig H. Toxicity screening of liposomes. Chem Phys Lip. 1993;64(1–3):263–274.
  • Senior JH. Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Therap Drug Carrier Syst. 1987;3(2):127–193.
  • Foucaud L, Wilson MR, Brown DM, et al. Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicol Lett. 2007;174(1–3):1–9.
  • Boratto FA, Franco MS, Barros ALB, et al. Alpha-tocopheryl succinate improves encapsulation, pH-sensitivity, antitumor activity and reduces toxicity of doxorubicin-loaded liposomes. Eur J Pharm Sci. 2020;144:105205.
  • Zuidam NJ, Van Winden E, De Vrueh R, et al. Stability, storage, and sterilization of liposomes. In: Torchilin VP, Weissing V, editors. Liposomes, a practical approach. 2nd ed. Oxford: Oxford University Press; 2003.
  • Kumar VV, Malewicz B, Baumann WJ. Lysophosphatidylcholine stabilizes small unilamellar phosphatidylcholine vesicles. Phosphorus-31 NMR evidence for the “wedge” effect. Biophys J. 1989;55(4):789–792.
  • Kisel MA, Shadyro OI, Yurkova IL. Vliyanie lizofosfatidilholina na radiacionno-inducirovannoe perekisnoe okislenie lipidov v liposomah [Effect of lysophosphatidylcholine on radiation-induced lipid peroxidation in liposomes]. Radiat Biol Radioecol. 2001;41:23–25.
  • Saba TM. Physiology and physiopathology of the reticuloendothelial system. Arch Intern Med. 1970;126(6):1031–1052.
  • Lutz J, Augustin AJ, Jäger LJ, et al. Acute toxicity and depression of phagocytosis in vivo by liposomes: influence of lysophosphatidylcholine. Life Sci. 1995;56(2):99–106.
  • Dadashzadeh S, Mirahmadi N, Babaei MH, et al. Peritoneal retention of liposomes: effects of lipid composition, PEG coating and liposome charge. J Control Release. 2010;148(2):177–186.
  • Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin Pharmacokinet. 2003;42(5):419–436.
  • Barenholz YC. Doxil® – the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–134.
  • Lorusso D, Di Stefano A, Carone V, et al. Pegylated liposomal doxorubicin-related palmar-plantar erythrodysesthesia (‘hand-foot’ syndrome). Ann Oncol. 2007;18(7):1159–1164.
  • Yokomichi N, Nagasawa T, Coler-Reilly A, et al. Pathogenesis of hand-foot syndrome induced by PEG-modified liposomal doxorubicin. Hum Cell. 2013;26(1):8–18.
  • Solomon R, Gabizon AA. Clinical pharmacology of liposomal. Anthracyclines: focus on pegylated liposomal doxorubicin. Clin Lymph Myelom. 2008;8(1):21–32.
  • Chanan-Khan A, Szebeni J, Savay S, et al. Complement activation following first exposure to pegylated liposomal doxorubicin (doxil): possible role in hypersensitivity reactions. Ann Oncol. 2003;14(9):1430–1437.
  • Szebeni J, Baranyi L, Savay S, et al. Role of complement activation in hypersensitivity reactions to doxil and hynic PEG liposomes: experimental and clinical studies. J Liposome Res. 2002;12(1–2):165–172.
  • Vail DM, Chun R, Thamm DH, et al. Efficacy of pyridoxine to amelio-rate the cutaneous toxicity associated with doxorubicin containing pegylated (stealth) liposomes: a randomized, double-blind clinical trial using a canine model. Clin Cancer Res. 1998;4:1567–1571.
  • O’Brien ΜE, Wigler N, Inbar M, et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (caelyx/doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol. 2004;15(3):440–449.
  • Zhu Y, Wang F, Zhao Y, et al. Pegylated liposomal doxorubicin-related palmar-plantar erythrodysesthesia: a literature review of pharmaceutical and clinical aspects. Eur J Hosp Pharm. 2021;28(3):124–128.
  • Gandhi R, Khatri N, Baradia D, et al. Surface-modified Epirubicin-HCl liposomes and its in vitro assessment in breast cancer cell-line: MCF-7. Drug Deliv. 2016;23(4):1152–1162.
  • Wei X, Shamrakov D, Nudelman S, et al. Cardinal role of intraliposome doxorubicin-sulfate nanorod crystal in doxil properties and performance. ACS Omega. 2018;3(3):2508–2517.
  • Safra T, Muggia F, Jeffers S, et al. Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol. 2000;11(8):1029–1033.
  • Mross K, Niemann B, Massing U, et al. Pharmacokinetics of liposomal doxorubicin (TLC-D99; myocet) in patients with solid tumors: an open-label, single-dose study. Cancer Chemother Pharmacol. 2004;54(6):514–524.
  • Kimoto A, Watanabe A, Yamamoto E, et al. Rapid analysis of doxil stability and drug release from doxil by HPLC using a glycidyl methacrylate-coated monolithic column. Chem Pharm Bull. 2017;65(10):945–949.
  • van Winden EC. Freeze-drying of liposomes: theory and practice. Methods Enzymol. 2003;367:99–110.
  • Arshinova OY, Sanarova EV, Lantsova AV, et al. Drug synthesis methods and manufacturing technology: lyophilization of liposomal drug forms. Pharm Chem J. 2012;46(4):228–233.
  • Ochs HD, Buckley RH, Pirofsky B, et al. Safety and patient acceptability of intravenous immune globulin in 10% maltose. Lancet. 1980; 316(8205):1158–1159.
  • Crommelin D, Metselaa J, Storm G. Liposomes: the science and the regulatory landscape. In: Crommelin DJA, de Vlieger JSB, editors. Non-biological complex drugs, AAPS advances in the pharmaceutical sciences series. Vol. 20. Cham: Springer International Publishing Switzerland; 2015.
  • Medvedeva NV, Prozorovskiy VN, Ignatov DV, et al. Pharmacological agents and transport nanosystems based on plant phospholipids. Biochem Moscow Suppl Ser B. 2015;9(3):205–216.
  • Oude Blenke E, Mastrobattista E, Schiffelers RM. Strategies for triggered drugrelease from tumor targeted liposomes. Expert Opin Drug Deliv. 2013;10(10):1399–1410.
  • Lin CY, Li RJ, Huang CY, et al. Controlled release of liposome-encapsulated temozolomide for brain tumour treatment by convection-enhanced delivery. J Drug Target. 2018;26(4):325–332.
  • Chen C, Gao K, Lian H, et al. Single-particle characterization of theranosticliposomes with stimulus sensing and controlled drugrelease properties. Biosens Bioelectron. 2019;131:185–192.
  • Tsuji JS, Maynard AD, Howard PC, et al. Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. Toxicol Sci. 2006;89(1):42–50.
  • Stern ST, McNeil SE. Nanotechnology safety concerns revisited. Toxicol Sci. 2008;101(1):4–21.
  • Hall JB, Dobrovolskaia MA, Patri AK, et al. Characterization of nanoparticles for therapeutics. Nanomedicine. 2007;2(6):789–803.
  • Gabizon AA, Barenholz Y, Bialer M. Prolongation of the circulation time of doxorubicin encapsulated in liposomes containing a polyethylene glycol-derivatized phospholipid: pharmacokinetic studies in rodents and dogs. Pharm Res. 1993;10(5):703–708.
  • Tefas LR, Sylvester B, Tomuta I, et al. Development of antiproliferative long-circulating liposomes co-encapsulating doxorubicin and curcumin, through the use of a quality-by-design approach. DDDT. 2017;11:1605–1621.
  • Li M, Shi F, Fei X, et al. PEGylated long-circulating liposomes deliver homoharringtonine to suppress multiple myeloma cancer stem cells. Exp Biol Med. 2017;242(9):996–1004.
  • Sun Q, Zhou Z, Qiu N, et al. Rational design of cancer nanomedicine: nanoproperty integration and synchronization. Adv Mater. 2017;29.
  • Zhang Y, Zhai M, Chen Z, et al. Dual-modified liposome codelivery of doxorubicin and vincristine improve targeting and therapeutic efficacy of glioma. Drug Deliv. 2017;24(1):1045–1055.
  • Liu C, Liu XN, Wang GL, et al. A dual-mediated liposomal drug delivery system targeting the brain: rational construction, integrity evaluation across the blood–brain barrier, and the transporting mechanism to glioma cells. IJN. 2017;12:2407–2425.
  • Townsley MI, Parker JC, Longenecker GL, et al. Pulmonary embolism: analysis of endothelial pore sizes in canine lung. Am J Physiol Heart Circ Physiol. 1988;255:1075–1083.
  • Bahari LA, Hamishehkar H. The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; a comparative literature review. Adv Pharm Bull. 2016;6(2):143–151.
  • Bertrand N, Leroux JC. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release. 2012;161(2):152–163.
  • Shironin AV, Ipatova OM, Medvedeva NV, et al. In’ekcionnaya forma indometacina v fosfolipidnyh nanochasticah: associaciya s lipoproteinami nizkoj plotnosti i protivovospalitel'noe dejstvie [Injectable form of indomethacin in phospholipid nanoparticles: association with low density lipoproteins and anti-inflammatory action]. Efferent Physicochem Med. 2012;1:21–24.
  • Medvedeva NV, Torkhovskaya TI, Kostryukova LV, et al. Vliyanie vklyucheniya doksorubicina v fosfolipidnye nanochasticy na nakoplenie v opuholi i specificheskuyu aktivnost' [The effect of the incorporation of doxorubicin into phospholipid nanoparticles on the accumulation in the tumor and specific activity. Biomed Khim. 2017;63(1):56–61.
  • Kostryukova LV, Prozorovskiy VN, Medvedeva NV, et al. Comparison of a new nanoform of the photosensitizer chlorin e6, based on plant phospholipids, with its free form. FEBS Open Bio. 2018;8(2):201–210.
  • Ipatova OM, Tikhonova EG, Sanzhakov MA, et al. [Phospholipid composition of doxorubicin for the treatment of breast cancer patients]. Patent RU 2 714 137 C1; 2020.
  • Nemtsova ER, Tikhonova EG, Bezborodova OA, et al. Doklinicheskoe izuchenie farmakologicheskih svojstv preparata “Doksorubicin-NF” [Preclinical study pharmacological properties of the drug “Doxorubicin-NF”]. Bull Exp Biol Med. 2020;169(6):720–726.
  • Krishna R, Riggs KW, Kwan E, et al. Clearance and disposition of indometacin in chronically instrumented fetal lambs following a 3-day continuous intravenous infusion. J Pharm Pharmacol. 2002;54(6):801–808.
  • Ryabtseva MS, Klimova OV, Barsegyan GG. Ocenka vliyaniya fosfolipidnoj transportnoj sistemy na pokazateli embrional'nogo razvitiya in vivo [Assessment of the effect of the phospholipid transport system on the indicators of embryonic development in vivo. Reprod Probl. 2012;2:23–26.
  • Rane SS, Choi P. Polydispersity index: how accurately does it measure the breadth of the molecular weight distribution? Chem Mater. 2005;17(4):926–926.
  • Clarke S. Development of hierarchical magnetic nanocomposite materials for biomedical applications [dissertation]. Northside, Dublin: Dublin City University; 2013.
  • Putri DC, Dwiastuti R, Marchaban M, et al. Optimization of mixing temperature and sonication duration in liposome preparation. J Pharm Sci Commun. 2017;14(2):79–85.
  • Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidicnanocarrier systems. Pharmaceutics. 2018;10(2):57.
  • Wibroe PP, Ahmadvand D, Oghabian MA, et al. An integrated assessment of morphology, size, and complement activation of the PEGylated liposomal doxorubicin products Doxil®, Caelyx®, DOXOrubicin, and SinaDoxosome. J Control Release. 2016;221:1–8.
  • FDA. Liposome drug products; chemistry, manufacturing, and controls; human pharmacokinetics and bioavailability; labeling documentation. Guidance for industry; April 2018. Pharmaceutical quality/CMC. Silver Spring (MD): U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER); 2018.
  • Szebeni J, Storm G. Complement activation as a bioequivalence issue relevant to generic liposome development. Biochem Biophys Res Commun. 2015;468(3):490–497.
  • Haxby JA, Kinsky CB, Kinsky SC. Immune response of a liposomal model membrane. Proc Natl Acad Sci USA. 1968;61(1):300–307.
  • Moghimi SM, Simberg D, Papini E, et al. Complement activation by drug carriers and particulate pharmaceuticals: principles, challenges and opportunities. Adv Drug Deliv Rev. 2020;157:83–95.
  • Ehrnthaller C, Ignatius A, Gebhard F, et al. New insights of an old defense system: structure, function, and clinical relevance of the complement system. Mol Med. 2011;17(3–4):317–329.
  • Hajishengallis G, Reis ES, Mastellos DC, et al. Novel mechanisms and functions of complement. Nat Immunol. 2017;18(12):1288–1298.
  • Pio R, Corrales L, Lambris JD. The role of complement in tumor growth. Adv Exp Med Biol. 2014;772:229–262.
  • Patel SV, Khan DA. Adverse reactions to biologic therapy. Immunol Allergy Clin North Am. 2017;37(2):397–412.
  • Nonaka M. Evolution of the complementsystem. Sub Cell Biochem. 2014;80:31–43.
  • Owensiii D, Peppas N. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102.
  • Vu VP, Gifford GB, Chen F, et al. Immunoglobulin deposition on biomolecule corona determines complement opsonisation efficiency of preclinical and clinical nanoparticles. Nat Nanotechnol. 2019;14(3):260–268.
  • Tretyakova DS, Onishchenko NR, Vostrova AG, et al. Interactions of antitumor liposomes carrying lipophilic prodrugs in the bilayer with blood plasma proteins. Bioorg Chem. 2017;43(6):661–673.
  • Szebeni J, Muggia F, Gabizon A, et al. Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: prediction and prevention. Adv Drug Deliv Rev. 2011;63(12):1020–1030.
  • Moghimi SM, Hamad I. Liposome-mediated triggering of complement cascade. J Lipos Res. 2008;18(3):195–209.
  • Moghimi SM, Hunter AC. Recognition by macrophages and liver cells of opsonized phospholipid vesicles and phospholipid headgroups. Pharm Res. 2001;18(1):1–8.
  • Szebeni J. Complement activation-related pseudoallergy: a new class of drug-induced immune toxicity. Toxicology. 2005;216(2–3):106–121.
  • Szebeni J, Baranyi L, Savay S, et al. Liposome-induced pulmonary hypertension: properties and mechanism of a complement-mediated pseudoallergic reaction. Am J Physiol Heart Circ Physiol. 2000;279(3):1319–1328.
  • Szebeni J, Bedocs P, Rozsnyay Z, et al. Liposome-induced complement activation and related cardiopulmona-ry distress in pigs: factors promoting reactogenicity of doxil and AmBisome. Nanomedicine. 2012;8(2):176–184.
  • Őrfi E, Mészáros T, Hennies M, et al. Acute physiological changes caused by complement activators and amphotericin B-containing liposomes in mice. Int J Nanomedicine. 2019;14:1563–1573.
  • Szebeni J, Simberg D, Gonzalez-Fernandez A, et al. Roadmap and strategy for overcoming infusion reactions to nanomedicines. Nat Nanotechnol. 2018;13(12):1100–1108.
  • Slastnikova TA, Rosenkranz AA, Zalutsky MR, et al. Modular nanotransporters for targeted intracellular delivery of drugs: folate receptors as potential targets. Curr Pharm Des. 2015;21(9):1227–1238.
  • Prozorovsky VN, Torkhovskaya TI, Kostryukova LV, et al. The use of specific peptides for targeted delivery of nanoparticles with anticancer drugs. Biopharma J. 2018;10(4):3–18.
  • Kostryukova LV, Korotkevich EI, Morozevich GE, et al. Effect of cell-penetrating arginine peptide on interaction of photosensitizer chlorin e6 incorporated into phospholipid nanoparticles with tumor cells. Bull Exp Biol Med. 2019;167(3):347–350.
  • Chen Q, Liu J. Transferrin and folic acid co-modified bufalin-loaded nanoliposomes: preparation, characterization, and application in anticancer activity. Int J Nanomedicine. 2018;13:6009–6018.
  • Wang H, Ding T, Guan J, et al. Interrogation of folic acid-functionalized nanomedicines: the regulatory roles of plasma proteins reexamined. ACS Nano. 2020;14(11):14779–14789.
  • Wang X, Wang H, Jiang K, et al. Liposomes with cyclic RGD peptide motif triggers acute immune response in mice. J Control Release. 2019;293:201–214.
  • Mastrobattista E, Crommelin DJ, Wilschut J, et al. Targeted liposomes for delivery of protein-based drugs into the cytoplasm of tumor cells. J Liposome Res. 2002;12(1–2):57–65.
  • Koren E, Apte A, Jani A, et al. Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity. J Control Rel. 2012;160(2):264–273.
  • Home – Nanotechnology Characterization Lab; 2011 [cited 2011 Nov]. Available from: http://ncl.cancer.gov/
  • Moghimi SM, Hunter AC, Andresen TL. Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective. Annu Rev Pharmacol Toxicol. 2012;52:481–503.
  • Zhang X, Zheng N, Lionberger RA, et al. Innovative approaches for demonstration of bioequivalence: the US FDA perspective. Ther Deliv. 2013;4(6):725–740.
  • Borchard G, Fluhmann B, Muhlebach S. Nanoparticle iron medicinal products – requirements for approval of intended copies of non-biological complex drugs (NBCD) and the importance of clinical comparative studies. Regul Toxicol Pharmacol. 2012;64(2):324–328.
  • Rohilla S, Dureja H. Recent patents, formulation and characterization of nanoliposomes. Recent Pat Drug Deliv Formul. 2015;9(3):213–224.
  • Anwekar H, Patel S, Singhai AK. Liposome – as drug carriers. Int J Pharm Life Sci. 2011;2(7):945–951.
  • Ipatova OM, Sanzhakov MA, Prozorovskiy VN, et al. Inclusion of antituberculous drug rifampicin into phospholipid-oleate nanoparticles as a way for efficiency increase. FEBS. 2013;280(1):370.
  • Prozorovskii VN, Ipatova OM, Tikhonova EG, et al. Prednisolone in phospholipid nanoparticles: prolonged circulation and increased antiinflammatory effect. Biochemistry. 2020;14(1):78–81.
  • Alyautdin RN, Romanov BK. Rekomendacii po ocenke bezopasnosti lekarstvennyh sredstv, soderzhashchih nanochasticy [Recommendations for assessing the safety of medicinal products containing nanoparticles]. Saf Risk Pharmacother. 2015;4:10–22.
  • EMA. Reflection paper on the data requirements for intravenous liposomal products developed with reference to an innovator liposomal product [Internet]; 2013 [cited 2015 Apr 26]. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2013/03/WC500140351.pdf
  • Burade V, Bhowmick S, Maiti K, et al. Lipodox (generic doxorubicin hydrochloride liposome injection): in vivo efficacy and bioequivalence versus caelyx (doxorubicin hydrochloride liposome injection) in human mammary carcinoma (MX-1) xenograft and syngeneic fibrosarcoma (WEHI 164) mouse models. BMC Cancer. 2017;17(1):405.
  • Dhawan A, Sharma V. Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem. 2010;398(2):589–605.
  • Greish K, Thiagarajan G, Ghandehari H. In vivo methods of nanotoxicology. Methods Mol Biol. 2012;926:235–253.
  • Kheraldine H, Rachid O, Habib AM, et al. Emerging innate biological properties of nano-drug delivery systems: a focus on PAMAM dendrimers and their clinical potential. Adv Drug Deliv Rev. 2021;11:113908.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.