311
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Recent advances in hepatocellular carcinoma therapeutic strategies and imaging-guided treatment

, &
Pages 287-301 | Received 02 Sep 2021, Accepted 24 Oct 2021, Published online: 10 Nov 2021

References

  • Carambia A, Herkel J. Dietary and metabolic modulators of hepatic immunity. Semin Immunopathol. 2018;40(2):175–188.
  • Trefts E, Gannon M, Wasserman DH. The liver. Curr Biol. 2017;27(21):1147–1151.
  • Vasconcellos R, Alvarenga ÉC, Parreira RC, et al. Exploring the cell signalling in hepatocyte differentiation. Cell Signal. 2016;28(11):1773–1788.
  • Rawla P, Sunkara T, Muralidharan P, et al. Update in global trends and aetiology of hepatocellular carcinoma. Contemp Oncol (Pozn). 2018;22(3):141–150.
  • Yang JD, Hainaut P, Gores GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16(10):589–604.
  • Ganne-Carrié N, Nahon P. Hepatocellular carcinoma in the setting of alcohol-related liver disease. J Hepatol. 2019;70(2):284–293.
  • Fujiwara N, Friedman SL, Goossens N, et al. Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine. J Hepatol. 2018;68(3):526–549.
  • Gao XH, Tian L, Wu J, et al. Circulating CD14(+) HLA-DR(-/low) myeloid-derived suppressor cells predicted early recurrence of hepatocellular carcinoma after surgery. Hepatol Res. 2017;47(10):1061–1071.
  • Ma W, Zhu D, Li J, et al. Coating biomimetic nanoparticles with chimeric antigen receptor T cell-membrane provides high specificity for hepatocellular carcinoma photothermal therapy treatment. Theranostics. 2020;10(3):1281–1295.
  • Chedid MF, Kruel CRP, Pinto MA, et al. Hepatocellular carcinoma: diagnosis and operative management. Arq Bras Cir Dig. 2017;30(4):272–278.
  • Chedid MF, Scaffaro LA, Chedid AD, et al. Transarterial embolization and percutaneous ethanol injection as an effective bridge therapy before liver transplantation for hepatitis C-Related hepatocellular carcinoma. Gastroenterol Res Pract. 2016;2016:9420274.
  • Yu J, Xu QG, Wang ZG, et al. Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma. J Hepatol. 2018;68(6):1214–1227.
  • Chedid AD, Klein PW, Tiburi MF, et al. Spontaneous rupture of hepatocellular carcinoma with haemoperitoneum: a rare condition in Western countries. HPB (Oxford). 2001;3(3):227–230.
  • Yang JD, Heimbach JK. New advances in the diagnosis and management of hepatocellular carcinoma. BMJ. 2020;371:m3544.
  • Gharpure KM, Wu SY, Li C, et al. Nanotechnology: Future of oncotherapy. Clin Cancer Res. 2015;21(14):3121–3130.
  • Zhang Z, Wang L, Wang J, et al. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv Mater. 2012;24(11):1418–1423.
  • Xie X, Li F, Zhang H, et al. EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient Colon cancer cell-targeted drug delivery. Eur J Pharm Sci. 2016;83:28–35.
  • Zevon M, Ganapathy V, Kantamneni H, et al. CXCR-4 targeted, short wave infrared (SWIR) emitting nanoprobes for enhanced deep tissue imaging and micrometastatic cancer lesion detection. Small. 2015;11(47):6347–6357.
  • Swain S, Sahu PK, Beg S, et al. Nanoparticles for cancer targeting: Current and future directions. Curr Drug Deliv. 2016;13(8):1290–1302.
  • Wang CE, Stayton PS, Pun SH, et al. Polymer nanostructures synthesized by controlled living polymerization for tumor-targeted drug delivery. J Control Release. 2015;219:345–354.
  • Shao J, Zaro J, Shen Y. Advances in Exosome-Based drug delivery and tumor targeting: from tissue distribution to intracellular fate. Int J Nanomedicine. 2020;15:9355–9371.
  • Huang G, Huang H. Hyaluronic acid-based biopharmaceutical delivery and tumor-targeted drug delivery system. J Control Release. 2018;278:122–126.
  • Zhao B, Zhou B, Shi K, et al. Sustained and targeted delivery of siRNA/DP7-C nanoparticles from injectable thermosensitive hydrogel for hepatocellular carcinoma therapy. Cancer Sci. 2021;112(6):2481–2492.
  • Xu J, Cheng X, Tan L, et al. Microwave responsive nanoplatform via P-Selectin mediated drug delivery for treatment of hepatocellular carcinoma with distant metastasis. Nano Lett. 2019;19(5):2914–2927.
  • Wang D, Zhang S, Zhang T, et al. Pullulan-coated phospholipid and pluronic F68 complex nanoparticles for carrying IR780 and paclitaxel to treat hepatocellular carcinoma by combining photothermal therapy/photodynamic therapy and chemotherapy. Int J Nanomedicine. 2017;12:8649–8670.
  • Li X, Diao W, Xue H, et al. Improved efficacy of doxorubicin delivery by a novel dual-ligand-modified liposome in hepatocellular carcinoma. Cancer Lett. 2020;489:163–173.
  • Tsend-Ayush A, Zhu X, Ding Y, et al. Lactobionic acid-conjugated TPGS nanoparticles for enhancing therapeutic efficacy of etoposide against hepatocellular carcinoma. Nanotechnology. 2017;28(19):195602.
  • Xu C, Yang D, Mei L, et al. Targeting chemophotothermal therapy of hepatoma by gold nanorods/graphene oxide core/shell nanocomposites. ACS Appl Mater Interfaces. 2013;5(24):12911–12920.
  • Lai C, Yu X, Zhuo H, et al. Anti-tumor immune response of folate-conjugated chitosan nanoparticles containing the IP-10 gene in mice with hepatocellular carcinoma. J Biomed Nanotechnol. 2014;10(12):3576–3789.
  • Shu G, Chen M, Song J, et al. Sialic acid-engineered mesoporous polydopamine nanoparticles loaded with SPIO and Fe3+ as a novel theranostic agent for T1/T2 dual-mode MRI-guided combined chemo-photothermal treatment of hepatic cancer . Bioact Mater. 2021;6(5):1423–1435.
  • Zhou T, Liang X, Wang P, et al. A hepatocellular carcinoma targeting nanostrategy with Hypoxia-Ameliorating and photothermal abilities that, combined with immunotherapy, inhibits metastasis and recurrence. ACS Nano. 2020;14(10):12679–12696.
  • Liu N, Tan Y, Hu Y, et al. A54 peptide modified and Redox-Responsive glucolipid conjugate micelles for intracellular delivery of doxorubicin in hepatocarcinoma therapy. ACS Appl Mater Interfaces. 2016;8(48):33148–33156.
  • Han Y, An Y, Jia G, et al. Theranostic micelles based on upconversion nanoparticles for dual-modality imaging and photodynamic therapy in hepatocellular carcinoma. Nanoscale. 2018;10(14):6511–6523.
  • Ma X, Cheng Z, Jin Y, et al. SM5-1-conjugated PLA nanoparticles loaded with 5-fluorouracil for targeted hepatocellular carcinoma imaging and therapy. Biomaterials. 2014;35(9):2878–2889.
  • Zhou Y, Yu Q, Qin X, et al. Improving the anticancer efficacy of laminin Receptor-Specific therapeutic ruthenium nanoparticles (RuBB-Loaded EGCG-RuNPs) via ROS-Dependent apoptosis in SMMC-7721 cells. ACS Appl Mater Interfaces. 2016;8(24):15000–15012.
  • Shen JM, Li XX, Fan LL, et al. Heterogeneous dimer peptide-conjugated polylysine dendrimer-Fe3O4 composite as a novel nanoscale molecular probe for early diagnosis and therapy in hepatocellular carcinoma. Int J Nanomedicine. 2017;12:1183–1200.
  • Zhang X, Li J, Yan M. Targeted hepatocellular carcinoma therapy: transferrin modified, self-assembled polymeric nanomedicine for co-delivery of cisplatin and doxorubicin. Drug Dev Ind Pharm. 2016;42(10):1590–1599.
  • Han L, Huang R, Liu S, et al. Peptide-conjugated PAMAM for targeted doxorubicin delivery to transferrin receptor overexpressed tumors. Mol Pharm. 2010;7(6):2156–2165.
  • Liu Y, Li J, Liu F, et al. Theranostic polymeric micelles for the diagnosis and treatment of hepatocellular carcinoma. J Biomed Nanotechnol. 2015;11(4):613–622.
  • Gao J, Xia Y, Chen H, et al. Polymer-lipid hybrid nanoparticles conjugated with anti-EGF receptor antibody for targeted drug delivery to hepatocellular carcinoma. Nanomedicine (Lond). 2014;9(2):279–293.
  • Wang J, Wu Z, Pan G, et al. Enhanced doxorubicin delivery to hepatocellular carcinoma cells via CD147 antibody-conjugated immunoliposomes. Nanomedicine. 2018;14(6):1949–1961.
  • Liu Y, Chen Z, Liu C, et al. Gadolinium-loaded polymeric nanoparticles modified with anti-VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer. Biomaterials. 2011;32(22):5167–5176.
  • Xie Z, Fan T, An J, et al. Emerging combination strategies with phototherapy in cancer nanomedicine. Chem Soc Rev. 2020;49(22):8065–8087.
  • Jiang F, Ding B, Liang S, et al. Intelligent MoS2-CuO heterostructures with multiplexed imaging and remarkably enhanced antitumor efficacy via synergetic photothermal therapy/ chemodynamic therapy/ immunotherapy. Biomaterials. 2021;268:120545.
  • Yang J, Hou M, Sun W, et al. Sequential PDT and PTT using Dual-Modal Single-Walled carbon nanohorns synergistically promote systemic immune responses against tumor metastasis and relapse. Adv Sci (Weinh). 2020;7(16):2001088.
  • Wang M, Chang M, Chen Q, et al. Au2Pt-PEG-Ce6 nanoformulation with dual nanozyme activities for synergistic chemodynamic therapy / phototherapy. Biomaterials. 2020;252:120093.
  • Wan X, Liu M, Ma M, et al. The ultrasmall biocompatible CuS@BSA nanoparticle and its photothermal effects. Front Pharmacol. 2019;10:141–149.
  • Li W, Yang J, Luo L, et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat Commun. 2019;10(1):3349–3346.
  • Li J, Zhu D, Ma W, et al. Rapid synthesis of a Bi@ZIF-8 composite nanomaterial as a near-infrared-II (NIR-II) photothermal agent for the low-temperature photothermal therapy of hepatocellular carcinoma. Nanoscale. 2020;12(32):17064–17073.
  • Lin X, Wu M, Li M, et al. Photo-responsive hollow silica nanoparticles for light-triggered genetic and photodynamic synergistic therapy. Acta Biomater. 2018;76:178–192.
  • Shirata C, Kaneko J, Inagaki Y, et al. Near-infrared photothermal/photodynamic therapy with indocyanine green induces apoptosis of hepatocellular carcinoma cells through oxidative stress. Sci Rep. 2017;7(1):13958–13965.
  • Yu XN, Deng Y, Zhang GC, et al. Sorafenib-Conjugated zinc phthalocyanine based nanocapsule for trimodal therapy in an orthotopic hepatocellular carcinoma xenograft mouse model. ACS Appl Mater Interfaces. 2020;12(15):17193–17206.
  • Thorat ND, Townely H, Brennan G, et al. Progress in remotely triggered hybrid nanostructures for Next-Generation brain cancer theranostics. ACS Biomater Sci Eng. 2019;5(6):2669–2687.
  • Lan S, Lin Z, Zhang D, et al. Photocatalysis enhancement for programmable killing of hepatocellular carcinoma through Self-Compensation mechanisms based on black phosphorus Quantum-Dot-Hybridized nanocatalysts. ACS Appl Mater Interfaces. 2019;11(10):9804–9813.
  • Han G, Berhane S, Toyoda H, et al. Prediction of survival among patients receiving transarterial chemoembolization for hepatocellular carcinoma: a Response-Based approach. Hepatology. 2020;72(1):198–212.
  • Huo YR, Xiang H, Chan MV, et al. Survival, tumour response and safety of 70-150 μm versus 100-300 μm doxorubicin drug-eluting beads in transarterial chemoembolisation for hepatocellular carcinoma. J Med Imaging Radiat Oncol. 2019;63(6):802–811.
  • Chang Y, Jeong SW, Young Jang J, et al. Recent updates of transarterial chemoembolilzation in hepatocellular carcinoma. IJMS. 2020;21(21):8165–8180.
  • Dev A, Sood A, Choudhury SR, et al. Paclitaxel nanocrystalline assemblies as a potential transcatheter arterial chemoembolization (TACE) candidate for unresectable hepatocellular carcinoma. Mater Sci Eng C Mater Biol Appl. 2020;107:110315.
  • Khan MW, Zhao P, Khan A, et al. Synergism of cisplatin-oleanolic acid co-loaded calcium carbonate nanoparticles on hepatocellular carcinoma cells for enhanced apoptosis and reduced hepatotoxicity. Int J Nanomedicine. 2019;14:3753–3771.
  • Lai I, Swaminathan S, Baylot V, et al. Lipid nanoparticles that deliver IL-12 messenger RNA suppress tumorigenesis in MYC oncogene-driven hepatocellular carcinoma. J Immunother Cancer. 2018;6(1):125–135.
  • Xue HY, Yu ZY, Liu Y, et al. Delivery of miR-375 and doxorubicin hydrochloride by lipid-coated hollow mesoporous silica nanoparticles to overcome multiple drug resistance in hepatocellular carcinoma. Int J Nanomedicine. 2017;12:5271–5287.
  • Zamboni CG, Kozielski KL, Vaughan HJ, et al. Polymeric nanoparticles as cancer-specific DNA delivery vectors to human hepatocellular carcinoma. J Control Release. 2017;263:18–28.
  • Yau T, Hsu C, Kim TY, et al. Nivolumab in advanced hepatocellular carcinoma: Sorafenib-experienced asian cohort analysis. J Hepatol. 2019;71(3):543–552.
  • June CH, O'Connor RS, Kawalekar OU, et al. CAR T cell immunotherapy for human cancer. Science. 2018;359(6382):1361–1365.
  • Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350–1355.
  • Wang J, Meng J, Ran W, et al. Hepatocellular carcinoma growth retardation and PD-1 blockade therapy potentiation with synthetic high-density lipoprotein. Nano Lett. 2019;19(8):5266–5276.
  • Yu Z, Guo J, Hu M, et al. Icaritin exacerbates mitophagy and synergizes with doxorubicin to induce immunogenic cell death in hepatocellular carcinoma. ACS Nano. 2020;14(4):4816–4828.
  • Wang T, Zhang J, Hou T, et al. Selective targeting of tumor cells and tumor associated macrophages separately by twin-like core-shell nanoparticles for enhanced tumor-localized chemoimmunotherapy. Nanoscale. 2019;11(29):13934–13946.
  • Kierans AS, Kang SK, Rosenkrantz AB. The diagnostic performance of dynamic contrast-enhanced MR imaging for detection of small hepatocellular carcinoma measuring up to 2 cm: a Meta-Analysis. Radiology. 2016;278(1):82–94.
  • Liu Y, Feng L, Liu T, et al. Multifunctional pH-sensitive polymeric nanoparticles for theranostics evaluated experimentally in cancer. Nanoscale. 2014;6(6):3231–3242.
  • Chen K, Li Q, Zhao X, et al. Biocompatible melanin based theranostic agent for in vivo detection and ablation of orthotopic micro-hepatocellular carcinoma. Biomater Sci. 2020;8(15):4322–4333.
  • Zhang H, Patel N, Ding S, et al. Theranostics for hepatocellular carcinoma with Fe3O4@ZnO nanocomposites. Biomater Sci. 2016;4(2):288–298.
  • He J, Fan K, Yan X. Ferritin drug carrier (FDC) for tumor targeting therapy. J Control Release. 2019;311-312:288–300.
  • Johnsen KB, Bak M, Kempen PJ, et al. Antibody affinity and valency impact brain uptake of transferrin receptor-targeted gold nanoparticles. Theranostics. 2018;8(12):3416–3436.
  • Zhou Q, Wei Y. For better or worse, iron overload by superparamagnetic iron oxide nanoparticles as a MRI contrast agent for chronic liver diseases. Chem Res Toxicol. 2017;30(1):73–80.
  • Li YW, Chen ZG, Wang JC, et al. Superparamagnetic iron oxide-enhanced magnetic resonance imaging for focal hepatic lesions: systematic review and Meta-analysis. World J Gastroenterol. 2015;21(14):4334–4344.
  • Moghadam FF. Using nanoparticles in medicine for liver cancer imaging. Oman Med J. 2017;32(4):269–274.
  • Roberts LR, Sirlin CB, Zaiem F, et al. Imaging for the diagnosis of hepatocellular carcinoma: a systematic review and Meta-analysis. Hepatology. 2018;67(1):401–421.
  • Wakabayashi T, Ouhmich F, Gonzalez-Cabrera C, et al. Radiomics in hepatocellular carcinoma: a quantitative review. Hepatol Int. 2019;13(5):546–559.
  • Wu CH, Liang PC, Su TH, et al. Iodized oil computed tomography versus ultrasound-guided radiofrequency ablation for early hepatocellular carcinoma. Hepatol Int. 2021;15(5):1247–1257.
  • Vermess M, Chatterji DC, Doppman JL, et al. Development and experimental evaluation of a contrast medium for computed tomographic examination of the liver and spleen. J Comput Assist Tomogr. 1979;3(1):25–31.
  • Hainfeld JF, Ridwan SM, Stanishevskiy Y, et al. Small, long blood Half-Life iodine nanoparticle for vascular and tumor imaging. Sci Rep. 2018;8(1):13803–13812.
  • Zhang J, Li C, Zhang X, et al. In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles. Biomaterials. 2015;42:103–111.
  • Tian G, Zheng X, Zhang X, et al. TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance. Biomaterials. 2015;40:107–116.
  • Shi H, Niu M, Tan L, et al. A smart all-in-one theranostic platform for CT imaging guided tumor microwave thermotherapy based on IL@ZrO2 nanoparticles . Chem Sci. 2015;6(8):5016–5026.
  • Wang Z, Shao D, Chang Z, et al. Janus gold nanoplatform for synergetic chemoradiotherapy and computed tomography imaging of hepatocellular carcinoma. ACS Nano. 2017;11(12):12732–12741.
  • Yi Z, Lu W, Liu H, et al. High quality polyacrylic acid modified multifunction luminescent nanorods for tri-modality bioimaging, in vivo long-lasting tracking and biodistribution. Nanoscale. 2015;7(2):542–550.
  • FitzGerald PF, Butts MD, Roberts JC, et al. A proposed computed tomography contrast agent using carboxybetaine zwitterionic tantalum oxide nanoparticles: Imaging, biological, and physicochemical performance. Invest Radiol. 2016;51(12):786–796.
  • Martínez R, Polo E, Barbosa S, et al. 808 nm-activable core@multishell upconverting nanoparticles with enhanced stability for efficient photodynamic therapy. J Nanobiotechnology. 2020;18(1):85–99.
  • Locatelli E, Li Y, Monaco I, et al. A novel theranostic gold nanorods- and adriamycin-loaded micelle for EpCAM targeting, laser ablation, and photoacoustic imaging of cancer stem cells in hepatocellular carcinoma. Int J Nanomedicine. 2019;14:1877–1892.
  • Jiang Y, Zhao X, Huang J, et al. Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nat Commun. 2020;11(1):1857–1869.
  • Huang P, Gao Y, Lin J, et al. Tumor-Specific formation of Enzyme-Instructed supramolecular Self-Assemblies as cancer theranostics. ACS Nano. 2015;9(10):9517–9527.
  • Tummers QR, Schepers A, Hamming JF, et al. Intraoperative guidance in parathyroid surgery using near-infrared fluorescence imaging and low-dose methylene blue. Surgery. 2015;158(5):1323–1330.
  • Yang H, Liu HS, Hou W, et al. An NIR-responsive mesoporous silica nanosystem for synergetic photothermal-immunoenhancement therapy of hepatocellular carcinoma. J Mater Chem B. 2020;8(2):251–259.
  • Paisley NR, Halldorson SV, Tran MV, et al. Near-Infrared emitting boron difluoride Curcuminoid-Based polymers exhibiting thermally activated delayed fluorescence as biological imaging probes. Angew Chem Int Ed. 2021;60(34):18630–18638.
  • Ceppi L, Bardhan NM, Na Y, et al. Real-Time Single-Walled carbon Nanotube-Based fluorescence imaging improves survival after debulking surgery in an ovarian cancer model. ACS Nano. 2019;13(5):5356–5365.
  • Wang Q, Liang T, Wu J, et al. Dye-Sensitized rare Earth-Doped nanoparticles with boosted NIR-IIb emission for dynamic imaging of vascular Network-Related disorders. ACS Appl Mater Interfaces. 2021;13(25):29303–29312.
  • Ren Y, He S, Huttad L, et al. An NIR-II/MR dual modal nanoprobe for liver cancer imaging. Nanoscale. 2020;12(21):11510–11517.
  • Zhao M, Li B, Wu Y, et al. A Tumor-Microenvironment-Responsive Lanthanide-Cyanine FRET sensor for NIR-II Luminescence-Lifetime in situ imaging of hepatocellular carcinoma. Adv Mater. 2020;32(28):e2001172.
  • Chen Q, Shang W, Zeng C, et al. Theranostic imaging of liver cancer using targeted optical/MRI dual-modal probes. Oncotarget. 2017;8(20):32741–32751.
  • Guan T, Shang W, Li H, et al. From detection to resection: Photoacoustic tomography and surgery guidance with indocyanine green loaded gold nanorod@liposome Core-Shell nanoparticles in liver cancer. Bioconjug Chem. 2017;28(4):1221–1228.
  • Park JO, Stephen Z, Sun C, et al. Glypican-3 targeting of liver cancer cells using multifunctional nanoparticles. Mol Imaging. 2011;10(1):69–77.
  • Liu J, Li Z, Yang X, et al. A high-performance imaging probe with NIR luminescence and synergistically enhanced T1-T2 relaxivity for in vivo hepatic tumor targeting and multimodal imaging. Chem Commun (Camb). 2015;51(69):13369–13372.
  • Hernandez R, Sun H, England CG, et al. CD146-targeted immunoPET and NIRF imaging of hepatocellular carcinoma with a Dual-Labeled monoclonal antibody. Theranostics. 2016;6(11):1918–1933.
  • Yan H, Gao X, Zhang Y, et al. Imaging tiny hepatic tumor xenografts via Endoglin-Targeted paramagnetic/optical nanoprobe. ACS Appl Mater Interfaces. 2018;10(20):17047–17057.
  • Jin Y, Wang K, Tian J. Preoperative examination and intraoperative identification of hepatocellular carcinoma using a targeted bimodal imaging probe. Bioconjugate Chem. 2018;29(4):1475–1484.
  • Ai T, Shang W, Yan H, et al. Near infrared-emitting persistent luminescent nanoparticles for hepatocellular carcinoma imaging and luminescence-guided surgery. Biomaterials. 2018;167:216–225.
  • Zhang C, Zhao Y, Zhao N, et al. NIRF optical/PET Dual-Modal imaging of hepatocellular carcinoma using heptamethine carbocyanine dye. Contrast Media Mol Imaging. 2018;2018:4979746.
  • Zeng Z, Ouyang J, Sun L, et al. Activatable nanocomposite probe for preoperative location and intraoperative navigation for orthotopic hepatic tumor resection via MSOT and Aggregation-Induced near-IR-I/II fluorescence imaging. Anal Chem. 2020;92(13):9257–9264.
  • Singh H, Lim JY, Sharma A, et al. A pH-Responsive Glycyrrhetinic-Acid-Modified Small-Molecule conjugate for NIR imaging of hepatocellular carcinoma (HCC). Chembiochem. 2019;20(4):614–620.
  • Ding F, Li C, Xu Y, et al. PEGylation regulates Self-Assembled Small-Molecule Dye-Based probes from single molecule to nanoparticle size for multifunctional NIR-II bioimaging. Adv Healthc Mater. 2018;7(23):e1800973.
  • Yeroslavsky G, Umezawa M, Okubo K, et al. Stabilization of indocyanine green dye in polymeric micelles for NIR-II fluorescence imaging and cancer treatment. Biomater Sci. 2020;8(8):2245–2254.
  • Fesas A, Giannoula E, Vrachimis A, et al. Cardiac autonomic nervous system and ventricular arrhythmias: the role of radionuclide molecular imaging. Diagnostics. 2021;11(7):1273–1286.
  • Yang CT, Ghosh KK, Padmanabhan P, et al. PET-MR and SPECT-MR multimodality probes: Development and challenges. Theranostics. 2018;8(22):6210–6232.
  • Park CW, Rhee YS, Vogt FG, et al. Advances in microscopy and complementary imaging techniques to assess the fate of drugs ex vivo in respiratory drug delivery: an invited paper. Adv Drug Deliv Rev. 2012;64(4):344–356.
  • Tsurusaki M, Okada M, Kuroda H, et al. Clinical application of 18F-fluorodeoxyglucose positron emission tomography for assessment and evaluation after therapy for malignant hepatic tumor. J Gastroenterol. 2014;49(1):46–56.
  • Hu P, Cheng D, Huang T, et al. Evaluation of novel 64Cu-Labeled Theranostic Gadolinium-Based Nanoprobes in HepG2 Tumor-Bearing Nude Mice. Nanoscale Res Lett. 2017;12(1):523–528.
  • Qian Y, Liu Q, Li P, et al. Highly Tumor-Specific and Long-Acting iodine-131 microbeads for enhanced treatment of hepatocellular carcinoma with Low-Dose Radio-Chemoembolization. ACS Nano. 2021;15(2):2933–2946.
  • Ma X, Jin Y, Wang Y, et al. Multimodality molecular Imaging-Guided tumor border delineation and photothermal therapy analysis based on graphene Oxide-Conjugated gold nanoparticles chelated with Gd. Contrast Media Mol Imaging. 2018;2018:9321862.
  • Lin X, Liu S, Zhang X, et al. An ultrasound activated vesicle of janus Au-MnO nanoparticles for promoted tumor penetration and Sono-Chemodynamic therapy of orthotopic liver cancer. Angew Chem Int Ed Engl. 2020;59(4):1682–1688.
  • Zhang L, Zhang M, Zhou L, et al. Dual drug delivery and sequential release by amphiphilic janus nanoparticles for liver cancer theranostics. Biomaterials. 2018;181:113–125.
  • Zeng Y, Zhang D, Wu M, et al. Lipid-AuNPs@PDA nanohybrid for MRI/CT imaging and photothermal therapy of hepatocellular carcinoma. ACS Appl Mater Interfaces. 2014;6(16):14266–14277.
  • Chen J, Zhu S, Tong L, et al. Superparamagnetic iron oxide nanoparticles mediated (131)I-hVEGF siRNA inhibits hepatocellular carcinoma tumor growth in nude mice. BMC Cancer. 2014;14:114–121.
  • Chen M, Guo Z, Chen Q, et al. Pd nanosheets with their surface coordinated by radioactive iodide as a high-performance theranostic nanoagent for orthotopic hepatocellular carcinoma imaging and cancer therapy. Chem Sci. 2018;9(18):4268–4274.
  • Li J, Zhou M, Liu F, et al. Hepatocellular carcinoma: Intra-arterial delivery of doxorubicin-loaded hollow gold nanospheres for photothermal Ablation-Chemoembolization therapy in rats. Radiology. 2016;281(2):427–435.
  • Bao S, Huang S, Liu Y, et al. Gold nanocages with dual modality for image-guided therapeutics. Nanoscale. 2017;9(21):7284–7296.
  • Liang J, Zhang X, Miao Y, et al. Lipid-coated iron oxide nanoparticles for dual-modal imaging of hepatocellular carcinoma. Int J Nanomedicine. 2017;12:2033–2044.
  • Wang L, Lin H, Chi X, et al. A Self-Assembled biocompatible nanoplatform for multimodal MR/fluorescence imaging assisted photothermal therapy and prognosis analysis. Small. 2018;14(35):e1801612.
  • Chen Y, Liu W, Shang Y, et al. Folic acid-nanoscale gadolinium-porphyrin metal-organic frameworks: fluorescence and magnetic resonance dual-modality imaging and photodynamic therapy in hepatocellular carcinoma. Int J Nanomedicine. 2019;14:57–74.
  • Li J, Wang X, Zheng D, et al. Cancer cell membrane-coated magnetic nanoparticles for MR/NIR fluorescence dual-modal imaging and photodynamic therapy. Biomater Sci. 2018;6(7):1834–1845.
  • Yang Y, Yu Y, Chen H, et al. Illuminating platinum transportation while maximizing therapeutic efficacy by gold nanoclusters via simultaneous near-Infrared-I/II imaging and glutathione scavenging. ACS Nano. 2020;14(10):13536–13547.
  • Shi Z, Chu C, Zhang Y, et al. Self-Assembled Metal-Organic nanoparticles for multimodal Imaging-Guided photothermal therapy of hepatocellular carcinoma. J Biomed Nanotechnol. 2018;14(11):1934–1943.
  • Chen X, Zhang X, Zhang L, et al. Amphiphilic janus nanoparticles for imaging-guided synergistic chemo-photothermal hepatocellular carcinoma therapy in the second near-infrared window. Nanoscale. 2021;13(7):3974–3982.
  • Lv R, Yang P, He F, et al. A yolk-like multifunctional platform for multimodal imaging and synergistic therapy triggered by a single near-infrared light. ACS Nano. 2015;9(2):1630–1647.
  • Liu Y, Zhao YM, Akers W, et al. First in-human intraoperative imaging of HCC using the fluorescence goggle system and transarterial delivery of near-infrared fluorescent imaging agent: a pilot study. Transl Res. 2013;162(5):324–331.
  • Hu Z, Fang C, Li B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat Biomed Eng. 2020;4(3):259–271.
  • Andreou C, Neuschmelting V, Tschaharganeh DF, et al. Imaging of liver tumors using Surface-Enhanced raman scattering nanoparticles. ACS Nano. 2016;10(5):5015–5026.
  • Lee J, Gordon AC, Kim H, et al. Targeted multimodal nano-reporters for pre-procedural MRI and intra-operative image-guidance. Biomaterials. 2016;109:69–77.
  • Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res. 2010;62(2):90–99.
  • Park K. Facing the truth about nanotechnology in drug delivery. ACS Nano. 2013;7(9):7442–7447.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.