236
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Non-coding RNAs enhance the apoptosis efficacy of therapeutic agents used for the treatment of glioblastoma multiform

, , , &
Pages 589-602 | Received 10 Jul 2021, Accepted 19 Feb 2022, Published online: 05 Apr 2022

References

  • Jhanwar-Uniyal M, Labagnara M, Friedman M, et al. Glioblastoma: molecular pathways, stem cells and therapeutic targets. Cancers. 2015;7(2):538–555.
  • Alifieris C, Trafalis DT. Glioblastoma multiforme: pathogenesis and treatment. Pharmacol Ther. 2015;152:63–82.
  • Hanif F, Muzaffar K, Perveen K, et al. Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev. 2017;18(1):3–9.
  • Urbańska K, Sokołowska J, Szmidt M, et al. Glioblastoma multiforme–an overview. Contemp Oncol. 2014;18(5):307–312.
  • Kim S-S, Harford JB, Pirollo KF, et al. Effective treatment of glioblastoma requires crossing the blood-brain barrier and targeting tumors including cancer stem cells: the promise of nanomedicine. Biochem Biophys Res Commun. 2015;468(3):485–489.
  • Karcher S, Steiner HH, Ahmadi R, et al. Different angiogenic phenotypes in primary and secondary glioblastomas. Int J Cancer. 2006;118(9):2182–2189.
  • Fulda S. Cell death-based treatment of glioblastoma. Cell Death Dis. 2018;9(2):1–8.
  • Valdés-Rives SA, Casique-Aguirre D, Germán-Castelán L, et al. Apoptotic signaling pathways in glioblastoma and therapeutic implications. Biomed Res Int. 2017;2017:7403747.
  • Blahovcova E, Richterova R, Kolarovszki B, et al. Apoptosis-related gene expression in tumor tissue samples obtained from patients diagnosed with glioblastoma multiforme. Int J Mol Med. 2015;36(6):1677–1684.
  • Trejo-Solís C, Serrano-Garcia N, Escamilla-Ramírez Á, et al. Autophagic and apoptotic pathways as targets for chemotherapy in glioblastoma. IJMS. 2018;19(12):3773.
  • Franke TF, Hornik CP, Segev L, et al. PI3K/Akt and apoptosis: size matters. Oncogene. 2003;22(56):8983–8998.
  • Mao H, LeBrun DG, Yang J, et al. Deregulated signaling pathways in glioblastoma multiforme: molecular mechanisms and therapeutic targets. Cancer Invest. 2012;30(1):48–56.
  • Wang H, Wang H, Zhang W, et al. Analysis of the activation status of akt, NF κ B, and Stat3 in human diffuse gliomas. Lab Invest. 2004;84(8):941–951.
  • Duzgun Z, Eroglu Z, Avci CB. Role of mTOR in glioblastoma. Gene. 2016;575(2 Pt 1):187–190.
  • Rasheed BA, Stenzel TT, McLendon RE, et al. PTEN gene mutations are seen in high-grade but not in low-grade gliomas. Cancer Research. 1997;57(19):4187–4190.
  • Lee J, Kim B, Park M, et al. PTEN status switches cell fate between premature senescence and apoptosis in glioma exposed to ionizing radiation. Cell Death Differ. 2011;18(4):666–677.
  • Hill VK, Kim J-S, James CD, et al. Correction of PTEN mutations in glioblastoma cell lines via AAV-mediated gene editing. PloS One. 2017;12(5):e0176683.
  • Perkins ND. Integrating cell-signalling pathways with NF-kappaB and IKK function . Nat Rev Mol Cell Biol. 2007;8(1):49–62.
  • Atkinson GP, Nozell SE, Benveniste EN. NF-kappaB and STAT3 signaling in glioma: targets for future therapies. Expert Rev Neurother. 2010;10(4):575–586.
  • Wang C-Y, Mayo MW, Korneluk RG, et al. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science. 1998;281(5383):1680–1683.
  • Hayashi S, Yamamoto M, Ueno Y, et al. Expression of nuclear factor-kappa B, tumor necrosis factor receptor type 1, and c-Myc in human astrocytomas. Neurol Med Chir. 2001;41(4):187–195.
  • Ghaemi S, Arefian E, Rezazadeh Valojerdi R, et al. Inhibiting the expression of anti-apoptotic genes BCL2L1 and MCL1, and apoptosis induction in glioblastoma cells by microRNA-342. Biomed Pharmacother. 2020;121:109641.
  • Strik H, Deininger M, Streffer J, et al. BCL-2 family protein expression in initial and recurrent glioblastomas: modulation by radiochemotherapy. J Neurol Neurosurg Psychiatry. 1999;67(6):763–768.
  • Karpel-Massler G, Shu C, Chau L, et al. Combined inhibition of bcl-2/bcl-xL and Usp9X/Bag3 overcomes apoptotic resistance in glioblastoma in vitro and in vivo. Oncotarget. 2015;6(16):14507–14521.
  • Tenev T, Zachariou A, Wilson R, et al. IAPs are functionally non-equivalent and regulate effector caspases through distinct mechanisms. Nat Cell Biol. 2005;7(1):70–77.
  • Yang W, Cooke M, Duckett C, et al. Distinctive effects of the cellular inhibitor of apoptosis protein c-IAP2 through stabilization by XIAP in glioblastoma multiforme cells. Cell Cycle. 2014;13(6):992–1005.
  • Wagenknecht B, Glaser T, Naumann U, et al. Expression and biological activity of X-linked inhibitor of apoptosis (XIAP) in human malignant glioma. Cell Death Differ. 1999;6(4):370–376.
  • Zhen H-N, Li L-W, Zhang W, et al. Short hairpin RNA targeting survivin inhibits growth and angiogenesis of glioma U251 cells. Int J Oncol. 2007;31(5):1111–1117.
  • Lopez PL, Filippi-Chiela EC, Silva AO, et al. Sensitization of glioma cells by X-linked inhibitor of apoptosis protein knockdown. Oncology. 2012;83(2):75–82.
  • Liz J, Esteller M. lncRNAs and microRNAs with a role in cancer development. Biochim Biophys Acta. 2016;1859(1):169–176.
  • De Vleeschouwer S. Glioblastoma. Codon Publications; 2017. Available from: https://www.ncbi.nlm.nih.gov/books/NBK469998/ doi: https://doi.org/10.15586/codon.glioblastoma.2017.
  • Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65(14):6029–6033.
  • Conti A, Aguennouz M, La Torre D, et al. miR-21 and 221 upregulation and miR-181b downregulation in human grade II-IV astrocytic tumors. J Neurooncol. 2009;93(3):325–332.
  • Gabriely G, Wurdinger T, Kesari S, et al. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol. 2008;28(17):5369–5380.
  • Papagiannakopoulos T, Shapiro A, Kosik KS. MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res. 2008;68(19):8164–8172.
  • Silber J, Lim DA, Petritsch C, et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med. 2008;6(1):14.
  • Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–658.
  • Zhu S, Wu H, Wu F, et al. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 2008;18(3):350–359.
  • Goke R, Barth P, Schmidt A, et al. Programmed cell death protein 4 suppresses CDK1/cdc2 via induction of p21(Waf1/Cip1). Am J Physiol Cell Physiol. 2004;287(6):C1541–C1546.
  • Lukiw W, Cui J, Li Y, et al. Up-regulation of micro-RNA-221 (miRNA-221; chr Xp11.3) and caspase-3 accompanies down-regulation of the survivin-1 homolog BIRC1 (NAIP) in glioblastoma multiforme (GBM) ). J Neurooncol. 2009;91(1):27–32.
  • Ciafre S, Galardi S, Mangiola A, et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun. 2005;334(4):1351–1358.
  • Zhang C-Z, Zhang J-X, Zhang A-L, et al. MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol Cancer. 2010;9(1):229.
  • Gillies JK, Lorimer IA. Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle. 2007;6(16):2005–2009.
  • Le Sage C, Nagel R, Egan DA, et al. Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. Embo J. 2007;26(15):3699–3708.
  • Jesionek-Kupnicka D, Braun M, Trabska-Kluch B, et al. MiR-21, miR-34a, miR-125b, miR-181d and miR-648 levels inversely correlate with MGMT and TP53 expression in primary glioblastoma patients. Arch Med Sci. 2019;15(2):504–512.
  • Xia H-F, He T-Z, Liu C-M, et al. MiR-125b expression affects the proliferation and apoptosis of human glioma cells by targeting BMF. Cell Physiol Biochem. 2009;23(4–6):347–358.
  • Gruszka R, Zakrzewska M. The oncogenic relevance of miR-17-92 cluster and its paralogous miR-106b-25 and miR-106a-363 clusters in brain tumors. IJMS. 2018;19(3):879.
  • Mendell JT. miRiad roles for the miR-17-92 cluster in development and disease. Cell. 2008;133(2):217–222.
  • Liao C, Chen W, Wang J. MicroRNA-20a regulates glioma cell proliferation, invasion, and apoptosis by targeting CUGBP Elav-Like family member 2. World Neurosurg. 2019;121:e519–e527.
  • Sun G, SiMa G, Wu C, et al. Decreased MiR-17 in glioma cells increased cell viability and migration by increasing the expression of cyclin D1, p-Akt and Akt. PLOS One. 2018;13(1):e0190515.
  • Ernst A, Campos B, Meier J, et al. De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene. 2010;29(23):3411–3422.
  • Song Y, Wang P, Zhao W, et al. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin. Exp Cell Res. 2014;324(1):54–64.
  • Jia Z, Wang K, Zhang A, et al. miR-19a and miR-19b overexpression in gliomas. Pathol Oncol Res. 2013;19(4):847–853.
  • Niu H, Wang K, Zhang A, et al. miR-92a is a critical regulator of the apoptosis pathway in glioblastoma with inverse expression of pression of BCL2L11. Oncol Rep. 2012;28(5):1771–1777.
  • Peng G, Yuan X, Yuan J, et al. miR-25 promotes glioblastoma cell proliferation and invasion by directly targeting NEFL. Mol Cell Biochem. 2015;409(1–2):103–111.
  • Li D, Wang Z, Chen Z, et al. MicroRNA-106a-5p facilitates human glioblastoma cell proliferation and invasion by targeting adenomatosis polyposis coli protein. Biochem Biophys Res Commun. 2016;481(3–4):245–250.
  • Conti A, Romeo SG, Cama A, et al. MiRNA expression profiling in human gliomas: upregulated miR-363 increases cell survival and proliferation. Tumour Biol. 2016;37(10):14035–14048.
  • Huang SX, Zhao ZY, Weng GH, et al. Upregulation of miR-181a suppresses the formation of glioblastoma stem cells by targeting the Notch2 oncogene and correlates with good prognosis in patients with glioblastoma multiforme. Biochem Biophys Res Commun. 2017;486(4):1129–1136.
  • Shi L, Cheng Z, Zhang J, et al. Hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res. 2008;1236:185–193.
  • Yang F, Liu X, Liu Y, et al. miR-181d/MALT1 regulatory axis attenuates mesenchymal phenotype through NF-κB pathways in glioblastoma. Cancer Lett. 2017;396:1–9.
  • Kefas B, Godlewski J, Comeau L, et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res. 2008;68(10):3566–3572.
  • Watanabe K, Tachibana O, Sata K, et al. Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol. 1996;6(3):217–223.
  • Jia B, Liu W, Gu J, et al. MiR-7-5p suppresses stemness and enhances temozolomide sensitivity of drug-resistant glioblastoma cells by targeting yin yang 1. Exp Cell Res. 2019;375(1):73–81.
  • Zhang X, Zhang X, Hu S, et al. Identification of miRNA-7 by genome-wide analysis as a critical sensitizer for TRAIL-induced apoptosis in glioblastoma cells. Nucleic Acids Res. 2017;45(10):5930–5944.
  • Zhang X, Yang A, Zhang R. MicroRNA-7: a critical sensitizer for TRAIL sensitivity in glioblastoma cells. Rna & Disease. 2019;6.
  • Liang RF, Li M, Yang Y, et al. Circulating miR-128 as a potential diagnostic biomarker for glioma. Clin Neurol Neurosurg. 2017;160:88–91.
  • Godlewski J, Nowicki MO, Bronisz A, et al. Targeting of the bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 2008;68(22):9125–9130.
  • Zhang Y, Chao T, Li R, et al. MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J Mol Med. 2009;87(1):43–51.
  • Itahana K, Zou Y, Itahana Y, et al. Control of the replicative life span of human fibroblasts by p16 and the polycomb protein bmi-1. Mol Cell Biol. 2003;23(1):389–401.
  • Molofsky AV, He S, Bydon M, et al. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev. 2005;19(12):1432–1437.
  • Luan S, Sun L, Huang F. MicroRNA-34a: a novel tumor suppressor in p53-mutant glioma cell line U251. Arch Med Res. 2010;41(2):67–74.
  • Gao H, Zhao H, Xiang W. Expression level of human miR-34a correlates with glioma grade and prognosis. J Neurooncol. 2013;113(2):221–228.
  • Li Y, Guessous F, Zhang Y, et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res. 2009;69(19):7569–7576.
  • Yin D, Ogawa S, Kawamata N, et al. miR-34a functions as a tumor suppressor modulating EGFR in glioblastoma multiforme. Oncogene. 2013;32(9):1155–1163.
  • Lei R, Yan L, Deng Y, et al. HMGB1 mediated autophagy protects glioblastoma cells from carbon-ion beam irradiation injury. Acta Astronaut. 2020;166:628–634.
  • Yang Y, Huang JQ, Zhang X, et al. MiR-129-2 functions as a tumor suppressor in glioma cells by targeting HMGB1 and is down-regulated by DNA methylation. Mol Cell Biochem. 2015;404(1–2):229–239.
  • Zeng A, Yin J, Li Y, et al. miR-129-5p targets Wnt5a to block PKC/ERK/NF-κB and JNK pathways in glioblastoma. Cell Death Dis. 2018;9(3):394.
  • Xu H, Hu Y, Qiu W. Potential mechanisms of microRNA-129-5p in inhibiting cell processes including viability, proliferation, migration and invasiveness of glioblastoma cells U87 through targeting FNDC3B. Biomed Pharmacother. 2017;87:405–411.
  • Moradimotlagh A, Arefian E, Rezazadeh Valojerdi R, et al. MicroRNA-129 inhibits glioma cell growth by targeting CDK4, CDK6, and MDM2. Mol Ther Nucleic Acids. 2020;19:759–764.
  • Chen L, Li H, Han L, et al. Expression and function of miR-27b in human glioma. Oncol Rep. 2011;26(6):1617–1621.
  • Milani R, Brognara E, Fabbri E, et al. Targeting miR‑155‑5p and miR‑221‑3p by peptide nucleic acids induces caspase‑3 activation and apoptosis in temozolomide‑resistant T98G glioma cells. Int J Oncol. 2019;55(1):59–68.
  • Khalighfard S, Kalhori MR, Haddad P, et al. Enhancement of resistance to chemo-radiation by hsa-miR-1290 expression in glioblastoma cells. Eur J Pharmacol. 2020;880:173144.
  • Fan H, Yuan R, Cheng S, et al. Overexpressed miR-183 promoted glioblastoma radioresistance via down-regulating LRIG1. Biomed Pharmacother. 2018;97:1554–1563.
  • Du C-L, Peng F, Liu K-Q. miR-517a is up-regulated in glioma and promotes glioma tumorigenesis in vitro and in vivo. Bioscience Reports. 2019;39(5).
  • Agrawal R, Garg A, Benny Malgulwar P, et al. p53 and miR-210 regulated NeuroD2, a neuronal basic helix-loop-helix transcription factor, is downregulated in glioblastoma patients and functions as a tumor suppressor under hypoxic microenvironment. Int J Cancer. 2018;142(9):1817–1828.
  • Zhang L, Zhang P, Tan Y, et al. MicroRNA-522-3p plays an oncogenic role in glioblastoma through activating wnt/β-catenin signaling pathway via targeting SFRP2. Neuroreport. 2021;32(2):88–98.
  • Luo G, He K, Xia Z, et al. MicroRNA‑640 promotes cell proliferation and adhesion in glioblastoma by targeting slit guidance ligand 1. Oncol Lett. 2020;21(1):1–1.
  • Yang X, Liu J, Wang C, et al. miR-18a promotes glioblastoma development by down-regulating ALOXE3-mediated ferroptotic and anti-migration activities. Oncogenesis. 2021;10(2):1–13.
  • Kong F, Li X, Li S, et al. MicroRNA‑15a‑5p promotes the proliferation and invasion of T98G glioblastoma cells via targeting cell adhesion molecule 1. Oncology Letters. 2021;21(2):1–1.
  • Zheng H, Zhao H, Ye G. Overexpression of microRNA-939-5p contributes to cell proliferation and associates poor prognosis in glioma. Neuromol Med. 2021;23(4):531–539.
  • Yang F, Zhang C, Xu C, et al. MicroRNA-559 plays an inhibitory role in the malignant progression of glioblastoma cells by directly targeting metadherin. Onco Targets Ther. 2019;12:4415–4426.
  • Wang L, Lu J, Zhang H, et al. MicroRNA‑876‑5p inhibits the progression of glioblastoma multiforme by directly targeting Forkhead box M1. Oncol Rep. 2019;41(1):702–710.
  • Li Y, Chen F, Chu J, et al. miR-148-3p inhibits growth of glioblastoma targeting DNA methyltransferase-1 (DNMT1). Oncol Res. 2019;27(8):911–921.
  • Yang L, Mu Y, Cui H, et al. MiR-9-3p augments apoptosis induced by H2O2 through down regulation of Herpud1 in glioma. PLOS One. 2017;12(4):e0174839.
  • Peiquan H, Yuling W, Bing C, et al. Mir-29c expression in glioma and its effects on tumor cell proliferation and apoptosis. Iranian J Public Health. 2020;49(2):304.
  • Zhang L, Liang X, Li Y. Long non-coding RNA MEG3 inhibits cell growth of gliomas by targeting miR-93 and inactivating PI3K/AKT pathway. Oncol Rep. 2017;38(4):2408–2416.
  • Ding C, Deng W, Yin X, et al. MiR-122 inhibits cell proliferation and induces apoptosis by targeting runt-related transcription factors 2 in human glioma. Eur Rev Med Pharmacol Sci. 2018;22(15):4925–4933.
  • Li G, Huang M, Cai Y, et al. miR141 inhibits glioma vasculogenic mimicry by controlling EphA2 expression. Mol Med Rep. 2018;18(2):1395–1404.
  • Kalhori MR, Irani S, Soleimani M, et al. The effect of miR-579 on the PI3K/AKT pathway in human glioblastoma PTEN mutant cell lines. J Cell Biochem. 2019;120(10):16760–16774.
  • Arefian E, Atanaki FF, Kavousi K, et al. miR-548x and miR-4698 controlled cell proliferation by affecting the PI3K/AKT signaling pathway in glioblastoma cell lines. Sci Rep. 2020;10(1):1–12.
  • Lu X, Wang H, Su Z, et al. MicroRNA-342 inhibits the progression of glioma by directly targeting PAK4. Oncol Rep. 2017;38(2):1240–1250.
  • Yeh M, Wang Y-Y, Yoo JY, et al. MicroRNA-138 suppresses glioblastoma proliferation through downregulation of CD44. Sci Rep. 2021;11(1):1–11.
  • Yan T, Wu M, Lv S, et al. Exosomes derived from microRNA-512-5p-transfected bone mesenchymal stem cells inhibit glioblastoma progression by targeting JAG1. Aging. 2021;13(7):9911–9926.
  • Xi J, Sun Q, Ma L, et al. Long non-coding RNAs in glioma progression. Cancer Lett. 2018;419:203–209.
  • Lv QL, Hu L, Chen SH, et al. A long noncoding RNA ZEB1-AS1 promotes tumorigenesis and predicts poor prognosis in glioma. IJMS. 2016;17(9):1431.
  • Zheng J, Liu X, Wang P, et al. CRNDE promotes malignant progression of glioma by attenuating miR-384/PIWIL4/STAT3 axis. Mol Ther. 2016;24(7):1199–1215.
  • Graham LD, Pedersen SK, Brown GS, et al. Colorectal neoplasia differentially expressed (CRNDE), a novel gene with elevated expression in colorectal adenomas and adenocarcinomas. Genes Cancer. 2011;2(8):829–840.
  • Wang Y, Wang Y, Li J, et al. CRNDE, a long-noncoding RNA, promotes glioma cell growth and invasion through mTOR signaling. Cancer Lett. 2015;367(2):122–128.
  • Fabiani E, Falconi G, Fianchi L, et al. Clonal evolution in therapy-related neoplasms. Oncotarget. 2017;8(7):12031–12040.
  • Jing S, Lu Y, Yang J, et al. Expression of long non-coding RNA CRNDE in glioma and its correlation with tumor progression and patient survival. Epilepsia. 2016;20(8):12.
  • Gendrel AV, Heard E. Noncoding RNAs and epigenetic mechanisms during X-chromosome inactivation. Annu Rev Cell Dev Biol. 2014;30:561–580.
  • Chaligne R, Heard E. X-chromosome inactivation in development and cancer. FEBS Lett. 2014;588(15):2514–2522.
  • Yao Y, Ma J, Xue Y, et al. Knockdown of long non-coding RNA XIST exerts tumor-suppressive functions in human glioblastoma stem cells by up-regulating miR-152. Cancer Lett. 2015;359(1):75–86.
  • Wang S, Hui Y, Li X, et al. Silencing of lncRNA CCDC26 restrains the growth and migration of glioma cells in vitro and in vivo via targeting miR-203. Oncol Res. 2018;26(8):1143–1154.
  • Chen X, Gao Y, Li D, et al. LncRNA-TP53TG1 participated in the stress response under glucose deprivation in glioma. J Cell Biochem. 2017;118(12):4897–4904.
  • Zhou Y, Zhang X, Klibanski A. MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol. 2012;48(3):R45–53.
  • Min W, Dai D, Wang J, et al. Long noncoding RNA miR210HG as a potential biomarker for the diagnosis of glioma. PLOS One. 2016;11(9):e0160451.
  • Zhuang J, Yue M, Zheng Y, et al. Long non-coding RNA MVIH acts as a prognostic marker in glioma and its role in cell migration and invasion. Eur Rev Med Pharmacol Sci. 2016;20(23):4898–4904.
  • Ding F, Tang H, Nie D, et al. Long non-coding RNA fer-1-like family member 4 is overexpressed in human glioblastoma and regulates the tumorigenicity of glioma cells. Oncol Lett. 2017;14(2):2379–2384.
  • He Z, Wang Y, Huang G, et al. The lncRNA UCA1 interacts with miR-182 to modulate glioma proliferation and migration by targeting iASPP. Arch Biochem Biophys. 2017;623–624:1–8.
  • Sun J, Ji J, Huo G, et al. miR-182 induces cervical cancer cell apoptosis through inhibiting the expression of DNMT3a. Int J Clin Exp Pathol. 2015;8(5):4755–4763.
  • Zhang K, Sun X, Zhou X, et al. Long non-coding RNA HOTAIR promotes glioblastoma cell cycle progression in an EZH2 dependent manner. Oncotarget. 2015;6(1):537–546.
  • Zhen L, Yun-Hui L, Hong-Yu D, et al. Long noncoding RNA NEAT1 promotes glioma pathogenesis by regulating miR-449b-5p/c-Met axis. Tumour Biol. 2016;37(1):673–683.
  • Gong W, Zheng J, Liu X, et al. Knockdown of NEAT1 restrained the malignant progression of glioma stem cells by activating microRNA let-7e. Oncotarget. 2016;7(38):62208–62223.
  • Yang X, Xiao Z, Du X, et al. Silencing of the long non-coding RNA NEAT1 suppresses glioma stem-like properties through modulation of the miR-107/CDK6 pathway. Oncol Rep. 2017;37(1):555–562.
  • Xu LM, Chen L, Li F, et al. Over-expression of the long non-coding RNA HOTTIP inhibits glioma cell growth by BRE. J Exp Clin Cancer Res. 2016;35(1):162.
  • Xiang J, Guo S, Jiang S, et al. Silencing of long Non-Coding RNA MALAT1 promotes apoptosis of glioma cells. J Korean Med Sci. 2016;31(5):688–694.
  • Li J, Zhang M, An G, et al. LncRNA TUG1 acts as a tumor suppressor in human glioma by promoting cell apoptosis. Exp Biol Med. 2016;241(6):644–649.
  • Guo P, Nie Q, Lan J, et al. C-Myc negatively controls the tumor suppressor PTEN by upregulating miR-26a in glioblastoma multiforme cells. Biochem Biophys Res Commun. 2013;441(1):186–190.
  • Wang P, Ren Z, Sun P. Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation. J Cell Biochem. 2012;113(6):1868–1874.
  • Qin N, Tong G-F, Sun L-W, et al. Long noncoding RNA MEG3 suppresses glioma cell proliferation, migration, and invasion by acting as a competing endogenous RNA of miR-19a. Oncol Res. 2017;25(9):1471–1478.
  • Hu T, Wang F, Han G. LncRNA PSMB8-AS1 acts as ceRNA of miR-22-3p to regulate DDIT4 expression in glioblastoma. Neurosci Lett. 2020;728:134896.
  • Yang J, Yu D, Liu X, et al. LncRNA PCED1B-AS1 activates the proliferation and restricts the apoptosis of glioma through cooperating with miR-194-5p/PCED1B axis. J Cell Biochem. 2020;121(2):1823–1833.
  • Lin YH, Guo L, Yan F, et al. Long non-coding RNA HOTAIRM1 promotes proliferation and inhibits apoptosis of glioma cells by regulating the miR-873-5p/ZEB2 axis. Chinese Medical Journal. 2020;133(2):174–182.
  • Huang L, Li X, Ye H, et al. Long non-coding RNA NCK1-AS1 promotes the tumorigenesis of glioma through sponging microRNA-138-2-3p and activating the TRIM24/Wnt/β-catenin axis . J Exp Clin Cancer Res. 2020;39(1):63.
  • Liu D, Zou Z, Li G, et al. Long noncoding RNA NEAT1 suppresses proliferation and promotes apoptosis of glioma cells via downregulating MiR-92b. Cancer Control. 2020;27(1):1073274819897977.
  • Zhang J, Li Y, Liu Y, et al. Long noncoding RNA NEAT1 regulates glioma cells proliferation and apoptosis by competitively binding with miR-324-5p and upregulating KCTD20 expression. 2020.
  • Li B, Lu X, Ma C, et al. Long non-coding RNA NEAT1 promotes human glioma tumor progression via miR-152-3p/CCT6A pathway. Neurosci Lett. 2020;732:135086.
  • Wang X, Li XD, Fu Z, et al. Long non‑coding RNA LINC00473/miR‑195‑5p promotes glioma progression via YAP1‑TEAD1‑Hippo signaling . Int J Oncol. 2020;56(2):508–521.
  • Wang JB, Chen XL, Han ZB, et al. Long non-coding RNA TP73-AS1 contributes to glioma tumorigenesis by sponging the miR-103a/GALNT7 pathway. Brain Res. 2020;1741:146886.
  • Li X, Liu Q, Wang K, et al. LncRNA SNHG5 regulates the cell viability and apoptosis of glioma cells by the miR-1297/KPNA2 axis. RSC Adv. 2020;10(3):1498–1506.
  • Sun SL, Shu YG, Tao MY. LncRNA CCAT2 promotes angiogenesis in glioma through activation of VEGFA signalling by sponging miR-424. Mol Cell Biochem. 2020;468(1–2):69–82.
  • Dong ZQ, Guo ZY, Xie J. The lncRNA EGFR-AS1 is linked to migration, invasion and apoptosis in glioma cells by targeting miR-133b/RACK1. Biomed Pharmacother. 2019;118:109292.
  • Dong H, Cao W, Xue J. Long noncoding FOXD2-AS1 is activated by CREB1 and promotes cell proliferation and metastasis in glioma by sponging miR-185 through targeting AKT1. Biochem Biophys Res Commun. 2019;508(4):1074–1081.
  • Jin Z, Piao L, Sun G, et al. Long non-coding RNA PART1 exerts tumor suppressive functions in glioma via sponging miR-190a-3p and inactivation of PTEN/AKT pathway. Onco Targets Ther. 2020;13:1073–1086.
  • Chi G, Yang F, Xu D, et al. Silencing hsa_circ_PVT1 (circPVT1) suppresses the growth and metastasis of glioblastoma multiforme cells by up-regulation of miR-199a-5p. Artif Cells Nanomed Biotechnol. 2020;48(1):188–196.
  • Tang W, Wang D, Shao L, et al. LINC00680 and TTN-AS1 stabilized by EIF4A3 promoted malignant biological behaviors of glioblastoma cells. Mol Ther Nucleic Acids. 2020;19:905–921.
  • Yin Z, Liao L, Mao S, et al. Knockdown of lncRNA KCNQ1OT1 inhibits glioma progression by regulating miR-338-3p/RRM2. Open Life Sci. 2020;15(1):108–121.
  • Lin H, Zuo D, He J, et al. Long noncoding RNA WEE2-AS1 plays an oncogenic role in glioblastoma by functioning as a molecular sponge for microRNA-520f-3p. Oncol Res. 2021;28(6):591–603.
  • Wu P, Cai J, Chen Q. TBIO-21. Lnc-TALC promotes o6-methylguanine-DNA methyltransferase expression vIA regulating tHE C-MET pathway by competitively binding with miR-20b-3p. Neuro-Oncology. 2020;22(Supplement_3):iii470–iii470.
  • Ji T, Lyu X, You Y. LncRNA SNHG11 Promotes Temozolomide Resistance in Glioblastoma via Promoting MGMT Expression. 2021.
  • Lu C, Wei Y, Wang X, et al. DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol Cancer. 2020;19(1):28.
  • Chen W, Xu X-K, Li J-L, et al. MALAT1 is a prognostic factor in glioblastoma multiforme and induces chemoresistance to temozolomide through suppressing miR-203 and promoting thymidylate synthase expression. Oncotarget. 2017;8(14):22783–22799.
  • Zhao M, Shao Y, Xu J, et al. LINC00466 impacts cell proliferation, metastasis and sensitivity to temozolomide of glioma by sponging miR-137 to regulate PPP1R14B expression. Onco Targets Ther. 2021;14:1147–1159.
  • Han C, Wang S, Wang H, et al. Exosomal Circ-HIPK3 facilitates tumor progression and temozolomide resistance by regulating miR-421/ZIC5 axis in glioma. Cancer Biotherapy & Radiopharmaceuticals. 2020;36(7):537–548.
  • Wei Y, Lu C, Zhou P, et al. EIF4A3-induced circular RNA ASAP1 promotes tumorigenesis and temozolomide resistance of glioblastoma via NRAS/MEK1/ERK1-2 signaling. Neuro Oncol. 2021;23(4):611–624.
  • Liu T, Hu J, Han B, et al. A Positive Feedback Loop of lncRNA-RMRP/ZNRF3 axis and Wnt/β-catenin Signaling Regulates Temozolomide Resistance in Glioma. 2020.
  • Cao Y, Chai W, Wang Y, et al. lncRNA TUG1 inhibits the cancer stem cell‑like properties of temozolomide‑resistant glioma cells by interacting with EZH2. Mol Med Rep. 2021;24(1):1–10.
  • Liu L, Li X, Shi Y, et al. Long noncoding RNA DLGAP1-AS1 promotes the progression of glioma by regulating the miR-1297/EZH2 axis. Aging. 2021;13(8):12129–12142.
  • Xu N, Liu B, Lian C, et al. Long noncoding RNA AC003092. 1 promotes temozolomide chemosensitivity through miR-195/TFPI-2 signaling modulation in glioblastoma. Cell Death Dis. 2018;9(12):1–16.
  • Shang C, Tang W, Pan C, et al. Long non-coding RNA TUSC7 inhibits temozolomide resistance by targeting miR-10a in glioblastoma. Cancer Chemother Pharmacol. 2018;81(4):671–678.
  • Liu Y, Xu N, Liu B, et al. Long noncoding RNA RP11-838N2.4 enhances the cytotoxic effects of temozolomide by inhibiting the functions of miR-10a in glioblastoma cell lines. Oncotarget. 2016;7(28):43835–43851.
  • Ho K-H, Cheng C-H, Chou C-M, et al. miR-140 targeting CTSB signaling suppresses the mesenchymal transition and enhances temozolomide cytotoxicity in glioblastoma multiforme. Pharmacol Res. 2019;147:104390.
  • Ma S, Fu T, Zhao S, et al. MicroRNA-34a-5p suppresses tumorigenesis and progression of glioma and potentiates temozolomide-induced cytotoxicity for glioma cells by targeting HMGA2. Eur J Pharmacol. 2019;852:42–50.
  • Zhang J, Zhang J, Zhang J, et al. MicroRNA-625 inhibits the proliferation and increases the chemosensitivity of glioma by directly targeting AKT2. Am J Cancer Res. 2017;7(9):1835–1849.
  • Cheung MR, Testa J. Diverse mechanisms of AKT pathway activation in human malignancy. Curr Cancer Drug Targets. 2013;13(3):234–244.
  • Sarkaria JN, Kitange GJ, James CD, et al. Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin Cancer Res. 2008;14(10):2900–2908.
  • Nie E, Jin X, Wu W, et al. MiR-198 enhances temozolomide sensitivity in glioblastoma by targeting MGMT. J Neurooncol. 2017;133(1):59–68.
  • Qiao W, Guo B, Zhou H, et al. miR-124 suppresses glioblastoma growth and potentiates chemosensitivity by inhibiting AURKA. Biochem Biophys Res Commun. 2017;486(1):43–48.
  • Gao Y-T, Chen X-B, Liu H-L. Up-regulation of miR-370-3p restores glioblastoma multiforme sensitivity to temozolomide by influencing MGMT expression. Sci Rep. 2016;6(1):1–9.
  • Di H, Li C, Wang X, et al. Overexpression of miR-874 enhances chemosensitivity of glioma cells to temozolomide by the oncogenic STAT3 pathway. Int J Clin Exp Patho. 2017;10:2852.
  • Chen Y, Li R, Pan M, et al. MiR-181b modulates chemosensitivity of glioblastoma multiforme cells to temozolomide by targeting the epidermal growth factor receptor. J Neurooncol. 2017;133(3):477–485.
  • Sukumar UK, Bose RJ, Malhotra M, et al. Intranasal delivery of targeted polyfunctional gold-iron oxide nanoparticles loaded with therapeutic microRNAs for combined theranostic multimodality imaging and presensitization of glioblastoma to temozolomide. Biomaterials. 2019;218:119342.
  • Tian T, Mingyi M, Qiu X, et al. MicroRNA-101 reverses temozolomide resistance by inhibition of GSK3β in glioblastoma. Oncotarget. 2016;7(48):79584–79595.
  • Chen H, Liu L, Li X, et al. MicroRNA-1294 inhibits the proliferation and enhances the chemosensitivity of glioma to temozolomide via the direct targeting of TPX2. Am J Cancer Res. 2018;8(2):291–301.
  • Wang H, Ren S, Xu Y, et al. MicroRNA-195 reverses the resistance to temozolomide through targeting cyclin E1 in glioma cells. Anticancer Drugs. 2019;30(1):81–88.
  • Liu Z-Q, Ren J-J, Zhao J-L, et al. MicroRNA-144 represses gliomas progression and elevates susceptibility to temozolomide by targeting CAV2 and FGF7. Sci Rep. 2020;10(1):1–14.
  • Xu J, Huang H, Peng R, et al. MicroRNA‑30a increases the chemosensitivity of U251 glioblastoma cells to temozolomide by directly targeting beclin 1 and inhibiting autophagy. Exp Therap Med. 2018;15(6):4798–4804.
  • Wu Y, Yao Y, Yun Y, et al. MicroRNA-302c enhances the chemosensitivity of human glioma cells to temozolomide by suppressing P-gp expression. Bioscience Reports. 2019;39(9).
  • Lee Y-Y, Yarmishyn AA, Wang M-L, et al. MicroRNA-142-3p is involved in regulation of MGMT expression in glioblastoma cells. Cancer Manag Res. 2018;10:775–785.
  • Wang B, Wu Z-H, Lou P-Y, et al. Human bone marrow-derived mesenchymal stem cell-secreted exosomes overexpressing microRNA-34a ameliorate glioblastoma development via down-regulating MYCN. Cell Oncol. 2019;42(6):783–799.
  • Wang Z, Li Z, Fu Y, et al. MiRNA-130a-3p inhibits cell proliferation, migration, and TMZ resistance in glioblastoma by targeting Sp1. Am J Transl Res. 2019;11(12):7272–7285.
  • Yang YN, Zhang XH, Wang YM, et al. miR-204 reverses temozolomide resistance and inhibits cancer initiating cells phenotypes by degrading FAP-α in glioblastoma. Oncol Lett. 2018;15(5):7563–7570.
  • Li Y, Liu Y, Ren J, et al. miR-1268a regulates ABCC1 expression to mediate temozolomide resistance in glioblastoma. J Neurooncol. 2018;138(3):499–508.
  • Zhu D, Tu M, Zeng B, et al. Up-regulation of miR-497 confers resistance to temozolomide in human glioma cells by targeting mTOR/Bcl-2. Cancer Med. 2017;6(2):452–462.
  • Zhang X, Yu J, Zhao C, et al. MiR-181b-5p modulates chemosensitivity of glioma cells to temozolomide by targeting bcl-2. Biomed Pharmacother. 2019;109:2192–2202.
  • Wang L, Su J, Zhao Z, et al. MiR-26b reverses temozolomide resistance via targeting Wee1 in glioma cells. Cell Cycle. 2017;16(20):1954–1964.
  • Xiao S, Yang Z, Qiu X, et al. miR-29c contribute to glioma cells temozolomide sensitivity by targeting O6-methylguanine-DNA methyltransferases indirectely. Oncotarget. 2016;7(31):50229–50238.
  • Qian Z, Zhou S, Zhou Z, et al. miR‑146b‑5p suppresses glioblastoma cell resistance to temozolomide through targeting TRAF6. Oncol Rep. 2017;38(5):2941–2950.
  • Luo W, Yan D, Song Z, et al. miR-126-3p sensitizes glioblastoma cells to temozolomide by inactivating wnt/β-catenin signaling via targeting SOX2. Life Sci. 2019;226:98–106.
  • Kong S, Cao Y, Li X, et al. MiR-3116 sensitizes glioma cells to temozolomide by targeting FGFR1 and regulating the FGFR1/PI3K/AKT pathway . J Cell Mol Med. 2020;24(8):4677–4686.
  • Tan Z, Zhao J, Jiang Y. MiR-634 sensitizes glioma cells to temozolomide by targeting CYR61 through Raf-ERK signaling pathway . Cancer Med. 2018;7(3):913–921.
  • Kong S, Fang Y, Wang B, et al. miR-152-5p suppresses glioma progression and tumorigenesis and potentiates temozolomide sensitivity by targeting FBXL7. J Cell Mol Med. 2020;24(8):4569–4579.
  • Hartmann JT, Haap M, Kopp H-G, et al. Tyrosine kinase inhibitors - a review on pharmacology, metabolism and side effects . Curr Drug Metab. 2009;10(5):470–481.
  • Alamdari‐Palangi V, Amini R, Karami H. MiRNA‐7 enhances erlotinib sensitivity of glioblastoma cells by blocking the IRS‐1 and IRS‐2 expression. J Pharmacy Pharmacol. 2020;72(4):531–538.
  • Cunha PP, Costa PM, Morais CM, et al. High-throughput screening uncovers miRNAs enhancing glioblastoma cell susceptibility to tyrosine kinase inhibitors. Hum Mol Genet. 2017;26(22):4375–4387.
  • Chakrabarti M, Ray SK. Anti-tumor activities of luteolin and silibinin in glioblastoma cells: overexpression of miR-7-1-3p augmented luteolin and silibinin to inhibit autophagy and induce apoptosis in glioblastoma in vivo. Apoptosis. 2016;21(3):312–328.
  • Wang M, Wu Q, Fang M, et al. miR-152-3p sensitizes glioblastoma cells towards cisplatin via regulation of SOS1. Onco Targets Ther. 2019;12:9513–9525.
  • Li J, Song J, Guo F. miR-186 reverses cisplatin resistance and inhibits the formation of the glioblastoma-initiating cell phenotype by degrading yin yang 1 in glioblastoma. Int J Mol Med. 2019;43(1):517–524.
  • Zhang S, Han L, Wei J, et al. Combination treatment with doxorubicin and microRNA-21 inhibitor synergistically augments anticancer activity through upregulation of tumor suppressing genes. Int J Oncol. 2015;46(4):1589–1600.
  • Zhang G, Wang Q, Xu R. Therapeutics based on microRNA: a new approach for liver cancer. Curr Genomics. 2010;11(5):311–325.
  • Wu C, Lin J, Hong M, et al. Combinatorial control of suicide gene expression by tissue-specific promoter and microRNA regulation for cancer therapy. Mol Ther. 2009;17(12):2058–2066.
  • Lee S-J, Kim S-J, Seo H-H, et al. Over-expression of miR-145 enhances the effectiveness of HSVtk gene therapy for malignant glioma. Cancer Lett. 2012;320(1):72–80.
  • Bo Y, Guo G, Yao W. MiRNA-mediated tumor specific delivery of TRAIL reduced glioma growth. J Neurooncol. 2013;112(1):27–37.
  • Skalsky RL, Cullen BR. Reduced expression of brain-enriched microRNAs in glioblastomas permits targeted regulation of a cell death gene. PLOS One. 2011;6(9):e24248.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.