216
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Study on lipid nanomicelles targeting placenta for the treatment of preeclampsia

, , &
Pages 894-909 | Received 02 Nov 2021, Accepted 29 Mar 2022, Published online: 19 Jun 2022

References

  • Mol BWJ, Roberts CT, Thangaratinam S, et al. Pre-eclampsia. Lancet. 2016;387(10022):999–1011.
  • Sones JL, Davisson RL. Preeclampsia, of mice and women. Physiol Genomics. 2016;48(8):565–572.
  • Wisner K. Gestational hypertension and preeclampsia. MCN Am J Matern Child Nurs. 2019;44(3):170.
  • Boeldt DS, Bird IM. Vascular adaptation in pregnancy and endothelial dysfunction in preeclampsia. J Endocrinol. 2017;232(1):R27–R44.
  • Colmenares-Mejía C, Quintero-Lesmes DC, Bautista-Nio PK, et al. Pentraxin-3 is a candidate biomarker on the spectrum of severity from pre-eclampsia to HELLP syndrome: GenPE study. Hypertens Res. 2020;43(9):884–891.
  • Jeyabalan A. Epidemiology of preeclampsia: impact of obesity. Nutr Rev. 2013;71(1):S18–S14.
  • Strand KM, Heimstad R, Iversen AC, et al. Mediators of the association between pre-eclampsia and cerebral palsy: population based cohort study. BMJ. 2013;347(2):f4089–f4089.
  • Prick BW, Bijlenga D, Jansen A, et al. Determinants of health-related quality of life in the postpartum period after obstetric complications. Eur J Obstet Gynecol Reprod Biol. 2015;185:88–95.
  • Blom EA, Jansen PW, Verhulst FC, et al. Perinatal complications increase the risk of postpartum depression. The generation R study. Bjog Int J Obstetrics Gynaecol. 2010;117(11):1390–1398.
  • Phipps EA, Thadhani R, Benzing T, et al. Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol. 2019;15(5):275–289.
  • Chaiworapongsa T, Chaemsaithong P, Korzeniewski SJ, et al. Pre-eclampsia part 2: prediction, prevention and management. Nat Rev Nephrol. 2014;10(9):531–540.
  • Masahiro, Nezu, Tomokazu. Nrf2 inactivation enhances placental angiogenesis in a preeclampsia mouse model and improves maternal and fetal outcomes. Sci Signaling. 2017;10(479):1–9.
  • Patten IS, Rana S, Shahul S, et al. Cardiac angiogenic imbalance leads to peripartum cardiomyopathy. Nature. 2012;485(7398):333–338.
  • R M, V S, O WN, et al. Variants in the fetal genome near FLT1 are associated with risk of preeclampsia. Nat Genet. 2017;49(8):1255–1260.
  • Thadhani R, Hagmann H, Schaarschmidt W, et al. Removal of soluble Fms-Like tyrosine kinase-1 by dextran sulfate apheresis in preeclampsia. J Am Soc Nephrol. 2016;27(3):903–913.
  • Masabumi S. Structure and function of VEGF/VEGF-receptor system involved in angiogenesis. Cell Structure & Function. 2001;26(1):25–35.
  • Hassan MF, Rund NMA, Salama AH, et al. An elevated maternal plasma soluble fms-Like tyrosine kinase-1 to placental growth factor ratio at midtrimester is a useful predictor for preeclampsia. Obstet Gynecol Int. 2013;2013:1–8.
  • Hanita O, Alia NN, Zaleha AM, et al. Serum soluble FMS-like tyrosine kinase 1 and placental growth factor concentration as predictors of preeclampsia in high risk pregnant women. Malaysian J Pathol. 2014;36(1):19–26.
  • Ohkuchi A, Saito S, Yamamoto T, et al. Short-term prediction of preeclampsia using the sFlt-1/PlGF ratio: a subanalysis of pregnant Japanese women from the PROGNOSIS Asia study. Hypertension Res. 2021;44:813–821.
  • Warrington JP, George EM, Palei AC, et al. Recent advances in the understanding of the pathophysiology of preeclampsia. Hypertension. 2013;62(4):666–673.
  • Cheng M, He P, Fu J. The relationship between circulating tissue transglutaminase, soluble FMS-like tyrosine kinase-1, soluble endoglin and vascular endothelial growth factor in pre-eclampsia. J Hum Hypertens. 2016;30(12):788–793.
  • Takeshi N, Tomoyuki F, Maki K, et al. Cytotrophoblasts up-regulate soluble FMS-like tyrosine kinase-1 expression under reduced oxygen: an implication for the placental vascular development and the pathophysiology of preeclampsia. Endocrinology. 2004;145(11):4838–4845.
  • Bujold E, Romero R, Chaiworapongsa T, et al. Evidence supporting that the excess of the sVEGFR-1 concentration in maternal plasma in preeclampsia has a uterine origin. J Maternal-Fetal Med. 2005;18(1):9–16.
  • Zeisler H, Llurba E, Chantraine F, et al. Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N Engl J Med. 2016;374(1):13–22.
  • Rana S, Powe C, Salahuddin S, et al. Angiogenic factors and the risk of adverse outcomes in women with suspected preeclampsia. Circulation. 2012;125(7):911–919.
  • Zixuan Y, Liang Z, Yafei Z, et al. Inhibition of glioma growth by a GOLPH3 siRNA-loaded cationic liposomes. J Neurooncol. 2018;140(2):249–260.
  • Chira S, Jackson CS, Oprea I, et al. Progresses towards safe and efficient gene therapy vectors. Oncotarget. 2015;6(31):30675–30703.
  • Jinju L, Jun AH. PEGylated DC-Chol/DOPE cationic liposomes containing KSP siRNA as a systemic siRNA delivery carrier for ovarian cancer therapy. Biochem Biophys Res Commun. 2018;503(3):1716–1722.
  • Wan C, Allen TM, Cullis PR. Lipid nanoparticle delivery systems for siRNA-based therapeutics. Drug Deliv Transl Res. 2014;4(1):74–83.
  • Chaiworapongsa T, Chaemsaithong P, Yeo L, et al. Pre-eclampsia part 1: current understanding of its pathophysiology. Nat Rev Nephrol. 2014;10(8):466–480.
  • Keating E, Gon?Alves P, Costa F, et al. Comparison of the transport characteristics of bioactive substances in IUGR and normal placentas. Pediatr Res. 2009;66(5):495–500.
  • Johnsen GM, Basak S, Weedon- Fe Kj RMS, et al. Docosahexaenoic acid stimulates tube formation in first trimester trophoblast cells, HTR8/SVneo. Placenta. 2011;32(9):626–632.
  • Dong Y, Siegwart D, Anderson D. Strategies, design, and chemistry in siRNA delivery systems. Adv Drug Delivery Rev. 2019;144(4):133–147.
  • Aleksenko L, Bo K, Hansson E, et al. Pregnant alpha-1-microglobulin (A1M) knockout mice exhibit features of kidney and placental damage, hemodynamic changes and intrauterine growth restriction. Sci Rep. 2020;10(1):20625.
  • Sani HM, Vahed SZ, Ardalan M. Preeclampsia: a close look at renal dysfunction. Biomed Pharmacother. 2019;109:408–416.
  • Venkatesha S, Toporsian M, Lam C, et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med. 2006;12(6):642–649.
  • Goulopoulou S, Davidge ST. Molecular mechanisms of maternal vascular dysfunction in preeclampsia. Trends Mol Med. 2015;21(2):88–97.
  • Aamer I, Yawar YM, Mehnaz J, et al. Impact of interventions to prevent and manage preeclampsia and eclampsia on stillbirths. Bmc Public Health. 2011;11(3):1–11s.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.