363
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Molecular and cellular biology of PCSK9: impact on glucose homeostasis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 948-960 | Received 19 Dec 2021, Accepted 15 Jun 2022, Published online: 29 Jun 2022

References

  • WHO. Global report on diabetes. Geneva: WHO; 2016.
  • Fédération Internationale du Diabète. L’Atlas du diabète de la FID. 9è. Bruxelles: FID; 2019.
  • Choukem SP, Sobngwi E, Gautier J-F. Les particularités du diabète chez le sujet originaire d’Afrique noire. STV. 2007;19(10):513–518.
  • Wang X, Tan H. Male predominance in ketosis-prone diabetes mellitus. Biomed Rep. 2015;3(4):439–442.
  • Ling C, Rönn T. Epigenetics in human obesity and type 2 diabetes. Cell Metab. 2019;29(5):1028–1044.
  • Rhee E-J. Recent dyslipidemia guidelines for patients with diabetes mellitus. Precis Future Med. 2020;4(4):133–140.
  • Poznyak A, Grechko AV, Poggio P, et al. The diabetes mellitus–atherosclerosis connection: the role of lipid and glucose metabolism and chronic inflammation. IJMS. 2020;21(5):1835.
  • Ruiz-Ortega M, Rodrigues-Diez RR, Lavoz C, et al. Special issue “diabetic nephropathy”: diagnosis, prevention and treatment. JCM. 2020;9(3):813.
  • Abifadel M, Varret M, Rabès J-P, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154–156.
  • Seidah NG, Benjannet S, Wickham L, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci U S A. 2003;100(3):928–933.
  • Sabatine MS, Leiter LA, Wiviott SD, et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5(12):941–950.
  • Ray KK, Colhoun H, Szarek M, Odyssey Outcomes Investigators, et al. Alirocumab and cardiovascular outcomes in patients with acute coronary syndrome (ACS) and diabetes—prespecified analyses of ODYSSEY OUTCOMES. Diabetes. 2018;67(Supplement_1):6–LB.
  • Baass A, Dubuc G, Tremblay M, et al. Plasma PCSK9 is associated with age, sex, and multiple metabolic markers in a population-based sample of children and adolescents. Clin Chem. 2009;55(9):1637–1645.
  • Arsenault BJ, Pelletier-Beaumont E, Alméras N, et al. PCSK9 levels in abdominally obese men:association with cardiometabolic risk profile and effects of a one-year lifestyle modification program. Atherosclerosis. 2014;236(2):321–326.
  • Ibarretxe D, Girona J, Plana N, et al. Circulating PCSK9 in patients with type 2 diabetes and related metabolic disorders. Clín Investig Arterioscler. 2016;28(2):71–78.
  • Jerome RN, Pulley JM, Roden DM, et al. Using human ‘experiments of nature’ to predict drug safety issues: an example with PCSK9 inhibitors. Drug Saf. 2018;41(3):303–311.
  • Nelson CP, Lai FY, Nath M, et al. Genetic assessment of potential long-term on-target side effects of PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibitors. Circ Genom Precis Med. 2019;12:e002196.
  • Seidah NG. The proprotein convertases, 20 years later. In: Mbikay M, Seidah NG, editors. Proprotein convertases. Totowa, NJ: Humana Press; 2011; p. 23–57.
  • Tran NT, Aslibekyan S, Tiwari HK, et al. PCSK9 variation and association with blood pressure in african americans: preliminary findings from the HyperGEN and REGARDS studies. Front Genet. 2015;6:136.
  • Pott J, Schlegel V, Teren A, et al. Genetic regulation of PCSK9 (proprotein convertase subtilisin/kexin type 9) plasma levels and its impact on atherosclerotic vascular disease phenotypes. Circ Genom Precis Med. 2018;11:e001992.
  • Guo Q, Feng X, Zhou Y. PCSK9 variants in familial hypercholesterolemia: a comprehensive synopsis. Front Genet. 2020;11(1020):1020.
  • Cohen J, Pertsemlidis A, Kotowski IK, et al. Low LDL cholesterol in individuals of african descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37(2):161–165.
  • Sirois F, Gbeha E, Sanni A, et al. Ethnic differences in the frequency of the cardioprotective C679X PCSK9 mutation in a west african population. Genet Test. 2008;12(3):377–380.
  • Berge KE, Ose L, Leren TP. Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy. Arterioscler Thromb Vasc Biol. 2006;26(5):1094–1100.
  • Horton J, Cohen J, Hobbs H. Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem Sci. 2007;32(2):71–77.
  • Cariou B, Le May C, Costet P. Clinical aspects of PCSK9. Atherosclerosis. 2011;216(2):258–265.
  • Wanneh E, Luna G, Dufour R, et al. Predicting proprotein convertase subtilisin kexin type-9 loss of function mutations using plasma PCSK9 concentration. J Clin Lipidol. 2017;11(1):55–60.
  • Ferri N, Marchianò S, Tibolla G, et al. PCSK9 knock-out mice are protected from neointimal formation in response to perivascular carotid collar placement. Atherosclerosis. 2016;253:214–224.
  • Ding Z, Liu S, Wang X, et al. Cross-talk between LOX-1 and PCSK9 in vascular tissues. Cardiovasc Res. 2015;107(4):556–567.
  • Schulz R, Schlüter K-D. PCSK9 targets important for lipid metabolism. Clin Res Cardiol Suppl. 2017;12(Suppl 1):2–11.
  • Ding Z, Wang X, Liu S, et al. PCSK9 expression in the ischaemic heart and its relationship to infarct size, cardiac function, and development of autophagy. Cardiovasc Res. 2018;114(13):1738–1751.
  • Ding Z, Liu S, Wang X, et al. PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages. Cardiovasc Res. 2018;114(8):1145–1153.
  • Basak A. Inhibitors of proprotein convertases. J Mol Med (Berl). 2005;83(11):844–855.
  • Deng S, Gu H, Alabi A, et al. Identification of regions in PCSK9 important for its secretion. Atherosclerosis. 2018;32(Suppl):35.
  • Poirier S, Hamouda HA, Villeneuve L, et al. Trafficking dynamics of PCSK9-Induced LDLR degradation: Focus on human PCSK9 mutations and C-terminal domain. PLoS One. 2016;11(6):e0157230.
  • Poirier S, Mamarbachi M, Chen W-T, et al. GRP94 regulates circulating cholesterol levels through blockade of PCSK9-Induced LDLR degradation. Cell Rep. 2015;13(10):2064–2071.
  • Chen X-W, Wang H, Bajaj K, et al. SEC24A deficiency lowers plasma cholesterol through reduced PCSK9 secretion. eLife. 2013;2:e00444.
  • Deng S, Shen Y, Gu H, et al. The role of the C-terminal domain of PCSK9 and SEC24 isoforms in PCSK9 secretion. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(6):158660.
  • Emmer BT, Hesketh GG, Kotnik E, et al. The cargo receptor SURF4 promotes the efficient cellular secretion of PCSK9. eLife. 2018;7:e38839.
  • Shen Y, Wang B, Deng S, et al. Surf4 regulates expression of proprotein convertase subtilisin/kexin type 9 (PCSK9) but is not required for PCSK9 secretion in cultured human hepatocytes. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(2):158555.
  • DeVay RM, Shelton DL, Liang H. Characterization of proprotein convertase subtilisin/kexin type 9 (PCSK9) trafficking reveals a novel lysosomal targeting mechanism via amyloid precursor-like protein 2 (APLP2). J Biol Chem. 2013;288(15):10805–10818.
  • Gustafsen C, Kjolby M, Nyegaard M, et al. The hypercholesterolemia-risk gene SORT1 facilitates PCSK9 secretion. Cell Metab. 2014;19(2):310–318.
  • Poirier S, Mayer G, Poupon V, et al. Dissection of the endogenous cellular pathways of PCSK9-induced low density lipoprotein receptor degradation: evidence for an intracellular route. J Biol Chem. 2009;284(42):28856–28864.
  • Mayer G, Poirier S. The biology of PCSK9 from the endoplasmic reticulum to lysosomes: new and emerging therapeutics to control low-density lipoprotein cholesterol. Drug Des Devel Ther. 2013;7:1135–1148.
  • Shapiro MD, Tavori H, Fazio S. PCSK9: from basic science discoveries to clinical trials. Circ Res. 2018;122(10):1420–1438.
  • Gustafsen C, Olsen D, Vilstrup J, et al. Heparan sulfate proteoglycans present PCSK9 to the LDL receptor. Nat Commun. 2017;8(1):503.
  • Jang H-D, Lee SE, Yang J, et al. Cyclase-associated protein 1 is a binding partner of proprotein convertase subtilisin/kexin type-9 and is required for the degradation of low-density lipoprotein receptors by proprotein convertase subtilisin/kexin type-9. Eur Heart J. 2020;41(2):239–252.
  • McNutt MC, Lagace TA, Horton JD. Catalytic activity is not required for secreted PCSK9 to reduce low density lipoprotein receptors in HepG2 cells. J Biol Chem. 2007;282(29):20799–20803.
  • Poirier S, Mayer G, Benjannet S, et al. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J Biol Chem. 2008;283(4):2363–2372.
  • Melendez QM, Krishnaji ST, Wooten CJ, et al. Hypercholesterolemia: the role of PCSK9. Arch Biochem Biophys. 2017;625-626:39–53.
  • Cunningham D, Danley DE, Geoghegan KF, et al. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat Struct Mol Biol. 2007;14(5):413–419.
  • Surdo PL, Bottomley MJ, Calzetta A, et al. Mechanistic implications for LDL receptor degradation from the PCSK9/LDLR structure at neutral pH. EMBO Rep. 2011;12(12):1300–1305.
  • Abifadel M, Guerin M, Benjannet S, et al. Identification and characterization of new gain-of-function mutations in the PCSK9 gene responsible for autosomal dominant hypercholesterolemia. Atherosclerosis. 2012;223(2):394–400.
  • Benjannet S, Luna Saavedra YG, Hamelin J, et al. Effects of the prosegment and pH on the activity of PCSK9. J Biol Chem. 2010;285(52):40965–40978.
  • Leren TP. Sorting an LDL receptor with bound PCSK9 to intracellular degradation. Atherosclerosis. 2014;237(1):76–81.
  • Seidah NG, Awan Z, Chrétien M, et al. PCSK9: a key modulator of cardiovascular health. Circ Res. 2014;114(6):1022–1036.
  • Dubuc G, Chamberland A, Wassef H, et al. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2004;24(8):1454–1459.
  • Costet P, Cariou B, Lambert G, et al. Hepatic PCSK9 expression is regulated by nutritional status via insulin and sterol regulatory element-binding protein 1c. J Biol Chem. 2006;281(10):6211–6218.
  • Li H, Liu J. The novel function of HINFP as a co-activator in sterol-regulated transcription of PCSK9 in HepG2 cells. Biochem J. 2012;443(3):757–768.
  • Eberlé D, Hegarty B, Bossard P, et al. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie. 2004;86(11):839–848.
  • Horton JD, Shah NA, Warrington JA, et al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci U S A. 2003;100(21):12027–12032.
  • Dong B, Singh AB, Shende VR, et al. Hepatic HNF1 transcription factors control the induction of PCSK9 mediated by rosuvastatin in normolipidemic hamsters. Int J Mol Med. 2017;39(3):749–756.
  • Kartawijaya M, Han WH, Kim Y, et al. Genistein upregulates LDLR levels via JNK-mediated activation of SREBP-2. Food Nutr Res. 2016;60:31120.
  • Dong B, Wu M, Li H, et al. Strong induction of PCSK9 gene expression through HNF1α and SREBP2: mechanism for the resistance to LDL-cholesterol lowering effect of statins in dyslipidemic hamsters. J Lipid Res. 2010;51(6):1486–1495.
  • Li H, Dong B, Park SW, et al. Hepatocyte nuclear factor 1α plays a critical role in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine. J Biol Chem. 2009;284(42):28885–28895.
  • Shende VR, Wu M, Singh AB, et al. Reduction of circulating PCSK9 and LDL-C levels by liver-specific knockdown of HNF1α in normolipidemic mice. J Lipid Res. 2015;56(4):801–809.
  • Ai D, Chen C, Han S, et al. Regulation of hepatic LDL receptors by mTORC1 and PCSK9 in mice. J Clin Invest. 2012;122(4):1262–1270.
  • Tao R, Xiong X, DePinho RA, et al. FoxO3 transcription factor and Sirt6 deacetylase regulate low density lipoprotein (LDL)-cholesterol homeostasis via control of the proprotein convertase subtilisin/kexin type 9 (Pcsk9) gene expression. J Biol Chem. 2013;288(41):29252–29259.
  • Langhi C, Krempf M, Costet P, et al. Activation of the farnesoid X receptor represses PCSK9 expression in human hepatocytes. FEBS Lett. 2008;8:949–955.
  • Han T, Lv Y, Wang S, et al. PPARγ overexpression regulates cholesterol metabolism in human L02 hepatocytes. J Pharmacol Sci. 2019;139(1):1–8.
  • Kourimate S, Le May C, Langhi C, et al. Dual mechanisms for the fibrate-mediated repression of proprotein convertase subtilisin/kexin type 9. J Biol Chem. 2008;283(15):9666–9673.
  • Duan Y, Chen Y, Hu W, et al. Peroxisome proliferator-activated receptor γ activation by ligands and dephosphorylation induces proprotein convertase subtilisin kexin type 9 and low density lipoprotein receptor expression. J Biol Chem. 2012;287(28):23667–23677.
  • Sun L, Yang X, Li Q, et al. Activation of adiponectin receptor regulates proprotein convertase subtilisin/kexin type 9 expression and inhibits lesions in ApoE-Deficient mice. Arterioscler Thromb Vasc Biol. 2017;37(7):1290–1300.
  • Scotti E, Hong C, Yoshinaga Y, et al. Targeted disruption of the idol gene alters cellular regulation of the low-density lipoprotein receptor by sterols and liver X receptor agonists. Mol Cell Biol. 2011;31(9):1885–1893.
  • Benjannet S, Rhainds D, Hamelin J, et al. The proprotein convertase (PC) PCSK9 is inactivated by furin and/or PC5/6A: functional consequences of natural mutations and Post-Translational modifications. J Biol Chem. 2006;281(41):30561–30572.
  • Essalmani R, Susan-Resiga D, Chamberland A, et al. In vivo evidence that furin from hepatocytes inactivates PCSK9. J Biol Chem. 2011;286(6):4257–4263.
  • Han B, Eacho PI, Knierman MD, et al. Isolation and characterization of the circulating truncated form of PCSK9. J Lipid Res. 2014;55(7):1505–1514.
  • Lipari MT, Li W, Moran P, et al. Furin-cleaved proprotein convertase subtilisin/kexin type 9 (PCSK9) is active and modulates low density lipoprotein receptor and serum cholesterol levels. J Biol Chem. 2012;287(52):43482–43491.
  • Lakoski SG, Lagace TA, Cohen JC, et al. Genetic and metabolic determinants of plasma PCSK9 levels. J Clin Endocrinol Metab. 2009;94(7):2537–2543.
  • Persson L, Cao G, Ståhle L, et al. Circulating proprotein convertase subtilisin kexin type 9 has a diurnal rhythm synchronous with cholesterol synthesis and is reduced by fasting in humans. Arterioscler Thromb Vasc Biol. 2010;30(12):2666–2672.
  • Araki S, Suga S, Miyake F, et al. Circulating PCSK9 levels correlate with the serum LDL cholesterol level in newborn infants. Early Hum Dev. 2014;90(10):607–611.
  • Ferri N, Ruscica M, Coggi D, et al. Sex-specific predictors of PCSK9 levels in a european population: the IMPROVE study. Atherosclerosis. 2020;309:39–46.
  • Ghosh M, Gälman C, Rudling M, et al. Influence of physiological changes in endogenous estrogen on circulating PCSK9 and LDL cholesterol. J Lipid Res. 2015;56(2):463–469.
  • Peticca P, Raymond A, Gruslin A, et al. Human serum PCSK9 is elevated at parturition in comparison to nonpregnant subjects while serum PCSK9 from umbilical cord blood is lower compared to maternal blood. ISRN Endocrinol. 2013;2013:1–8.
  • Zhang Z, Wei T-F, Zhao B, et al. Sex differences associated with circulating PCSK9 in patients presenting with acute myocardial infarction. Sci Rep. 2019;9(1):3113.
  • Schulz R, Schlüter K-D, Laufs U. Molecular and cellular function of the proprotein convertase subtilisin/kexin type 9 (PCSK9). Basic Res Cardiol. 2015;110(2):4.
  • Ruscica M, Ferri N, Fogacci F, et al. Circulating levels of proprotein convertase subtilisin/kexin type 9 and arterial stiffness in a large population sample: data from the brisighella heart study. JAHA. 2017;6(5):e005764.
  • Ooi TC, Raymond A, Cousins M, et al. Relationship between testosterone, estradiol and circulating PCSK9: cross-sectional and interventional studies in humans. Clin Chim Acta. 2015;446:97–104.
  • Wang X, Magkos F, Mittendorfer B. Sex differences in lipid and lipoprotein metabolism: it’s not just about sex hormones. J Clin Endocrinol Metab. 2011;96(4):885–893.
  • Persson L, Henriksson P, Westerlund E, et al. Endogenous estrogens lower plasma PCSK9 and LDL cholesterol but not Lp(a) or bile acid synthesis in women. Arterioscler Thromb Vasc Biol. 2012;32(3):810–814.
  • Jeong HJ, Lee H-S, Kim K-S, et al. Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2. J Lipid Res. 2008;49(2):399–409.
  • Wu M, Dong B, Cao A, et al. Delineation of molecular pathways that regulate hepatic PCSK9 and LDL receptor expression during fasting in normolipidemic hamsters. Atherosclerosis. 2012;224(2):401–410.
  • Richard C, Couture P, Desroches S, et al. Effect of the mediterranean diet with and without weight loss on surrogate markers of cholesterol homeostasis in men with the metabolic syndrome. Br J Nutr. 2012;107(5):705–711.
  • Rodríguez-Pérez C, Ramprasath VR, Pu S, et al. Docosahexaenoic acid attenuates cardiovascular risk factors via a decline in proprotein convertase subtilisin/kexin type 9 (PCSK9) plasma levels. Lipids. 2016;51(1):75–83.
  • Lin X-L, Xiao L-L, Tang Z-H, et al. Role of PCSK9 in lipid metabolism and atherosclerosis. Biomed Pharmacother. 2018;104:36–44.
  • Cariou B, Langhi C, Le Bras M, et al. Plasma PCSK9 concentrations during an oral fat load and after short term high-fat, high-fat high-protein and high-fructose diets. Nutr Metab (Lond). 2013;10(1):4.
  • Wen S, Jadhav KS, Williamson DL, et al. Treadmill exercise training modulates hepatic cholesterol metabolism and circulating PCSK9 concentration in High-Fat-Fed mice. J Lipids. 2013;2013:1–9.
  • Ngo Sock E, Chapados N, Lavoie J-M. LDL receptor and Pcsk9 transcripts are decreased in liver of ovariectomized rats: Effects of exercise training. Horm Metab Res. 2014;46(08):550–555.
  • Mäkelä KA, Leppäluoto J, Jokelainen J, et al. Effect of physical activity on plasma PCSK9 in subjects with high risk for type 2 diabetes. Front Physiol. 2019;10:456.
  • Kamani CH, Gencer B, Montecucco F, et al. Stairs instead of elevators at the workplace decreases PCSK9 levels in a healthy population. Eur J Clin Invest. 2015;45(10):1017–1024.
  • Sponder M, Campean I-A, Dalos D, et al. Influence of long-term physical activity on PCSK9, HDL/LDL-C and Lp(a) – a prospective observational trial. Pol Arch Intern Med [Internet]. 2017 [cited 2021 Mar 12]; Available from: http://pamw.pl/en/node/4044.
  • Tavori H, Fan D, Blakemore JL, et al. Serum proprotein convertase subtilisin/kexin type 9 and cell surface low-density lipoprotein receptor: evidence for a reciprocal regulation. Circulation. 2013;127(24):2403–2413.
  • Grefhorst A, McNutt MC, Lagace TA, et al. Plasma PCSK9 preferentially reduces liver LDL receptors in mice. J Lipid Res. 2008;49(6):1303–1311.
  • Li S, Guo Y-L, Xu R-X, et al. Association of plasma PCSK9 levels with white blood cell count and its subsets in patients with stable coronary artery disease. Atherosclerosis. 2014;234(2):441–445.
  • Fang C, Luo T. OP0298 Pcsk9 in atherosclerotic inflammation of lupus patients and murine model of lupus with atherosclerosis. Oral presentations. BMJ Publishing Group Ltd and European League Against Rheumatism; 2019; p. 230–231.
  • Cui C, Li S, Zhu C, et al. Enhanced proprotein convertase subtilisin/kexin type 9 expression by C-reactive protein through p38 MAPK-HNF 1α pathway in HepG2 cells. J Cell Mol Med. 2016;20(12):2374–2383.
  • Mukherjee S, Karmakar S, Babu SPS. TLR2 and TLR4 mediated host immune responses in major infectious diseases: a review. Braz J Infect Dis. 2016;20(2):193–204.
  • Walley KR, Francis GA, Opal SM, et al. The Central role of proprotein convertase subtilisin/kexin type 9 in septic pathogen lipid transport and clearance. Am J Respir Crit Care Med. 2015;192(11):1275–1286.
  • Levels JHM, Marquart JA, Abraham PR, et al. Lipopolysaccharide is transferred from high-density to low-density lipoproteins by Lipopolysaccharide-Binding protein and phospholipid transfer protein. Infect Immun. 2005;73(4):2321–2326.
  • Meilhac O, Tanaka S, Couret D. High-Density lipoproteins are bug scavengers. Biomolecules. 2020;10(4):598.
  • Hailman E, Albers JJ, Wolfbauer G, et al. Neutralization and transfer of lipopolysaccharide by phospholipid transfer protein. J Biol Chem. 1996;271(21):12172–12178.
  • Walley KR, Thain KR, Russell JA, et al. PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Sci Transl Med. 2014;6(258):258ra143–258ra143.
  • Tang Z-H, Peng J, Ren Z, et al. New role of PCSK9 in atherosclerotic inflammation promotion involving the TLR4/NF-κB pathway. Atherosclerosis. 2017;262:113–122.
  • Hills RDJ, Pontefract BA, Mishcon HR, et al. Gut microbiome: profound implications for diet and disease. Nutrients. 2019;11(7):1613.
  • Shen L, Peng H, Nees SN, et al. Proprotein convertase subtilisin/kexin type 9 potentially influences cholesterol uptake in macrophages and reverse cholesterol transport. FEBS Lett. 2013;587(9):1271–1274.
  • Ricci C, Ruscica M, Camera M, et al. PCSK9 induces a pro-inflammatory response in macrophages. Sci Rep. 2018;8(1):2267.
  • Ruscica M, Botta M, Garzone M, et al. Pro-inflammatory cytokines and adipokines regulate PCSK9 expression in HepG2 cells. Nutr Metab Cardiovasc Dis. 2017;27(1):e35.
  • Ruscica M, Ricci C, Macchi C, et al. Suppressor of cytokine signaling-3 (SOCS-3) induces proprotein convertase subtilisin kexin type 9 (PCSK9) expression in hepatic HepG2 cell line. J Biol Chem. 2016;291(7):3508–3519.
  • Ferri N, Ruscica M. Proprotein convertase subtilisin/kexin type 9 (PCSK9) and metabolic syndrome: insights on insulin resistance, inflammation, and atherogenic dyslipidemia. Endocrine. 2016;54(3):588–601.
  • Schlüter K-D, Wolf A, Schreckenberg R. Coming back to physiology: extra hepatic functions of proprotein convertase subtilisin/kexin type 9. Front Physiol. 2020;11:598649.
  • Rehman K, Akash MSH. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? J Biomed Sci. 2016;23(1):87.
  • Katsiki N, Mantzoros C, Mikhailidis DP, et al. Adiponectin, lipids and atherosclerosis. Curr Opin Lipidol. 2017;28(4):347–354.
  • Ruan H, Dong LQ. Adiponectin signaling and function in insulin target tissues. J Mol Cell Biol. 2016;8(2):101–109.
  • Yang S-H, Li S, Zhang Y, et al. Positive correlation of plasma PCSK9 levels with HbA 1c in patients with type 2 diabetes: PCSK9 and HbA 1c in T2DM. Diabetes Metab Res Rev. 2016;32(2):193–199.
  • Kappelle PJWH, Lambert G, Dullaart RPF. Plasma proprotein convertase subtilisin–kexin type 9 does not change during 24h insulin infusion in healthy subjects and type 2 diabetic patients. Atherosclerosis. 2011;214(2):432–435.
  • Awan Z, Dubuc G, Faraj M, et al. The effect of insulin on circulating PCSK9 in postmenopausal obese women. Clin Biochem. 2014;47(12):1033–1039.
  • Brouwers MCGJ, Troutt JS, van Greevenbroek MMJ, et al. Plasma proprotein convertase subtilisin kexin type 9 is not altered in subjects with impaired glucose metabolism and type 2 diabetes mellitus, but its relationship with non-HDL cholesterol and apolipoprotein B may be modified by type 2 diabetes mellitus: the CODAM study. Atherosclerosis. 2011;217(1):263–267.
  • Spolitu S, Okamoto H, Dai W, et al. Hepatic glucagon signaling regulates PCSK9 and low-density lipoprotein cholesterol. Circ Res. 2019;124(1):38–51.
  • Onyango AN. Mechanisms of the regulation and dysregulation of glucagon secretion. Oxid Med Cell Longev. 2020;2020:3089139–3089139.
  • Lv S, Qiu X, Li J, et al. Glucagon-induced extracellular cAMP regulates hepatic lipid metabolism. J Endocrinol. 2017;234(2):73–87.
  • Langhi C, Le May C, Gmyr V, et al. PCSK9 is expressed in pancreatic δ-cells and does not alter insulin secretion. Biochem Biophys Res Commun. 2009;390(4):1288–1293.
  • Mbikay M, Sirois F, Mayne J, et al. PCSK9-deficient mice exhibit impaired glucose tolerance and pancreatic islet abnormalities. FEBS Lett. 2010;584(4):701–706.
  • Mbikay M, Sirois F, Gyamera-Acheampong C, et al. Variable effects of gender and Western diet on lipid and glucose homeostasis in aged PCSK9-deficient C57BL/6 mice. J Diabetes. 2015;7(1):74–84.
  • Balzarotti G, Tibolla G, Ruscica M, et al. Role of PCSK9 (proprotein convertase subtilisin/kexin type 9) beyond LDLR targeting: Focus on glucose metabolism. Nutr Metab Cardiovasc Dis. 2017;27(1):e6–e7.
  • Da Dalt L, Ruscica M, Bonacina F, et al. PCSK9 deficiency reduces insulin secretion and promotes glucose intolerance: the role of the low-density lipoprotein receptor. Eur Heart J. 2019;40(4):357–368.
  • Peyot M-L, Roubtsova A, Lussier R, et al. Substantial PCSK9 inactivation in β-cells does not modify glucose homeostasis or insulin secretion in mice. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866(8):158968.
  • Besseling J, Kastelein JJP, Defesche JC, et al. Association between familial hypercholesterolemia and prevalence of type 2 diabetes mellitus. JAMA. 2015;313(10):1029.
  • Swerdlow DI, Preiss D, Kuchenbaecker KB, InterAct Consortium, et al. HMG-coenzyme a reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet. 2015;385(9965):351–361.
  • Memon R, Malek R, Munir KM. Doubling of hemoglobin A1c on PCSK9 inhibitor therapy. Am J Med. 2019;132(1):e17–e18.
  • Saavedra YGL, Dufour R, Baass A. Familial hypercholesterolemia: PCSK9 InsLEU genetic variant and prediabetes/diabetes risk. J Clin Lipidol. 2015;9(6):786–793.e1.
  • Awan Z, Delvin EE, Levy E, et al. Regional distribution and metabolic effect of PCSK9 insLEU and R46L gene mutations and apoE genotype. Can J Cardiol. 2013;29(8):927–933.
  • Bonnefond A, Yengo L, Le May C, for the DESIR study group, et al. The loss-of-function PCSK9 p.R46L genetic variant does not alter glucose homeostasis. Diabetologia. 2015;58(9):2051–2055.
  • Chikowore T, Cockeran M, Conradie KR, et al. C679X loss-of-function PCSK9 variant lowers fasting glucose levels in a black South african population: a longitudinal study. Diabetes Res Clin Pract. 2018;144:279–285.
  • Chikowore T, Sahibdeen V, Hendry LM, et al. C679X loss-of-function PCSK9 variant is associated with lower fasting glucose in black South african adolescents: Birth to twenty plus cohort. J Clin Transl Endocrinol. 2019;16:100186.
  • Colhoun HM, Ginsberg HN, Robinson JG, et al. No effect of PCSK9 inhibitor alirocumab on the incidence of diabetes in a pooled analysis from 10 ODYSSEY phase 3 studies. Eur Heart J. 2016;37(39):2981–2989.
  • Koren MJ, Sabatine MS, Giugliano RP, et al. Long-term low-density lipoprotein cholesterol-lowering efficacy, persistence, and safety of evolocumab in treatment of hypercholesterolemia: results up to 4 years from the open-label OSLER-1 extension study. JAMA Cardiol. 2017;2(6):598–607.
  • de Carvalho LSF, Campos AM, Sposito AC. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors and incident type 2 diabetes: a systematic review and Meta-analysis with over 96,000 Patient-Years. Diabetes Care. 2018;41(2):364–367.
  • Ference BA, Robinson JG, Brook RD, et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl J Med. 2016;375(22):2144–2153.
  • Lotta LA, Sharp SJ, Burgess S, et al. Association between low-density lipoprotein cholesterol–lowering genetic variants and risk of type 2 diabetes: a meta-analysis. JAMA. 2016;316(13):1383–1391.
  • Schmidt AF, Swerdlow DI, Holmes MV, UCLEB consortium, et al. PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol. 2017;5(2):97–105.
  • BA W, Duell PB. Inclisiran:a novel agent for lowering apolipoprotein B-containing lipoproteins. J Cardiovasc Pharmacol. 2021;78:157–174.
  • Lebeau P, Platko K, Al-Hashimi AA, et al. Loss-of-function PCSK9 mutants evade the unfolded protein response sensor GRP78 and fail to induce endoplasmic reticulum stress when retained. J Biol Chem. 2018;293(19):7329–7343.
  • Lebeau PF, Wassef H, Byun JH, et al. The loss-of-function PCSK9 Q152H variant increases ER chaperones GRP78 and GRP94 and protects against liver injury. J Clin Invest. 2021;131(2):e128650.
  • Leander K, Mälarstig A, Van’t Hooft FM, et al. Circulating proprotein convertase subtilisin/kexin type 9 (PCSK9) predicts future risk of cardiovascular events independently of established risk factors CLINICAL PERSPECTIVE. Circulation. 2016;133(13):1230–1239.
  • Wang S. Correlation of serum PCSK9 in CHD patients with the severity of coronary arterial lesions. Eur Rev Med Pharmacol Sci. 2016;20(6):1135–1139.
  • Tang Y, Li S-L, Hu J-H, et al. Research progress on alternative non-classical mechanisms of PCSK9 in atherosclerosis in patients with and without diabetes. Cardiovasc Diabetol. 2020;19(1):33.
  • Shapiro MD, Fazio S. PCSK9 and atherosclerosis – lipids and beyond. J Atheroscler Thromb. 2017;24(5):462–472.
  • Kent ST, Rosenson RS, Avery CL, et al. PCSK9 loss-of-function variants, low-density lipoprotein cholesterol, and risk of coronary heart disease and stroke: data from 9 studies of blacks and whites. Circ Cardiovasc Genet. 2017;10(4):e001632.
  • Zhao Z, Tuakli-Wosornu Y, Lagace TA, et al. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am J Hum Genet. 2006;79(3):514–523.
  • Kotowski IK, Pertsemlidis A, Luke A, et al. A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am J Hum Genet. 2006;78(3):410–422.
  • Mayne J, Dewpura T, Raymond A, et al. Novel loss-of-Function PCSK9 variant is associated with low plasma LDL cholesterol in a French-Canadian family and with impaired processing and secretion in cell culture. Clin Chem. 2011;57(10):1415–1423.
  • Benjannet S, Rhainds D, Essalmani R, et al. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J Biol Chem. 2004;279(47):48865–48875.
  • Allard D, Amsellem S, Abifadel M, et al. Novel mutations of thePCSK9 gene cause variable phenotype of autosomal dominant hypercholesterolemia. Hum Mutat. 2005;26(5):497–497.
  • Park SW, Moon Y-A, Horton JD. Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J Biol Chem. 2004;279(48):50630–50638.
  • Di Taranto MD, Benito-Vicente A, Giacobbe C, et al. Identification and in vitro characterization of two new PCSK9 gain of function variants found in patients with familial hypercholesterolemia. Sci Rep. 2017;7(1):15282.
  • Browning JD, Horton JD. Fasting reduces plasma proprotein convertase, subtilisin/kexin type 9 and cholesterol biosynthesis in humans. J Lipid Res. 2010;51(11):3359–3363.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.