315
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Progress in research and development of temozolomide brain-targeted preparations: a review

, , , , &
Pages 119-133 | Received 03 May 2022, Accepted 24 Aug 2022, Published online: 07 Sep 2022

References

  • Latifyan S, de Micheli R, Hottinger AF. Physical approaches to treat glioblastoma. Curr Opin Oncol. 2020;32(6):640–649.
  • Touat M, Li YY, Boynton AN, et al. Mechanisms and therapeutic implications of hypermutation in gliomas. Nature. 2020;580(7804):517–523.
  • Huang B, Abraham WD, Zheng Y, et al. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Sci. Transl. Med. 2015;7(291):291r–294r.
  • Afergan E, Epstein H, Dahan R, et al. Delivery of serotonin to the brain by monocytes following phagocytosis of liposomes. J Control Release. 2008;132(2):84–90.
  • Wang C, Li K, Li T, et al. Monocyte-mediated chemotherapy drug delivery in glioblastoma. Nanomedicine (Lond). 2018;13(2):157–178.
  • Drapeau AI, Poirier M, Madugundu G, et al. Intra-arterial temozolomide, osmotic blood-brain barrier disruption and radiotherapy in a rat F98-Glioma model. Clin Cancer Drugs. 2018;4(2):135–144.
  • Braatz D, Cherri M, Tully M, et al. Chemical approaches to synthetic drug delivery systems for systemic applications. Angew Chem Int Ed. 2022. DOI:10.1002/anie.202203942
  • Pandit R, Chen L, Götz J. The blood-brain barrier: physiology and strategies for drug delivery. Adv Drug Deliv Rev. 2020;165–166:1–14.
  • Zhou Y, Peng Z, Seven ES, et al. Crossing the blood-brain barrier with nanoparticles. J Control Release. 2018;270:290–303. doi:10.1016/j.jconrel.2017.12.015
  • Darkes MJM, Plosker GL, Jarvis B. Temozolomide. Am J Cancer. 2002;1(1):55–80.
  • Jones SF, Greco FA, Gian VG, et al. A phase I trial of protracted oral fixed-dose temozolomide. Cancer. 2005;104(9):1985–1991.
  • Chen C, Yin S, Zhang S, et al. Treatment of aggressive prolactinoma with temozolomide. Medicine (Baltimore). 2017;96(47):e8733.
  • Hotchkiss KM, Sampson JH. Temozolomide treatment outcomes and immunotherapy efficacy in brain tumor. J Neurooncol. 2021;151(1):55–62.
  • Tomar MS, Kumar A, Srivastava C, et al. Elucidating the mechanisms of temozolomide resistance in gliomas and the strategies to overcome the resistance. Biochim Biophys Acta Rev Cancer. 2021;1876(2):188616.
  • Wang H, Lin Y, Lin W, et al. Tumor volume changes during and after temozolomide treatment for newly diagnosed higher-grade glioma (III and IV). World Neurosurg. 2018;114:e766–e774.
  • Seiter K, Liu D, Loughran T, et al. Phase I study of temozolomide in relapsed/refractory acute leukemia. J Clin Oncol. 2002;20(15):3249–3253.
  • Das L, Gupta N, Dutta P, et al. Early initiation of temozolomide therapy may improve response in aggressive pituitary adenomas. Front Endocrinol (Lausanne). 2021;12:774686.
  • Gogas H, Polyzos A, Stavrinidis I, et al. Temozolomide in combination with celecoxib in patients with advanced melanoma. A phase II study of the hellenic cooperative oncology group. Ann Oncol. 2006;17(12):1835–1841.
  • Lee SY. Temozolomide resistance in glioblastoma multiforme. Genes Dis. 2016;3(3):198–210.
  • Cohen MH, Johnson JR, Pazdur R. Food and drug administration drug approval summary: temozolomide plus radiation therapy for the treatment of newly diagnosed glioblastoma multiforme. Clin Cancer Res. 2005;11(19):6767–6771.
  • Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–996.
  • Lin Y, Zhong Y, Chen Y, et al. Ligand-modified erythrocyte membrane-cloaked metal–organic framework nanoparticles for targeted antitumor therapy. Mol Pharm. 2020;17(9):3328–3341.
  • Happold C, Stojcheva N, Silginer M, et al. Transcriptional control of O6 -methylguanine DNA methyltransferase expression and temozolomide resistance in glioblastoma. J Neurochem. 2018;144(6):780–790.
  • Hegi ME, Diserens A, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.
  • Felsberg J, Thon N, Eigenbrod S, et al. Promoter methylation and expression of MGMT and the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2 in paired primary and recurrent glioblastomas. Int J Cancer. 2011;129(3):659–670.
  • Mcdonald KL, Tabone T, Nowak AK, et al. Somatic mutations in glioblastoma are associated with methylguanine-DNA methyltransferase methylation. Oncol Lett. 2015;9(5):2063–2067.
  • Esteller M, Hamilton SR, Burger PC, et al. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res. 1999;59(4):793–797.
  • Gupta D, Heinen CD. The mismatch repair-dependent DNA damage response: mechanisms and implications. DNA Repair (Amst). 2019;78:60–69.
  • Ortiz R, Perazzoli G, Cabeza L, et al. Temozolomide: an updated overview of resistance mechanisms, nanotechnology advances and clinical applications. Curr Neuropharmacol. 2021;19(4):513–537.
  • Lavrik OI. PARPs’ impact on base excision DNA repair. DNA Repair (Amst). 2020;93:102911.
  • Yuan AL, Meode M, Tan M, et al. PARP inhibition suppresses the emergence of temozolomide resistance in a model system. J Neurooncol. 2020;148(3):463–472.
  • He L, Zhou H, Zeng Z, et al. Wnt/β–catenin signaling cascade: a promising target for glioma therapy. J Cell Physiol. 2019;234(3):2217–2228.
  • Wang X, Xu L, Lao Y, et al. Natural products targeting EGFR signaling pathways as potential anticancer drugs. Curr Protein Pept Sci. 2018;19(4):380–388.
  • Duwa R, Banstola A, Emami F, et al. Cetuximab conjugated temozolomide-loaded poly (lactic-co-glycolic acid) nanoparticles for targeted nanomedicine in EGFR overexpressing cancer cells. J Drug Delivery Sci Technol. 2020;60:101928.
  • Zamame Ramirez JA, Romagnoli GG, Kaneno R. Inhibiting autophagy to prevent drug resistance and improve anti-tumor therapy. Life Sci. 2021;265:118745.
  • Würstle S, Schneider F, Ringel F, et al. Temozolomide induces autophagy in primary and established glioblastoma cells in an EGFR independent manner. Oncol Lett. 2017;14(1):322–328.
  • Liebelt BD, Shingu T, Zhou X, et al. Glioma stem cells: signaling, microenvironment, and therapy. Stem Cells Int. 2016;2016:7849890–7849810.
  • Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5(4):275–284.
  • Chien C, Hsueh W, Chuang J, et al. Dissecting the mechanism of temozolomide resistance and its association with the regulatory roles of intracellular reactive oxygen species in glioblastoma. J Biomed Sci. 2021;28(1):18.
  • Papahadjopoulos D, Gabizon A. Targeting of liposomes to tumor cells in vivoa. Ann N Y Acad Sci. 1987;507(1):64–74.
  • Khan AA, Allemailem KS, Almatroodi SA, et al. Recent strategies towards the surface modification of liposomes: an innovative approach for different clinical applications. 3 Biotech. 2020;10(4):163.
  • Gulati M, Bajad S, Singh S, et al. Development of liposomal amphotericin B formulation. J Microencapsul. 1998;15(2):137–151.
  • Silverman JA, Deitcher SR. Vincristine sulfate liposome injection (VSLI, marqibo®) facilitates increased delivery of vincristine sulfate to target cancer tissues. Blood. 2012;120(21):2457–2457.
  • Gao J, Wang Z, Liu H, et al. Liposome encapsulated of temozolomide for the treatment of glioma tumor: preparation, characterization and evaluation. Drug Discov Ther. 2015;9(3):205–212.
  • Ewert KK, Scodeller P, Simón-Gracia L, et al. Cationic liposomes as vectors for nucleic acid and hydrophobic drug therapeutics. Pharmaceutics. 2021;13(9):1365.
  • Tapeinos C, Marino A, Battaglini M, et al. Stimuli-responsive lipid-based magnetic nanovectors increase apoptosis in glioblastoma cells through synergic intracellular hyperthermia and chemotherapy. Nanoscale. 2018;11(1):72–88.
  • Ma J, Deng H, Zhao F, et al. Liposomes-camouflaged redox-responsive nanogels to resolve the dilemma between extracellular stability and intracellular drug release. Macromol. Biosci. 2018;18(7):1800049.
  • Sivadasan D, Sultan MH, Madkhali OA, et al. Stealth liposomes (PEGylated) containing an anticancer drug camptothecin: in vitro characterization and in vivo pharmacokinetic and tissue distribution study. Molecules. 2022;27(3):1086.
  • Wang L, Tang S, Yu Y, et al. Intranasal delivery of temozolomide-conjugated gold nanoparticles functionalized with anti-EphA3 for glioblastoma targeting. Mol Pharm. 2021;18(3):915–927.
  • Chu L, Wang A, Ni L, et al. Nose-to-brain delivery of temozolomide-loaded PLGA nanoparticles functionalized with anti-EPHA3 for glioblastoma targeting. Drug Deliv. 2018;25(1):1634–1641.
  • Sharma AK, Gupta L, Sahu H, et al. Chitosan engineered PAMAM dendrimers as nanoconstructs for the enhanced anti-cancer potential and improved in vivo brain pharmacokinetics of temozolomide. Pharm Res. 2018;35(1):9.
  • Huang R, Ke W, Han L, et al. Brain-targeting mechanisms of lactoferrin-modified DNA-loaded nanoparticles. J Cereb Blood Flow Metab. 2009;29(12):1914–1923.
  • Tang J, Zhou H, Hou X, et al. Enhanced anti-tumor efficacy of temozolomide-loaded carboxylated poly(amido-amine) combined with photothermal/photodynamic therapy for melanoma treatment. Cancer Lett. 2018;423:16–26.
  • Meena J, Gupta A, Ahuja R, et al. Inorganic nanoparticles for natural product delivery: a review. Environ Chem Lett. 2020;18(6):2107–2118.
  • Hwang SR, Chakraborty K, An JM, et al. Pharmaceutical aspects of nanocarriers for smart anticancer therapy. Pharmaceutics. 2021;13(11):1875.
  • Pineau P, Volinia S, Mcjunkin K, et al. miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci U S A. 2010;107(1):264–269.
  • Berbel Manaia E, Paiva Abuçafy M, Chiari-Andréo BG, et al. Physicochemical characterization of drug nanocarriers. Int J Nanomed. 2017;12:4991–5011. volume
  • Wang L, Liu J, Sui L, et al. Folate-modified graphene oxide as the drug delivery system to load temozolomide. Curr Pharm Biotechnol. 2020;21(11):1088–1098.
  • Mitchell MJ, Billingsley MM, Haley RM, et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–124.
  • Touitou E, Illum L. Nasal drug delivery. Drug Deliv Transl Res. 2013;3(1):1–3.
  • Akashi K, Miyata H, Itoh H, et al. Formation of giant liposomes promoted by divalent cations: critical role of electrostatic repulsion. Biophys J. 1998;74(6):2973–2982.
  • Simonis B, Vignone D, Gonzalez Paz O, et al. Transport of cationic liposomes in a human blood brain barrier model: role of the stereochemistry of the gemini amphiphile on liposome biological features. J Colloid Interface Sci. 2022;627:283–298.
  • Perini G, Giulimondi F, Palmieri V, et al. Inhibiting the growth of 3D brain cancer models with bio-coronated liposomal temozolomide. Pharmaceutics. 2021;13(3):378.
  • Hathout RM, Gad HA, Metwally AA. Gelatinized-core liposomes: toward a more robust carrier for hydrophilic molecules. J Biomed Mater Res A. 2017;105(11):3086–3092.
  • Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1(3):297–315.
  • Vanza J, Jani P, Pandya N, et al. Formulation and statistical optimization of intravenous temozolomide-loaded PEGylated liposomes to treat glioblastoma multiforme by three-level factorial design. Drug Dev Ind Pharm. 2018;44(6):923–933.
  • Yang T, Cui F, Choi M, et al. Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int J Pharm. 2007;338(1–2):317–326.
  • Rezaei FS, Sharifianjazi F, Esmaeilkhanian A, et al. Chitosan films and scaffolds for regenerative medicine applications: a review. Carbohydr Polym. 2021;273:118631.
  • Rajitha P, Gopinath D, Biswas R, et al. Chitosan nanoparticles in drug therapy of infectious and inflammatory diseases. Expert Opin Drug Deliv. 2016;13(8):1177–1194.
  • Gondil VS, Dube T, Panda JJ, et al. Comprehensive evaluation of chitosan nanoparticle based phage lysin delivery system; a novel approach to counter S. pneumoniae infections. Int J Pharm. 2020;573:118850.
  • Abdou EM, Kandil SM, Miniawy HMFE. Brain targeting efficiency of antimigrain drug loaded mucoadhesive intranasal nanoemulsion. Int J Pharm. 2017;529(1–2):667–677.
  • Thongborisute J, Takeuchi H, Yamamoto H, et al. Visualization of the penetrative and mucoadhesive properties of chitosan and chitosan-coated liposomes through the rat intestine. J Liposome Res. 2006;16(2):127–141.
  • Qian S, Zhang Q, Wang Y, et al. Bioavailability enhancement of glucosamine hydrochloride by chitosan. Int J Pharm. 2013;455(1–2):365–373.
  • Yu S, Xu X, Feng J, et al. Chitosan and chitosan coating nanoparticles for the treatment of brain disease. Int J Pharm. 2019;560:282–293.
  • Mikušová V, Mikuš P. Advances in chitosan-based nanoparticles for drug delivery. Int J Mol Sci. 2021;22(17):9652.
  • Ke C, Deng F, Chuang C, et al. Antimicrobial actions and applications of chitosan. Polymers. 2021;13(6):904.
  • Wang M, Zhao T, Liu Y, et al. Ursolic acid liposomes with chitosan modification: promising antitumor drug delivery and efficacy. Mater Sci Eng C Mater Biol Appl. 2017;71:1231–1240.
  • Wang X, Cheng F, Wang X, et al. Chitosan decoration improves the rapid and long-term antibacterial activities of cinnamaldehyde-loaded liposomes. Int J Biol Macromol. 2021;168:59–66.
  • Fang Y, Xue J, Gao S, et al. Cleavable PEGylation: a strategy for overcoming the “PEG dilemma” in efficient drug delivery. Drug Deliv. 2017;24(Suppl 1):22–32.
  • Jiao J, Jiao X, Wang C, et al. The contribution of PEG molecular weights in PEGylated emulsions to the various phases in the accelerated blood clearance (ABC) phenomenon in rats. AAPS PharmSciTech. 2020;21(8):300.
  • Mohamed M, Abu Lila AS, Shimizu T, et al. PEGylated liposomes: immunological responses. Sci Technol Adv Mater. 2019;20(1):710–724.
  • Amarandi R, Ibanescu A, Carasevici E, et al. Liposomal-based formulations: a path from basic research to temozolomide delivery inside glioblastoma tissue. Pharmaceutics. 2022;14(2):308.
  • Li T, Li K, Zhang Q, et al. Dendritic cell-mediated delivery of doxorubicin-polyglycerol-nanodiamond composites elicits enhanced anti-cancer immune response in glioblastoma. Biomaterials. 2018;181:35–52.
  • Cao J, Su T, Zhang L, et al. Polymeric micelles with citraconic amide as pH-sensitive bond in backbone for anticancer drug delivery. Int J Pharm. 2014;471(1–2):28–36.
  • Prabaharan M, Grailer JJ, Pilla S, et al. Amphiphilic multi-arm-block copolymer conjugated with doxorubicin via pH-sensitive hydrazone bond for tumor-targeted drug delivery. Biomaterials. 2009;30(29):5757–5766.
  • Zhao J, Wang H, Liu J, et al. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin. Biomacromolecules. 2013;14(11):3973–3984.
  • Weis P, Wu S. Light-switchable azobenzene-containing macromolecules: from UV to near infrared. Macromol. Rapid Commun. 2018;39(1):1700220.
  • Ai X, Mu J, Xing B. Recent advances of light-mediated theranostics. Theranostics. 2016;6(13):2439–2457.
  • Ren K, Qiu Y, Yu Q, et al. Macrophage-mediated multi-mode drug release system for photothermal combined with anti-inflammatory therapy against postoperative recurrence of triple negative breast cancer. Int J Pharm. 2021;607:120975.
  • Li X, Yang C, Tao Y, et al. Near-infrared light-triggered thermosensitive liposomes modified with membrane peptides for the local chemo/photothermal therapy of melanoma. Onco Targets Ther. 2021;14:1317–1329. volume
  • Nikolskaya ED, Zhunina OA, Vasilenko EA, et al. Preparation of temozolomide-loaded polymer particles and study of their antitumor activity in models of glioma and melanoma. Russ J Bioorg Chem. 2017;43(5):552–560.
  • Jin Y, Song L, Su Y, et al. Oxime linkage: a robust tool for the design of pH-sensitive polymeric drug carriers. Biomacromolecules. 2011;12(10):3460–3468.
  • Lee I, Park M, Kim Y, et al. Ketal containing amphiphilic block copolymer micelles as pH-sensitive drug carriers. Int J Pharm. 2013;448(1):259–266.
  • Du K, Xia Q, Sun J, et al. Visible light and glutathione dually responsive delivery of a polymer-conjugated temozolomide intermediate for glioblastoma chemotherapy. ACS Appl Mater Interfaces. 2021;13(47):55851–55861.
  • Di Martino A, Kucharczyk P, Capakova Z, et al. Enhancement of temozolomide stability by loading in chitosan-carboxylated polylactide-based nanoparticles. J Nanopart Res. 2017;19(2):71.
  • Liu Q, Kim Y, Im G, et al. Inorganic nanoparticles applied as functional therapeutics. Adv. Funct. Mater. 2021;31(12):2008171.
  • Tang W, Fan W, Lau J, et al. Emerging blood-brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem Soc Rev. 2019;48(11):2967–3014. doi:10.1039/c8cs00805a
  • Marino A, Camponovo A, Degl’Innocenti A, et al. Multifunctional temozolomide-loaded lipid superparamagnetic nanovectors: dual targeting and disintegration of glioblastoma spheroids by synergic chemotherapy and hyperthermia treatment. Nanoscale. 2019;11(44):21227–21248.
  • Imanifard S, Zarrabi A, Zarepour A, et al. Nanoengineered thermoresponsive magnetic nanoparticles for drug controlled release. Macromol. Chem. Phys. 2017;218(23):1700350.
  • Wang J, Fang J, Fang P, et al. Preparation of hollow core/shell Fe3O4 @graphene oxide composites as magnetic targeting drug nanocarriers. J Biomater Sci Polym Ed. 2017;28(4):337–349.
  • Wang LH, Sui L, Zhao PH, et al. A composite of graphene oxide and iron oxide nanoparticles for targeted drug delivery of temozolomide. Pharmazie. 2020;75(7):313–317.
  • Kwon Y, Je JY, Cha S, et al. Synergistic combination of chemo-phototherapy based on temozolomide/ICG-loaded iron oxide nanoparticles for brain cancer treatment. Oncol Rep. 2019;42(5):1709–1724.
  • Afzalipour R, Khoei S, Khoee S, et al. Thermosensitive magnetic nanoparticles exposed to alternating magnetic field and heat-mediated chemotherapy for an effective dual therapy in rat glioma model. Nanomed Nanotechnol Biol Med. 2021;31:102319.
  • Radojicic J, Zaravinos A, Vrekoussis T, et al. MicroRNA expression analysis in triple-negative (ER, PR and Her2/neu) breast cancer. Cell Cycle (Georgetown, TX). 2011;10(3):507–517.
  • He H, Jazdzewski K, Li W, et al. The role of MicroRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci U S A. 2005;102(52):19075–19080.
  • Zhang C, Kang C, You Y, et al. Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27kip1 in vitro and in vivo. Int J Oncol. 2009;34(6):1653–1660.
  • Bertucci A, Prasetyanto EA, Septiadi D, et al. Combined delivery of temozolomide and anti-miR221 PNA using mesoporous silica nanoparticles induces apoptosis in resistant glioma cells. Small. 2015;11(42):5687–5695.
  • Afzalipour R, Khoei S, Khoee S, et al. Dual-targeting temozolomide loaded in folate-conjugated magnetic triblock copolymer nanoparticles to improve the therapeutic efficiency of rat brain gliomas. ACS Biomater. Sci. Eng. 2019;5(11):6000–6011.
  • Wang B, Guo H, Xu H, et al. The role of graphene oxide nanocarriers in treating gliomas. Front Oncol. 2022;12:736177.
  • Huynh E, Zheng G. Cancer nanomedicine: addressing the dark side of the enhanced permeability and retention effect. Nanomedicine (Lond). 2015;10(13):1993–1995.
  • Brenner JS, Bhamidipati K, Glassman PM, et al. Mechanisms that determine nanocarrier targeting to healthy versus inflamed lung regions. Nanomedicine. 2017;13(4):1495–1506.
  • Nelemans LC, Gurevich L. Drug delivery with polymeric nanocarriers—cellular uptake mechanisms. Materials. 2020;13(2):366.
  • Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6(8):583–592.
  • Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev. 2011;63(3):131–135.
  • Vyas D, Patel M, Wairkar S. Strategies for active tumor targeting-an update. Eur J Pharmacol. 2022;915:174512.
  • Trédan O, Galmarini CM, Patel K, et al. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007;99(19):1441–1454.
  • Danquah MK, Zhang XA, Mahato RI. Extravasation of polymeric nanomedicines across tumor vasculature. Adv Drug Deliv Rev. 2011;63(8):623–639.
  • Noh H, Zhao Q, Yan J, et al. Cell surface vimentin-targeted monoclonal antibody 86C increases sensitivity to temozolomide in glioma stem cells. Cancer Lett. 2018;433:176–185.
  • Ramalho MJ, Sevin E, Gosselet F, et al. Receptor-mediated PLGA nanoparticles for glioblastoma multiforme treatment. Int J Pharm. 2018;545(1-2):84–92.
  • Kim HS, Lee SJ, Lee DY. Milk protein-shelled gold nanoparticles with gastrointestinally active absorption for aurotherapy to brain tumor. Bioact Mater. 2022;8:35–48.
  • Fu S, Xu X, Ma Y, et al. RGD peptide-based non-viral gene delivery vectors targeting integrin αv β3 for cancer therapy. J Drug Target. 2019;27(1):1–11.
  • Zhang J, Xiao X, Zhu J, et al. Lactoferrin- and RGD-comodified, temozolomide and vincristine-coloaded nanostructured lipid carriers for gliomatosis cerebri combination therapy. Int J Nanomedicine. 2018;13:3039–3051. volume
  • Erdő F, Bors LA, Farkas D, et al. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull. 2018;143:155–170.
  • Rehman S, Nabi B, Zafar A, et al. Intranasal delivery of mucoadhesive nanocarriers: a viable option for Parkinson’s disease treatment? Expert Opin Drug Deliv. 2019;16(12):1355–1366.
  • Orza A, Soriţău O, Tomuleasa C, et al. Reversing chemoresistance of malignant glioma stem cells using gold nanoparticles. Int J Nanomedicine. 2013;8:689–702.
  • Behroozi Z, Rahimi B, Kookli K, et al. Distribution of gold nanoparticles into the brain: a systematic review and meta-analysis. Nanotoxicology. 2021;15(8):1059–1072.
  • Aranda E, López-Pedrera C, De La Haba-Rodriguez JR, et al. Nitric oxide and cancer: the emerging role of S-nitrosylation. Curr Mol Med. 2012;12(1):50–67.
  • Riganti C, Miraglia E, Viarisio D, et al. Nitric oxide reverts the resistance to doxorubicin in human colon cancer cells by inhibiting the drug efflux. Cancer Res. 2005;65(2):516–525.
  • Tsai C, Huang L, Wu Y, et al. SNAP reverses temozolomide resistance in human glioblastoma multiforme cells through down-regulation of MGMT. Faseb J. 2019;33(12):14171–14184.
  • Meng X, Zhao Y, Han B, et al. Dual functionalized brain-targeting nanoinhibitors restrain temozolomide-resistant glioma via attenuating EGFR and MET signaling pathways. Nat Commun. 2020;11(1):594.
  • Gong W, Wang Z, Wan Y, et al. Downregulation of ABCG2 protein inhibits migration and invasion in U251 glioma stem cells. Neuroreport. 2014;25(8):625–632.
  • Shi L, Wang Z, Sun G, et al. miR-145 inhibits migration and invasion of glioma stem cells by targeting ABCG2. Neuromolecular Med. 2014;16(2):517–528.
  • Jiapaer S, Furuta T, Dong Y, et al. Identification of 2-fluoropalmitic acid as a potential therapeutic agent against glioblastoma. Curr Pharm Des. 2020;26(36):4675–4684.
  • Kim B, Lee H, Park CG, et al. STAT3 inhibitor ODZ10117 suppresses glioblastoma malignancy and prolongs survival in a glioblastoma xenograft model. Cells. 2020;9(3):722.
  • Wu D, Wang C. miR-155 regulates the proliferation of glioma cells through PI3K/AKT signaling. Front Neurol. 2020;11:297.
  • Dong Q, Wang D, Li L, et al. Biochanin a sensitizes glioblastoma to temozolomide by inhibiting autophagy. Mol Neurobiol. 2022;59(2):1262–1272.
  • Rahman MA, Park MN, Rahman MH, et al. p53 modulation of autophagy signaling in cancer therapies: perspectives mechanism and therapeutic targets. Front Cell Dev Biol. 2022;10:761080.
  • Laffleur F, Bauer B. Progress in nasal drug delivery systems. Int J Pharm. 2021;607:120994.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.