221
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Role of curcumin and its nanoformulations in the treatment of neurological diseases through the effects on stem cells

, , , , ORCID Icon, & ORCID Icon show all
Pages 243-260 | Received 30 Mar 2022, Accepted 23 Oct 2022, Published online: 20 Nov 2022

References

  • Alidadi M, Jamialahmadi T, Cicero AFG, et al. The potential role of plant-derived natural products in improving arterial stiffness: a review of dietary intervention studies. Trends Food Sci Technol. 2020;99:426–440.
  • Bagherniya M, Nobili V, Blesso CN, et al. Medicinal plants and bioactive natural compounds in the treatment of non-alcoholic fatty liver disease: a clinical review. Pharmacol Res. 2018;130:213–240.
  • Mortezaee K, Salehi E, Mirtavoos-Mahyari H, et al. Mechanisms of apoptosis modulation by curcumin: implications for cancer therapy. J Cell Physiol. 2019;234(8):12537–12550.
  • Panahi Y, Khalili N, Sahebi E, et al. Effects of curcuminoids plus piperine on glycemic, hepatic and inflammatory biomarkers in patients with type 2 diabetes mellitus: a randomized Double-Blind Placebo-Controlled trial. Drug Res (Stuttg). 2018;68(7):403–409.
  • Panahi Y, Khalili N, Sahebi E, et al. Curcuminoids modify lipid profile in type 2 diabetes mellitus: a randomized controlled trial. Complement Ther Med. 2017;33:1–5.
  • Parsamanesh N, Moossavi M, Bahrami A, et al. Therapeutic potential of curcumin in diabetic complications. Pharmacol Res. 2018;136:181–193.
  • Sahebkar A. Molecular mechanisms for curcumin benefits against ischemic injury. Fertil Steril. 2010;94(5):e75–e76.
  • Afshari AR, Jalili-Nik M, Abbasinezhad-Moud F, et al. Anti-tumor effects of curcuminoids in glioblastoma multiforme: an updated literature review. Curr Med Chem. 2021;28(39):8116–8138.
  • Heidari Z, Daei M, Boozari M, et al. Curcumin supplementation in pediatric patients: a systematic review of current clinical evidence. Phytother Res. 2022;36(4):1442–1458.
  • Gul FZ, Basheer M. Curcumin as natural bioactive compound of medicinal plant curcuma longa to combat against different diseases. J Ayu Her Med. 2016;2(5):192–199.
  • Milani A, Basirnejad M, Shahbazi S, et al. Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol. 2017;174(11):1290–1324.
  • Mashayekhi K, Marzouni Z, Curcumin H. (Extracted from tumeric) and its therapeutic effects. Jorjani Biomed J. 2017;4(2):1–20.
  • Hatamipour M, Sahebkar A, Alavizadeh SH, et al. Novel nanomicelle formulation to enhance bioavailability and stability of curcuminoids. Iran J Basic Med Sci. 2019;22(3):282–289.
  • Evidence W, Team R, Health W, et al. Disease control priorities related to mental, neurological, developmental and substance abuse disorders. World Health Organization; 2006.
  • Song C-G, Zhang Y-Z, Wu H-N, et al. Stem cells: a promising candidate to treat neurological disorders. Neural Regen Res. 2018;13(7):1294–1304.
  • Mandal M, Jaiswal P, Mishra A. Role of curcumin and its nanoformulations in neurotherapeutics: a comprehensive review. J Biochem Mol Toxicol. 2020;34(6):e22478.
  • Baronica KB, Friedrich L. Stem cell therapy for neurological disorders. Transl Neurosci. 2011;2(4):319–324.
  • Gao H-M, Hong J-S. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol. 2008;29(8):357–365.
  • Salehi B, Calina D, Docea AO, et al. Curcumin’s nanomedicine formulations for therapeutic application in neurological diseases. JCM. 2020;9(2):430.
  • Sharifi S, Zununi Vahed S, Ahmadian E, et al. Stem cell therapy: curcumin does the trick. Phytother Res. 2019;33(11):2927–2937.
  • Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature. 2006;441(7097):1094–1096.
  • Amalraj A, Pius A, Gopi S, et al. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – a review. J Tradit Complement Med. 2017;7(2):205–233.
  • Priyadarsini KI. The chemistry of curcumin: from extraction to therapeutic agent. Molecules. 2014;19(12):20091–20112.
  • Hewlings SJ, Kalman DS. Curcumin: a review of its effects on human health. Foods. 2017;6(10):92.
  • Ghalandarlaki N, Alizadeh AM, Ashkani-Esfahani S. Nanotechnology-applied curcumin for different diseases therapy. Biomed Res Int. 2014;2014:394264.
  • Farhood B, Mortezaee K, Goradel NH, et al. Curcumin as an anti-inflammatory agent: implications to radiotherapy and chemotherapy. J Cell Physiol. 2019;234(5):5728–5740.
  • Ganjali S, Blesso CN, Banach M, et al. Effects of curcumin on HDL functionality. Pharmacol Res. 2017;119:208–218.
  • Panahi Y, Ghanei M, Bashiri S, et al. Short-term curcuminoid supplementation for chronic pulmonary complications due to sulfur mustard intoxication: positive results of a randomized double-blind placebo-controlled trial. Drug Res (Stuttg). 2015;65(11):567–573.
  • Vahedian-Azimi A, Abbasifard M, Rahimi-Bashar F, et al. Effectiveness of curcumin on outcomes of hospitalized COVID-19 patients: a systematic review of clinical trials. Nutrients. 2022;14(2):256.
  • Momtazi-Borojeni AA, Haftcheshmeh SM, Esmaeili SA, et al. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus. Autoimmun Rev. 2018;17(2):125–135.
  • Mohajeri M, Bianconi V, Ávila-Rodriguez MF, et al. Curcumin: a phytochemical modulator of estrogens and androgens in tumors of the reproductive system. Pharmacol Res. 2020;156:104765.
  • Mohammed ES, El-Beih NM, El-Hussieny EA, et al. Effects of free and nanoparticulate curcumin on chemically induced liver carcinoma in an animal model. Arch Med Sci. 2021;17(1):218–227.
  • Iranshahi M, Sahebkar A, Hosseini ST, et al. Cancer chemopreventive activity of diversin from ferula diversivittata in vitro and in vivo. Phytomedicine. 2010;17(3–4):269–273.
  • Shehzad A, Lee Y. Curcumin: multiple molecular targets mediate multiple pharmacological actions: a review. Drugs Fut. 2010;35(2):113.
  • Kooti W, Servatyari K, Behzadifar M, et al. Effective medicinal plant in cancer treatment, part 2: review study. J Evid Based Complementary Altern Med. 2017;22(4):982–995.
  • Gorabi AM, Kiaie N, Hajighasemi S, et al. The effect of curcumin on the differentiation of mesenchymal stem cells into mesodermal lineage. Molecules. 2019;24(22):4029.
  • Jagetia GC, Aggarwal BB. “Spicing up” of the immune system by curcumin. J Clin Immunol. 2007;27(1):19–35.
  • Boroumand N, Samarghandian S, Hashemy SI. Immunomodulatory, anti-inflammatory, and antioxidant effects of curcumin. J Herbmed Pharmacol. 2018;7(4):211–219.
  • Rathore P, Dohare P, Varma S, et al. Curcuma oil: reduces early accumulation of oxidative product and is anti-apoptogenic in transient focal ischemia in rat brain. Neurochem Res. 2008;33(9):1672–1682.
  • Gibellini L, Bianchini E, De Biasi S, et al. Natural compounds modulating mitochondrial functions. Evid-Based Complement Altern Med. 2015;2015:1–13.
  • Chandra V, Pandav R, Laxminarayan R, et al. Neurological disorders. In: Disease control priorities. Washington (DC): Oxford University Press; 2006. 21 pp.
  • Hassan AU, Hassan G, Rasool Z. Role of stem cells in treatment of neurological disorder. Int J Health Sci (Qassim). 2009;3(2):227–233.
  • Ghasemi F, Bagheri H, Barreto GE, et al. Effects of curcumin on microglial cells. Neurotox Res. 2019;36(1):12–26.
  • Yousefi F, Arab FL, Jaafari MR, et al. Immunoregulatory, proliferative and anti-oxidant effects of nanocurcuminoids on adipose-derived mesenchymal stem cells. Excli J. 2019;18:405–421.
  • Monroy A, Lithgow GJ, Alavez S. Curcumin and neurodegenerative diseases. Biofactors. 2013;39(1):122–132.
  • Kang G, Kong P-J, Yuh Y-J, et al. Curcumin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression by inhibiting activator protein 1 and nuclear factor κB bindings in BV2 microglial cells. J Pharmacol Sci. 2004;94(3):325–328.
  • Jung KK, Lee HS, Cho JY, et al. Inhibitory effect of curcumin on nitric oxide production from lipopolysaccharide-activated primary microglia. Life Sci. 2006;79(21):2022–2031.
  • Tu X-K, Yang W-Z, Chen J-P, et al. Curcumin inhibits TLR2/4-NF-κB signaling pathway and attenuates brain damage in permanent focal cerebral ischemia in rats. Inflammation. 2014;37(5):1544–1551.
  • Gao Y, Zhuang Z, Lu Y, et al. Curcumin mitigates Neuro-Inflammation by modulating microglia polarization through inhibiting TLR4 axis signaling pathway following experimental subarachnoid hemorrhage. Front Neurosci. 2019;13:1223.
  • Das L, Vinayak M. Curcumin attenuates carcinogenesis by down regulating proinflammatory cytokine interleukin-1 (IL-1α and IL-1β) via modulation of AP-1 and NF-IL6 in lymphoma bearing mice. Int Immunopharmacol. 2014;20(1):141–147.
  • Kalinski T, Sel S, Hütten H, et al. Curcumin blocks interleukin-1 signaling in chondrosarcoma cells. PLoS One. 2014;9(6):e99296.
  • Singh AK, Vinayak M. Curcumin attenuates CFA induced thermal hyperalgesia by modulation of antioxidant enzymes and down regulation of TNF-α, IL-1β and IL-6. Neurochem Res. 2015;40(3):463–472.
  • Palizgir MT, Akhtari M, Mahmoudi M, et al. Curcumin reduces the expression of interleukin 1 β and the production of interleukin 6 and tumor necrosis factor alpha by M1 macrophages from patients with behcet’s disease. Immunopharmacol Immunotoxicol. 2018;40(4):297–302.
  • Balogun E, Hoque M, Gong P, et al. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J. 2003;371(Pt 3):887–895.
  • Abrahams S, Haylett WL, Johnson G, et al. Antioxidant effects of curcumin in models of neurodegeneration, ageing, oxidative and NITROSATIVE stress: a review. Neuroscience. 2019;406:1–21.
  • Liu Z, Ran Y, Huang S, et al. Curcumin protects against ischemic stroke by titrating microglia/macrophage polarization. Front Aging Neurosci. 2017;9:233.
  • Röszer T. Immune functions of the M2 macrophages: host defense, self-tolerance, and autoimmunity. In: The M2 macrophage. Springer. 2020. p. 115–132.
  • Davoodvandi A, Sahebnasagh R, Mardanshah O, et al. Medicinal plants as natural polarizers of macrophages: phytochemicals and pharmacological effects. Curr Pharm Des. 2019;25(30):3225–3238.
  • Gao S, Zhou J, Liu N, et al. Curcumin induces M2 macrophage polarization by secretion IL-4 and/or IL-13. J Mol Cell Cardiol. 2015;85:131–139.
  • Daverey A, Agrawal SK. Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes. Neuroscience. 2016;333:92–103.
  • Ono K, Hasegawa K, Naiki H, et al. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s β-amyloid fibrils in vitro. J Neurosci Res. 2004;75(6):742–750.
  • Mattson MP. Hormesis defined. Ageing Res Rev. 2008;7(1):1–7.
  • Calabrese V, Cornelius C, Dinkova-Kostova AT, et al. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal. 2010;13(11):1763–1811.
  • Hyun D-H, Hernandez JO, Mattson MP, et al. The plasma membrane redox system in aging. Ageing Res Rev. 2006;5(2):209–220.
  • Hyun D-H, Emerson SS, Jo D-G, et al. Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppresses oxidative stress during aging. Proc Natl Acad Sci. 2006;103(52):19908–19912.
  • Calabrese V, Santoro A, Monti D, et al. Aging and Parkinson’s disease: inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis. Free Radic Biol Med. 2018;115:80–91.
  • Zuo L, Prather ER, Stetskiv M, Garrison DE, Meade JR, Peace TI, Zhou T. Inflammaging and oxidative stress in human diseases: from molecular mechanisms to novel treatments. IJMS. 2019;20(18):4472.
  • Calabrese V, Santoro A, Trovato Salinaro A, et al. Hormetic approaches to the treatment of Parkinson’s disease: perspectives and possibilities. J Neurosci Res. 2018;96(10):1641–1662.
  • Zhao B. Natural antioxidants protect neurons in Alzheimer’s disease and Parkinson’s disease. Neurochem Res. 2009;34(4):630–638.
  • Putteeraj M, Lim WL, Teoh SL, et al. Flavonoids and its neuroprotective effects on brain ischemia and neurodegenerative diseases. Curr Drug Targets. 2018;19(14):1710–1720.
  • Morais L, Barbosa-Filho J, Almeida R. Plants and bioactive compounds for the treatment of Parkinson’s disease. Arquivos Brasileiros de Fitomedicina Científica. 2003;1:127–132.
  • Caruana M, Högen T, Levin J, et al. Inhibition and disaggregation of α-synuclein oligomers by natural polyphenolic compounds. FEBS Lett. 2011;585(8):1113–1120.
  • Parkinson L, Cicerale S. The health benefiting mechanisms of virgin olive oil phenolic compounds. Molecules. 2016;21(12):1734.
  • Angeloni C, Malaguti M, Barbalace MC, et al. Bioactivity of olive oil phenols in neuroprotection. IJMS. 2017;18(11):2230.
  • Sirangelo I, Borriello M, Vilasi S, et al. Hydroxytyrosol inhibits protein oligomerization and amyloid aggregation in human insulin. IJMS. 2020;21(13):4636.
  • Brunetti G, Di Rosa G, Scuto M, et al. Healthspan maintenance and prevention of Parkinson’s-like phenotypes with hydroxytyrosol and oleuropein aglycone in C. elegans. IJMS. 2020;21(7):2588.
  • Di Rosa G, Brunetti G, Scuto M, et al. Healthspan enhancement by olive polyphenols in C. elegans wild type and Parkinson’s models. IJMS. 2020;21(11):3893.
  • Calabrese EJ, Calabrese V, Tsatsakis A, et al. Hormesis and ginkgo biloba (GB): numerous biological effects of GB are mediated via hormesis. Ageing Res Rev. 2020;64:101019.
  • Yang F, Lim GP, Begum AN, et al. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem. 2005;280(7):5892–5901.
  • Agathokleous E, Calabrese EJ. Hormesis: the dose response for the 21st century: the future has arrived. Toxicology. 2019;425:152249.
  • Cornelius C, Perrotta R, Graziano A, et al. Stress responses, vitagenes and hormesis as critical determinants in aging and longevity: mitochondria as a “chi”. Immun Ageing. 2013;10(1):1–13.
  • Leri M, Scuto M, Ontario ML, et al. Healthy effects of plant polyphenols: molecular mechanisms. IJMS. 2020;21(4):1250.
  • Peters V, Calabrese V, Forsberg E, et al. Protective actions of anserine under diabetic conditions. IJMS. 2018;19(9):2751.
  • Calabrese V, Bates TE, Mancuso C, et al. Curcumin and the cellular stress response in free radical-related diseases. Mol Nutr Food Res. 2008;52(9):1062–1073.
  • Calabrese V, Guagliano E, Sapienza M, et al. Redox regulation of cellular stress response in aging and neurodegenerative disorders: role of vitagenes. Neurochem Res. 2007;32(4–5):757–773.
  • de Souza Ferreira SB, Bruschi ML. Improving the bioavailability of curcumin: is micro/nanoencapsulation the key? Future Science. 2019.
  • Yallapu MM, Nagesh PKB, Jaggi M, et al. Therapeutic applications of curcumin nanoformulations. AAPS J. 2015;17(6):1341–1356.
  • Khezri K, Saeedi M, Mohammadamini H, et al. A comprehensive review of the therapeutic potential of curcumin nanoformulations. Phytother Res. 2021;35(10):5527–5563.
  • Zhang L, Yang S, Wong LR, et al. In vitro and in vivo comparison of curcumin-encapsulated chitosan-coated poly (lactic-co-glycolic acid) nanoparticles and curcumin/hydroxypropyl-β-Cyclodextrin inclusion complexes administered intranasally as therapeutic strategies for Alzheimer’s disease. Mol Pharm. 2020;17(11):4256–4269.
  • Chibhabha F, Yang Y, Ying K, et al. Non-invasive optical imaging of retinal Aβ plaques using curcumin loaded polymeric micelles in APPswe/PS1ΔE9 transgenic mice for the diagnosis of Alzheimer’s disease. J Mater Chem B. 2020;8(33):7438–7452.
  • Sadegh Malvajerd S, Izadi Z, Azadi A, et al. Neuroprotective potential of curcumin-loaded nanostructured lipid carrier in an animal model of Alzheimer’s disease: behavioral and biochemical evidence. J Alzheimers Dis. 2019;69(3):671–686.
  • Giacomeli R, Izoton JC, Dos Santos RB, et al. Neuroprotective effects of curcumin lipid-core nanocapsules in a model Alzheimer’s disease induced by β-amyloid 1-42 peptide in aged female mice. Brain Res. 2019;1721:146325.
  • Gao C, Wang Y, Sun J, et al. Neuronal mitochondria-targeted delivery of curcumin by biomimetic engineered nanosystems in Alzheimer’s disease mice. Acta Biomater. 2020;108:285–299.
  • Dhavamani S, Lokesh B. Co-delivery of curcumin and fish oil in phospholipid nanoemulsions attenuates motor impairments and neuro-inflammation in MPTP induced Parkinson’s disease rat model. FASEB J. 2019;33(S1):lb59.
  • Mursaleen L, Somavarapu S, Zariwala MG. Deferoxamine and curcumin loaded nanocarriers protect against rotenone-induced neurotoxicity. J Parkinsons Dis. 2020;10(1):99–111.
  • Zhang N, Yan F, Liang X, et al. Localized delivery of curcumin into brain with polysorbate 80-modified cerasomes by ultrasound-targeted microbubble destruction for improved Parkinson’s disease therapy. Theranostics. 2018;8(8):2264–2277.
  • Dolati S, AghebatiMaleki L, Ahmadi M, et al. Nanocurcumin restores aberrant miRNA expression profile in multiple sclerosis, randomized, double-blind, placebo-controlled trial. J Cell Physiol. 2018;233(7):5222–5230. -
  • Dolati S, Ahmadi M, Rikhtegar R, et al. Changes in Th17 cells function after nanocurcumin use to treat multiple sclerosis. Int Immunopharmacol. 2018;61:74–81.
  • Lu L, Qi S, Chen Y, et al. Targeted immunomodulation of inflammatory monocytes across the blood-brain barrier by curcumin-loaded nanoparticles delays the progression of experimental autoimmune encephalomyelitis. Biomaterials. 2020;245:119987.
  • Sandhir R, Yadav A, Mehrotra A, et al. Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington’s disease. Neuromolecular Med. 2014;16(1):106–118.
  • Ahmad N, Umar S, Ashafaq M, et al. A comparative study of PNIPAM nanoparticles of curcumin, demethoxycurcumin, and bisdemethoxycurcumin and their effects on oxidative stress markers in experimental stroke. Protoplasma. 2013;250(6):1327–1338.
  • Marques M, Cordeiro M, Marinho M, et al. Curcumin-loaded nanoemulsion improves haemorrhagic stroke recovery in wistar rats. Brain Res. 2020;1746:147007.
  • Hajivalili M, Pourgholi F, Samadi Kafil H, et al. Mesenchymal stem cells in the treatment of amyotrophic lateral sclerosis. Curr Stem Cell Res Ther. 2016;11(1):41–50.
  • Ahmadi M, Agah E, Nafissi S, et al. Safety and efficacy of nanocurcumin as add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a pilot randomized clinical trial. Neurotherapeutics. 2018;15(2):430–438.
  • Tripodo G, Chlapanidas T, Perteghella S, et al. Mesenchymal stromal cells loading curcumin-INVITE-micelles: a drug delivery system for neurodegenerative diseases. Colloids Surf B Biointerfaces. 2015;125:300–308.
  • Patel V, Chisholm D, Dua T, et al., editors. Neurological disorders–mental, neurological, and substance use disorders: disease control priorities. Vol. 4. Washington (DC): The International Bank for Reconstruction and Development/the World Bank; 2016.
  • Lunn JS, Sakowski SA, Hur J, et al. Stem cell technology for neurodegenerative diseases. Ann Neurol. 2011;70(3):353–361.
  • Yousefi F, Arab FL, Saeidi K, et al. Various strategies to improve efficacy of stem cell transplantation in multiple sclerosis: focus on mesenchymal stem cells and neuroprotection. J Neuroimmunol. 2019;328:20–34.
  • Corey S, Ghanekar S, Sokol J, et al. An update on stem cell therapy for neurological disorders: cell death pathways as therapeutic targets. Chin Neurosurg Jl. 2017;3(1):4.
  • Kornblum HI. Introduction to neural stem cells. Stroke. 2007;38(2 Suppl):810–816.
  • Gage FH, Temple S. Neural stem cells: generating and regenerating the brain. Neuron. 2013;80(3):588–601.
  • Gonzalez R, Hamblin MH, Lee J-P. Neural stem cell transplantation and CNS diseases. CNS Neurol Disord Drug Targets. 2016;15(8):881–886.
  • Temple S. The development of neural stem cells. Nature. 2001;414(6859):112–117.
  • Vishwakarma SK, Bardia A, Tiwari SK, et al. Current concept in neural regeneration research: NSCs isolation, characterization and transplantation in various neurodegenerative diseases and stroke: a review. J Adv Res. 2014;5(3):277–294.
  • Redmond DE, Bjugstad KB, Teng YD, et al. Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells. Proc Natl Acad Sci U S A. 2007;104(29):12175–12180.
  • Xuan A, Luo M, Ji W, et al. Effects of engrafted neural stem cells in Alzheimer’s disease rats. Neurosci Lett. 2009;450(2):167–171.
  • Blurton-Jones M, Kitazawa M, Martinez-Coria H, et al. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci U S A. 2009;106(32):13594–13599.
  • Zhu J-D, Wang J-J, Ge G, et al. Effects of noggin-transfected neural stem cells on neural functional recovery and underlying mechanism in rats with cerebral ischemia reperfusion injury. J Stroke Cerebrovasc Dis. 2017;26(7):1547–1559.
  • Kelly S, Bliss T, Shah A, et al. Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci U S A. 2004;101(32):11839–11844.
  • Ryu JK, Kim J, Cho SJ, et al. Proactive transplantation of human neural stem cells prevents degeneration of striatal neurons in a rat model of Huntington disease. Neurobiol Dis. 2004;16(1):68–77.
  • McBride JL, Behrstock SP, Chen EY, et al. Human neural stem cell transplants improve motor function in a rat model of Huntington’s disease. J Comp Neurol. 2004;475(2):211–219.
  • Cummings BJ, Uchida N, Tamaki SJ, et al. Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci U S A. 2005;102(39):14069–14074.
  • Yang J, Jiang Z, Fitzgerald DC, et al. Adult neural stem cells expressing IL-10 confer potent immunomodulation and remyelination in experimental autoimmune encephalitis. J Clin Invest. 2009;119(12):3678–3691.
  • Ravanidis S, Poulatsidou KN, Lagoudaki R, et al. Subcutaneous transplantation of neural precursor cells in experimental autoimmune encephalomyelitis reduces chemotactic signals in the Central nervous system. Stem Cells Transl Med. 2015;4(12):1450–1462.
  • Perteghella S, Crivelli B, Catenacci L, et al. Stem cell-extracellular vesicles as drug delivery systems: new frontiers for silk/curcumin nanoparticles. Int J Pharm. 2017;520(1–2):86–97.
  • Gao F, Chiu S, Motan D, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis. 2016;7(1):e2062.
  • Uccelli A, Laroni A, Freedman MS. Mesenchymal stem cells for the treatment of multiple sclerosis and other neurological diseases. Lancet Neurol. 2011;10(7):649–656.
  • Zemelko V, Kozhukharova I, Alekseenko L, et al. Neurogenic potential of human mesenchymal stem cells isolated from bone marrow, adipose tissue and endometrium: a comparative study. Cell Tiss Biol. 2013;7(3):235–244.
  • Hosseini FS, Saburi E, Enderami SE, et al. Improved chondrogenic response of mesenchymal stem cells to a polyethersulfone/polyaniline blended nanofibrous scaffold. J Cell Biochem. 2019;120(7):11358–11365.
  • Ding D-C, Shyu W-C, Lin S-Z. Mesenchymal stem cells. Cell Transplant. 2011;20(1):5–14.
  • Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells-current trends and future prospective. Biosci Rep. 2015;35(2):e00191.
  • Yamout B, Hourani R, Salti H, et al. Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. J Neuroimmunol. 2010;227(1–2):185–189.
  • Karussis D, Karageorgiou C, Vaknin-Dembinsky A, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol. 2010;67(10):1187–1194.
  • Harris VK, Yan QJ, Vyshkina T, et al. Clinical and pathological effects of intrathecal injection of mesenchymal stem cell-derived neural progenitors in an experimental model of multiple sclerosis. J Neurol Sci. 2012;313(1–2):167–177.
  • Connick P, Kolappan M, Crawley C, et al. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol. 2012;11(2):150–156.
  • Llufriu S, Sepúlveda M, Blanco Y, et al. Randomized placebo-controlled phase II trial of autologous mesenchymal stem cells in multiple sclerosis. PLoS One. 2014;9(12):e113936.
  • Osaka M, Honmou O, Murakami T, et al. Intravenous administration of mesenchymal stem cells derived from bone marrow after contusive spinal cord injury improves functional outcome. Brain Res. 2010;1343:226–235.
  • Quertainmont R, Cantinieaux D, Botman O, et al. Mesenchymal stem cell graft improves recovery after spinal cord injury in adult rats through neurotrophic and pro-angiogenic actions. PLoS One. 2012;7(6):e39500.
  • Albayrak Ö, Şener TE, Erşahin M, et al. Mesenchymal stem cell therapy improves erectile dysfunction in experimental spinal cord injury. Int J Impot Res. 2020;32(3):308–316.
  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–1147.
  • Niwa H, Miyazaki J-I, Smith AG. Quantitative expression of oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 2000;24(4):372–376.
  • de Wert G, Mummery C. Human embryonic stem cells: research, ethics and policy. Hum Reprod. 2003;18(4):672–682.
  • Lee AS, Tang C, Rao MS, et al. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med. 2013;19(8):998–1004.
  • Arnhold S, Lenartz D, Kruttwig K, et al. GFP labelled ES cell derived neural precursor cells differentiate into thy-1 positive neurons and glia after transplantation into the striatum of the adult rat striatum. J Neurosurg. 2000;93(6):1026–1032.
  • Michelsen KA, Acosta-Verdugo S, Benoit-Marand M, et al. Area-specific reestablishment of damaged circuits in the adult cerebral cortex by cortical neurons derived from mouse embryonic stem cells. Neuron. 2015;85(5):982–997.
  • Liu Y, Weick JP, Liu H, et al. Medial ganglionic eminence–like cells derived from human embryonic stem cells correct learning and memory deficits. Nat Biotechnol. 2013;31(5):440–447.
  • Grosu-Bularda A, Manea C, Lascar I. The role of olfactory ensheating cells in regenerative medicine: review of the literature. Rom J Rhinol. 2015;5(18):75–80.
  • Li J, Chen W, Li Y, et al. Transplantation of olfactory ensheathing cells promotes partial recovery in rats with experimental autoimmune encephalomyelitis. Int J Clin Exp Pathol. 2015;8(9):11149–11156.
  • Chen L, Chen D, Xi H, et al. Olfactory ensheathing cell neurorestorotherapy for amyotrophic lateral sclerosis patients: benefits from multiple transplantations. Cell Transplant. 2012;21(1_suppl):65–77.
  • Ekberg JA, St John JA. Olfactory ensheathing cells for spinal cord repair: crucial differences between subpopulations of the glia. Neural Regen Res. 2015;10(9):1395–1396.
  • Anna Z, Katarzyna J-W, Joanna C, et al. Therapeutic potential of olfactory ensheathing cells and mesenchymal stem cells in spinal cord injuries. Stem Cells Int. 2017;2017:1–6.
  • Alamouti MA, Bakhtiyari M, Moradi F, et al. Remyelination of the corpus callosum by olfactory ensheathing cell in an experimental model of multiple sclerosis. Acta Med Iran. 2015;53:533–539.
  • Sasaki M, Hains BC, Lankford KL, et al. Protection of corticospinal tract neurons after dorsal spinal cord transection and engraftment of olfactory ensheathing cells. Glia. 2006;53(4):352–359.
  • Li Y, Yamamoto M, Raisman G, et al. An experimental model of ventral root repair showing the beneficial effect of transplanting olfactory ensheathing cells. Neurosurgery. 2007;60(4):734–741.
  • Chiu S-C, Hung H-S, Lin S-Z, et al. Therapeutic potential of olfactory ensheathing cells in neurodegenerative diseases. J Mol Med (Berl). 2009;87(12):1179–1189.
  • Pellitteri R, Cova L, Zaccheo D, et al. Phenotypic modulation and neuroprotective effects of olfactory ensheathing cells: a promising tool for cell therapy. Stem Cell Rev Rep. 2016;12(2):224–234.
  • Mao G, Wang Y, Guo X, et al. Neurorestorative effect of olfactory ensheathing cells and Schwann cells by intranasal delivery for patients with ischemic stroke: design of a multicenter randomized double-blinded placebo-controlled clinical study. 神经修复. 2018;6(1):74–80.
  • Liu Q, Qin Q, Sun H, et al. Neuroprotective effect of olfactory ensheathing cells co-transfected with Nurr1 and Ngn2 in both in vitro and in vivo models of Parkinson’s disease. Life Sci. 2018;194:168–176.
  • Yu A, Mao L, Zhao F, et al. Olfactory ensheathing cells transplantation attenuates chronic cerebral hypoperfusion induced cognitive dysfunction and brain damages by activating Nrf2/HO-1 signaling pathway. Am J Transl Res. 2018;10(10):3111–3121.
  • Shi Y, Inoue H, Wu JC, et al. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov. 2017;16(2):115–130.
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676.
  • Shi Y, Desponts C, Do JT, et al. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell. 2008;3(5):568–574.
  • Hu B-Y, Weick JP, Yu J, et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A. 2010;107(9):4335–4340.
  • Grskovic M, Javaherian A, Strulovici B, et al. Induced pluripotent stem cells—opportunities for disease modelling and drug discovery. Nat Rev Drug Discov. 2011;10(12):915–929.
  • Pei Y, Peng J, Behl M, et al. Comparative neurotoxicity screening in human iPSC-derived neural stem cells, neurons and astrocytes. Brain Res. 2016;1638(Pt A):57–73.
  • Hosseini FS, Soleimanifar F, Aidun A, et al. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) improved osteogenic differentiation of the human induced pluripotent stem cells while considered as an artificial extracellular matrix. J Cell Physiol. 2019;234(7):11537–11544.
  • Israel MA, Yuan SH, Bardy C, et al. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature. 2012;482(7384):216–220.
  • Ardhanareeswaran K, Mariani J, Coppola G, et al. Human induced pluripotent stem cells for modelling neurodevelopmental disorders. Nat Rev Neurol. 2017;13(5):265–278.
  • Douvaras P, Wang J, Zimmer M, et al. Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem Cell Rep. 2014;3(2):250–259.
  • Mantovani MC. Schwann cells and mesenchymal stem cells as promoter of peripheral nerve regeneration: Umeå universitet. 2011.
  • Li Y-C, Lin Y-C, Young T-H. Combination of media, biomaterials and extracellular matrix proteins to enhance the differentiation of neural stem/precursor cells into neurons. Acta Biomater. 2012;8(8):3035–3048.
  • Rao SR, Subbarayan R, Dinesh MG, et al. Differentiation of human gingival mesenchymal stem cells into neuronal lineages in 3D bioconjugated injectable protein hydrogel construct for the management of neuronal disorder. Exp Mol Med. 2016;48(2):e209.
  • Udalamaththa VL, Jayasinghe CD, Udagama PV. Potential role of herbal remedies in stem cell therapy: proliferation and differentiation of human mesenchymal stromal cells. Stem Cell Res Ther. 2016;7(1):110.
  • Kulkarni S, Dhir A. An overview of curcumin in neurological disorders. Indian J Pharm Sci. 2010;72(2):149–154.
  • Heidari S, Mahdiani S, Hashemi M, et al. Recent advances in neurogenic and neuroprotective effects of curcumin through the induction of neural stem cells. Biotechnol Appl Biochem. 2020;67:430–441.
  • Kang S-K, Cha S-H, Jeon H-G. Curcumin-induced histone hypoacetylation enhances caspase-3-dependent glioma cell death and neurogenesis of neural progenitor cells. Stem Cells Dev. 2006;15(2):165–174.
  • Kim SJ, Son TG, Park HR, et al. Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J Biol Chem. 2008;283(21):14497–14505.
  • Son S, Kim K-T, Cho D-C, et al. Curcumin stimulates proliferation of spinal cord neural progenitor cells via a mitogen-activated protein kinase signaling pathway. J Korean Neurosurg Soc. 2014;56(1):1–4.
  • Chen F, Wang H, Xiang X, et al. Curcumin increased the differentiation rate of neurons in neural stem cells via wnt signaling in vitro study. J Surg Res. 2014;192(2):298–304.
  • Tiwari SK, Agarwal S, Tripathi A, et al. Bisphenol-A mediated inhibition of hippocampal neurogenesis attenuated by curcumin via canonical wnt pathway. Mol Neurobiol. 2016;53(5):3010–3029.
  • Bang W-S, Kim K-T, Seo YJ, et al. Curcumin increase the expression of neural stem/progenitor cells and improves functional recovery after spinal cord injury. J Korean Neurosurg Soc. 2018;61(1):10–18.
  • Xiaoxiao M, Wang C, Zhang G, et al. Curcumin stimulates proIiferation of rat neural stem cells by inhibiting glucocorticoid receptors. Chin J Pharmacol Toxicol. 2015;6(2):202–207.
  • Ma XX, Liu J, Wang CM, et al. Low-dose curcumin stimulates proliferation of rat embryonic neural stem cells through glucocorticoid receptor and STAT 3. CNS Neurosci Ther. 2018;24(10):940–946.
  • Wang JL, Wang JJ, Cai ZN, et al. The effect of curcumin on the differentiation, apoptosis and cell cycle of neural stem cells is mediated through inhibiting autophagy by the modulation of Atg7 and p62. Int J Mol Med. 2018;42(5):2481–2488.
  • Li J, Han Y, Li M, et al. Curcumin promotes proliferation of adult neural stem cells and the birth of neurons in Alzheimer’s disease mice via notch signaling pathway. Cell Reprogram. 2019;21(3):152–161.
  • Jahan-Abad AJ, Morteza-Zadeh P, Negah SS, et al. Curcumin attenuates harmful effects of arsenic on neural stem/progenitor cells. Avicenna J Phytomed. 2017;7(4):376–388.
  • Cremers NA, Lundvig D, Van Dalen S, et al. Curcumin-induced heme oxygenase-1 expression prevents H2O2-induced cell death in wild type and heme oxygenase-2 knockout adipose-derived mesenchymal stem cells. Int J Mol Sci. 2014;15(10):17974–17999.
  • Pirmoradi S, Fathi E, Farahzadi R, et al. Curcumin affects adipose tissue-derived mesenchymal stem cell aging through TERT gene expression. Drug Res (Stuttg). 2018;68(4):213–221.
  • Ruzicka J, Urdzikova LM, Kloudova A, et al. Anti-inflammatory compound curcumin and mesenchymal stem cells in the treatment of spinal cord injury in rats. Acta Neurobiol Exp (Wars). 2018;78(4):358–374.
  • Mujoo K, Nikonoff LE, Sharin VG, et al. Curcumin induces differentiation of embryonic stem cells through possible modulation of nitric oxide-cyclic GMP pathway. Protein Cell. 2012;3(7):535–544.
  • Wagh V, Jagtap S, Meganathan K, et al. Effect of chemopreventive agents on differentiation of mouse embryonic stem cells. Front Biosci (Elite Ed). 2012;4(1):156–168.
  • Hsuuw YD, Chang CK, Chan WH, et al. Curcumin prevents methylglyoxal-induced oxidative stress and apoptosis in mouse embryonic stem cells and blastocysts. J Cell Physiol. 2005;205(3):379–386.
  • Sheshadri P, Ashwini A, Jahnavi S, et al. Novel role of mitochondrial manganese superoxide dismutase in STAT3 dependent pluripotency of mouse embryonic stem cells. Sci Rep. 2015;5:9516.
  • Kalani A, Chaturvedi P, Kamat PK, et al. Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. Int J Biochem Cell Biol. 2016;79:360–369.
  • Zhang S, Chen S, Li W, et al. Rescue of ATP7B function in hepatocyte-like cells from wilson’s disease induced pluripotent stem cells using gene therapy or the chaperone drug curcumin. Hum Mol Genet. 2011;20(16):3176–3187.
  • Gitlin JD. Wilson disease. Gastroenterology. 2003;125(6):1868–1877.
  • Boyd J, Skihar V, Kawaja M, et al. Olfactory ensheathing cells: historical perspective and therapeutic potential. Anat Rec B New Anat. 2003;271(1):49–60.
  • Velasquez JT, Watts ME, Todorovic M, et al. Low-dose curcumin stimulates proliferation, migration and phagocytic activity of olfactory ensheathing cells. PLoS One. 2014;9(10):e111787.
  • Hao D-J, Liu C, Zhang L, et al. Lipopolysaccharide and curcumin co-stimulation potentiates olfactory ensheathing cell phagocytosis via enhancing their activation. Neurotherapeutics. 2017;14(2):502–518.
  • Barnett SC, Riddell JS. Olfactory ensheathing cell transplantation as a strategy for spinal cord repair—what can it achieve? Nat Clin Pract Neurol. 2007;3(3):152–161.
  • Lim PA, Tow AM. Recovery and regeneration after spinal cord injury: a review and summary of recent literature. Ann Acad Med Singap. 2007;36(1):49–57.
  • Bonfanti R, Musumeci T, Russo C, et al. The protective effect of curcumin in olfactory ensheathing cells exposed to hypoxia. Eur J Pharmacol. 2017;796:62–68.
  • Cole GM, Teter B, Frautschy SA. Neuroprotective effects of curcumin. The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. 2007;197–212.
  • Acharya MM, Hattiangady B, Shetty AK. Progress in neuroprotective strategies for preventing epilepsy. Prog Neurobiol. 2008;84(4):363–404.
  • Chamorro Á, Dirnagl U, Urra X, et al. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016;15(8):869–881.
  • Mandel S, Grünblatt E, Riederer P, et al. Neuroprotective strategies in Parkinson’s disease. CNS Drugs. 2003;17(10):729–762.
  • Paul S, Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: an overview of clinical and preclinical studies. Exp Neurol. 2021;335:113518.
  • Rehman MU, Wali AF, Ahmad A, et al. Neuroprotective strategies for neurological disorders by natural products: an update. Curr Neuropharmacol. 2019;17(3):247–267.
  • Mohseni M, Sahebkar A, Askari G, et al. The clinical use of curcumin on neurological disorders: an updated systematic review of clinical trials. Phytother Res. 2021;35(12):6862–6882.
  • Han HS, Koo SY, Choi KY. Emerging nanoformulation strategies for phytocompounds and applications from drug delivery to phototherapy to imaging. Bioact Mater. 2022;14:182–205.
  • Lv H, Wang Y, Yang X, et al. Application of curcumin nanoformulations in Alzheimer’s disease: prevention, diagnosis and treatment. Nutr Neurosci. 2022;1–16. DOI:10.1080/1028415X.2022.2084550
  • Quispe C, Herrera-Bravo J, Javed Z, et al. Therapeutic applications of curcumin in diabetes: a review and perspective. Biomed Res Int. 2022;2022:1375892.
  • Dadashpour M, PilehvarSoltanahmadi Y, Zarghami N, et al. Emerging importance of phytochemicals in regulation of stem cells fate via signaling pathways. Phytother Res. 2017;31(11):1651–1668.
  • Gupta N, Verma K, Nalla S, et al. Free radicals as a double-edged sword: the cancer preventive and therapeutic roles of curcumin. Molecules. 2020;25(22):5390.
  • Attari F, Zahmatkesh M, Aligholi H, et al. Curcumin as a double-edged sword for stem cells: dose, time and cell type-specific responses to curcumin. DARU J Pharm Sci. 2015;23(1):1–7.
  • Li C, Luo T, Zheng Z, et al. Curcumin-functionalized silk materials for enhancing adipogenic differentiation of bone marrow-derived human mesenchymal stem cells. Acta Biomater. 2015;11:222–232.
  • Adami R, Bottai D. Curcumin and neurological diseases. Nutr Neurosci. 2022;25(3):441–461.
  • Gagliardi S, Morasso C, Stivaktakis P, et al. Curcumin formulations and trials: what’s new in neurological diseases. Molecules. 2020;25(22):5389.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.