460
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Virus-like particle-based nanocarriers as an emerging platform for drug delivery

, , , , , , , , , ORCID Icon & show all
Pages 433-455 | Received 12 Oct 2022, Accepted 26 Jan 2023, Published online: 29 Mar 2023

References

  • Poudel K, Gautam M, Jin SG, et al. Copper sulfide: an emerging adaptable nanoplatform in cancer theranostics. Int J Pharm. 2019;562:135–150.
  • Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotech. 2007;2(12):751–760.
  • Weissleder R, Kelly K, Sun EY, et al. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol. 2005;23(11):1418–1423.
  • Slowing II, Vivero-Escoto JL, Wu CW, et al. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev. 2008;60(11):1278–1288.
  • Anik MI, Hossain MK, Hossain I, et al. Recent progress of magnetic nanoparticles in biomedical applications: a review. Nano Select. 2021;2(6):1146–1186.
  • Hossen S, Hossain MK, Basher MK, et al. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res. 2019;15:1–18.
  • Khan MI, Hossain MI, Hossain MK, et al. Recent progress in nanostructured smart drug delivery systems for cancer therapy: a review. ACS Appl Bio Mater. 2022;5(3):971–1012.
  • Mahmud NI, Anik MI, Hossain MK, et al. Advances in nanomaterial-based platforms to combat COVID-19: diagnostics, preventions, therapeutics, and vaccine developments. ACS Appl Bio Mater. 2022;5(6):2431–2460.
  • Hossain MK, Khan MI, Denglawey AE. A review on biomedical applications, prospects, and challenges of rare earth oxides. Appl Mater Today. 2021;24:101104–101104.
  • Hu Y, Mignani S, Majoral JP, et al. Construction of iron oxide nanoparticle-basedhybrid platforms for tumor imaging and therapy. Chem Soc Rev. 2018;47(5):1874–1900.
  • Montalbán-Hernández K, Cantero-Cid R, Casalvilla-Dueñas JC, et al. Colorectal cancer stem cells fuse with monocytes to form tumour hybrid cells with the ability to migrate and evade the immune system. Cancers (Basel). 2022;14(14):3445–3445.
  • Soares S, Sousa J, Pais A, et al. Nanomedicine: principles, properties, and regulatory issues. Front Chem. 2018;6:360.
  • Giljohann DA, Seferos DS, Daniel WL, et al. Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl. 2010;49(19):3280–3294.
  • Qiao RR, Yang CH, Gao MY. Superparamagnetic iron oxide nanoparticles from preparations to in vivo MRI applications. J Mater Chem. 2009;19(35):6274–6293.
  • Bayer ME, Blumberg BS, Werner B. Particles associated with Australia antigen in the sera of patients with leukaemia, down’s syndrome and hepatitis. Nature. 1968;218(5146):1057–1059.
  • Krugman S. The newly licensed hepatitis B vaccine: characteristics and indications for use. JAMA. 1982;247(14):2012–2015.
  • Glasgow J, Tullman-Ercek D. Tullman-Ercek, production and applications of engineered viral capsids. Appl Microbiol Biotechnol. 2014;98(13):5847–5858.
  • Lai W, Fang C, Chou M, et al. Peptide-guided JC polyomavirus-like particles specifcally target bladder cancer cells for gene therapy. Sci Rep. 2021;11(1):11889.
  • Panthi S, Schmitt PT, Lorenz FJ, et al. Paramyxovirus-like particles as protein delivery vehicles. J Virol. 2021;95(20):e01030-21.
  • Ashley CE, Carnes EC, Phillips GK, et al. Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano. 2011;5(7):5729–5745.
  • Hovlid ML, Lau JL, Breitenkamp K, et al. Encapsidated atomtransfer radical polymerization in Qb virus-like nanoparticles. ACS Nano. 2014;8(8):8003–8014.
  • Glasgow JE, Capehart SL, Francis MB, et al. Osmolytemediated encapsulation of proteins inside MS2 viral capsids. ACS Nano. 2012;6(10):8658–8664.
  • Qazi S, Miettinen HM, Wilkinson RA, et al. Programmed self-assembly of an active P22-Cas9 nanocarrier system. Mol Pharm. 2016;13(3):1191–1196.
  • Lau JL, Baksh MM, Fiedler JD, et al. Evolution and protein packaging of small-molecule RNA aptamers. ACS Nano. 2011;5(10):7722–7729.
  • Li X, Xu X, Jin A, et al. Self-assembled HCV core virus-like particles targeted and inhibited tumor cell migration and invasion. Nanoscale Res Lett. 2013;8(1):401.
  • Skrastina D, Bulavaite A, Sominskaya I, et al. High immunogenicity of a hydrophilic component of the hepatitis B virus preS1 sequence exposed on the surface of three virus-like particle carriers. Vaccine. 2008;26(16):1972–1981.
  • Brandenburg B, Stockl L, Gutzeit C, et al. A novel system for efficient gene transfer into primary human hepatocytes via cell-permeable hepatitis B virus-like particle. Hepatology. 2005;42(6):1300–1309.
  • Lee KW, Tey BT, Ho KL, et al. Delivery of chimeric hepatitis B core particles into liver cells. J Appl Microbiol. 2012;112(1):119–131.
  • Ranka R, Petrovskis I, Sominskaya I, et al. Fibronectin-binding nanoparticles for intracellular targeting addressed by B. burgdorferi BBK32 protein fragments. Nanomedicine. 2013;9(1):65–73.
  • Peyret H, Gehin A, Thuenemann EC, et al. Tandem fusion of hepatitis B core antigen allows assembly of virus-like particles in bacteria and plants with enhanced capacity to accommodate foreign proteins. PLoS One. 2015;10(4):e0120751.
  • Lu Y, Welsh JP, Chan W, et al. Escherichia coli-based cell free production of flagellin and ordered flagellin display on virus-like particles. Biotechnol Bioeng. 2013;110(8):2073–2085.
  • Ionescu RM, Przysiecki CT, Liang X, et al. Pharmaceutical and immunological evaluation of human papillomavirus viruslike particle as an antigen carrier. J Pharm Sci. 2006;95(1):70–79.
  • Wang H, Yang Z, Li F, et al. Insertion of a targeting peptide on capsid surface loops of human papillomavirus type-16 virus-like particles mediate elimination of anti-dsDNA abs-producing B cells with high efficiency. J Immunother. 2009;32(1):36–41.
  • Pan Q, He K, Huang K. Development of recombinant porcine parvovirus-like particles as an antigen carrier formed by the hybrid VP2 protein carrying immunoreactive epitope of porcine circovirus type2. Vaccine. 2008;26(17):2119–2126.
  • Ren Y, Mu Y, Jiang L, et al. Multifunctional TK-VLPs nanocarrier for tumor-targeted delivery. Int J Pharm. 2016;502(1–2):249–257.
  • Salazar-González JA, Ruiz-Cruz AA, Bustos-Jaimes I, et al. Expression of breast Cancer-Related epitopes targeting the IGF-1 receptor in chimeric human parvovirus B19 Virus-Like particles. Mol Biotechnol. 2019;61(10):742–753.
  • Pleckaityte M, Zvirbliene A, Sezaite I, et al. Production in yeast of pseudotype virus-like particles harboring functionally active antibody fragments neutralizing the cytolytic activity of vaginolysin. Microb Cell Fact. 2011;10(1):109.
  • May T, Gleiter S, Lilie H. Assessment of cell type specific gene transfer of polyoma virus like particles presenting a tumor specific antibody Fv fragment. J Virol Methods. 2002;105(1):147–157.
  • Kitai Y, Fukuda H, Enomoto T, et al. Cell selective targeting of a simian virus 40 virus-like particle conjugated to epidermal growth factor. J Biotechnol. 2011;155(2):251–256.
  • Takahashi RU, Kanesashi SN, Inoue T, et al. Presentation of functional foreign peptides on the surface of SV40 virus-like particles. J Biotechnol. 2008;135(4):385–392.
  • Zhao Q, Chen W, Chen Y, et al. Self-assembled virus-like particles from rotavirus structural protein VP6 for targeted drug delivery. Bioconjugate Chem. 2011;22(3):346–352.
  • Yildiz I, Tsvetkova I, Wen AM, et al. Engineering of brome mosaic virus for biomedical applications. RSC Adv. 2012;2(9):3670–3677.
  • Gillitzer E, Willits D, Young M, et al. Chemical modification of a viral cage for multivalent presentation. Chem Commun. 2002;20:2390–2391.
  • Comellas-Aragonès M, de la Escosura A, Dirks AT, et al. Controlled integration of polymers into viral capsids. Biomacromolecules. 2009;10(11):3141–3147.
  • Kalnciema I, Skrastina D, Ose V, et al. Potato virus Y-like particles as a new carrier for the presentation of foreign protein stretches. Mol Biotechnol. 2012;52(2):129–139.
  • Destito G, Yeh R, Rae CS, et al. Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells. Chem Biol. 2007;14(10):1152–1162.
  • Hovlid ML, Steinmetz NF, Laufer B, et al. Guiding plant virus particles to integrin-displaying cells. Nanoscale. 2012;4(12):3698–3705.
  • Wu Z, Chen K, Yildiz I, et al. Development of viral nanoparticles for efficient intracellular delivery. Nanoscale. 2012;4(11):3567–3576.
  • Brunel FM, Lewis JD, Destito G, et al. Hydrazone ligation strategy to assemble multifunctional viral nanoparticles for cell imaging and tumor targeting. Nano Lett. 2010;10(3):1093–1097.
  • Lico C, Mancini C, Italiani P, et al. Plant-produced potato virus X chimeric particles displaying an influenza virus-derived peptide activate specific CD8+ T cells in mice. Vaccine. 2009;27(37):5069–5076.
  • Ren Y, Wong SM, Lim LY. Folic acid-conjugated protein cages of a plant virus: a novel delivery platform for doxorubicin. Bioconjugate Chem. 2007;18(3):836–843.
  • Lockney DM, Guenther RN, Loo L, et al. The red clover necrotic mosaic virus capsid as a multifunctional cell targeting plant viral nanoparticle. Bioconjugate Chem. 2011;22(1):67–73.
  • Natilla A, Hammond RW. Maize rayado fino virus virus-like particles expressed in tobacco plants: a newplatform for cysteine selective bioconjugation peptide display. J Virol Methods. 2011;178(1–2):209–215.
  • Bruckman MA, Jiang K, Simpson EJ, et al. Dual-modal magnetic resonance and fluorescence imaging of atherosclerotic plaques in vivo using VCAM-1 targeted tobacco mosaic virus. Nano Lett. 2014;14(3):1551–1558.
  • Yi H, Ghosh D, Ham MH, et al. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano Lett. 2012;12(3):1176–1183.
  • Peabody DS, Manifold-Wheeler B, Medford A, et al. Immunogenic display of diverse peptides on virus-like particles of RNA phage MS2. J Mol Biol. 2008;380(1):252–263.
  • Wu M, Sherwin T, Brown WL, et al. Delivery of antisense oligonucleotides toleukemia cells by RNA bacteriophage capsids. Nanomedicine. 2005;1(1):67–76.
  • Wu M, Brown WL, Stockley PG. Cell-specific delivery of bacteriophage-encapsidated ricin a chain. Bioconjugate Chem. 1995;6(5):587–595.
  • Galaway FA, Stockle P. MS2 viruslike particles: a robust, semisynthetic targeted drug delivery platform. Mol Pharm. 2013;10(1):59–68.
  • Pan Y, Zhang Y, Jia T, et al. Development of a microRNA delivery system based on bacteriophage MS2 virus-like particles. FEBS J. 2012;279(7):1198–1208.
  • Patel KG, Swartz JR. Surface functionalization of virus-like particles by direct conjugation using azide-alkyne click chemistry. Bioconjug Chem. 2011;22(3):376–387.
  • Schwarz B, Madden P, Avera J, et al. Symmetry controlled, genetic presentation of bioactive proteins on the P22 virus-like particle using an external decoration protein. ACS Nano. 2015;9(9):9134–9147.
  • Anand P, O’Neil A, Lin E, et al. Tailored delivery of analgesic ziconotide across a blood brain barrier model using viral nanocontainers. Sci Rep. 2015;5(1):12497.
  • Servid A, Jordan P, O’Neil A, et al. Location of the bacteriophage P22 coat protein C-terminus provides opportunities for the design of capsid-based materials. Biomacromolecules. 2013;14(9):2989–2995.
  • Pokorski JK, Hovlid ML, Finn MG. Cell targeting with hybrid qbeta virus-like particles displaying epidermal growth factor. ChemBioChem. 2011;12(16):2441–2447.
  • Rhee JK, Hovlid M, Fiedler JD, et al. Colorful virus-like particles: fluorescent protein packaging by the qbeta capsid. Biomacromolecules. 2011;12(11):3977–3981.
  • Banerjee D, Liu AP, Voss NR, et al. Multivalent display and receptor-mediated endocytosis of transferrin on virus-like particles. Chem Eur J Chem Bio. 2010;11(9):1273–1279.
  • Tang KH, Yusoff K, Tan WS. Display of hepatitis B virus PreS1 peptide on bacteriophage T7 and its potential in gene delivery into HepG2 cells. J Virol Methods. 2009;159(2):194–199.
  • Zochowska M, Paca A, Schoehn G, et al. Adenovirus dodecahedron, as a drug delivery vector. PLoS One. 2009;4(5):e5569.
  • Martin Caballero J, Garzón A, González-Cintado L, et al. Chimeric infectious bursal disease virus-like particles as potent vaccines for eradication of established HPV-16 E7-dependent tumors. PLoS One. 2012;7(12):e52976.
  • Win SJ, McMillan DG, Errington-Mais F, et al. Enhancing the immunogenicity of tumour lysate-loaded dendritic cell vaccines by conjugation to virus-like particles. Br J Cancer. 2012;106(1):92–98.
  • Storni T, Ruedl C, Schwarz K, et al. Nonmethylated CG motifs packaged into virus-like particles induce protective cytotoxic T cell responses in the absence of systemic side effects. J Immunol. 2004;172(3):1777–1785.
  • Strods A, Ose V, Bogans J, et al. Preparation by alkaline treatment and detailed characterisation of empty hepatitis B virus core particles for vaccine and gene therapy applications. Sci Rep. 2015;5(1):11639.
  • Porterfield JZ, Dhason MS, Loeb DD, et al. Full-length hepatitis B virus core protein packages viral and heterologous RNA with similarly high levels of cooperativity. J Virol. 2010;84(14):7174–7184.
  • Dhason MS, Wang JCY, Hagan MF, et al. Differential assembly of hepatitis B virus core protein on single- and doublestranded nucleic acid suggest the dsDNA-filled core is spring-loaded. Virology. 2012;430(1):20–29.
  • Niikura M, Takamura S, Kim G, et al. Chimeric recombinant hepatitis E virus-like particles as an oral vaccine vehicle presenting foreign epitopes. Virology. 2002;293(2):273–280.
  • Windram OP, Weber B, Jaffer MA, et al. An investigation into the use of human papillomavirus type 16 virus-like particles as a delivery vector system for foreign proteins: n - and C-terminal fusion of GFP to the L1 and L2 capsid proteins. Arch Virol. 2008;153:585–589.
  • Malboeuf CM, Simon DA, Lee YE, et al. Human papillomavirus-like particles mediate functional delivery of plasmid DNA to antigen presenting cells in vivo. Vaccine. 2007;25:3270–3276.
  • Jing J, Xue Y, Liu Y, et al. Co-assembly of HPV capsid proteins and aggregation-induced emission fluorogens for improved cell imaging. Nanoscale. 2020;12(9):5501–5506.
  • Singh P. Tumor targeting using canine parvovirus nanoparticles. Curr Top Microbiol Immunol. 2009;327:123–141.
  • Gilbert L, Toivola J, Lehtomäki E, et al. Assembly of fluorescent chimeric virus-like particles of canine parvovirus in insect cells. Biochem Biophys Res Commun. 2004;313(4):878–887.
  • Voronkova T, Kazaks A, Ose V, et al. Hamster polyomavirus-derived virus-like particles are able to transfer in vitro encapsidated plasmid DNA to mammalian cells. Virus Genes. 2007;34:303–314.
  • Chang CF, Wang M, Ou WC, et al. Human JC virus-like particles as a gene delivery vector. Expert Opin Biol Ther. 2011;11(9):1169–1175.
  • Chen LS, Wang M, Ou WC, et al. Efficient gene transfer using the human JC virus-like particle that inhibits human Colon adenocarcinoma growth in a nude mouse model. Gene Ther. 2010;17:1033–1041.
  • Inoue T, Kawano MA, Takahashi RU, et al. Engineering of SV40-based nanocapsules for delivery of heterologous proteins as fusions with the minor capsid proteins VP2/3. J Biotechnol. 2008;134:181–192.
  • Li F, Zhang ZP, Peng J, et al. Imaging viral behavior in mammalian cells with self-assembled capsid-quantum-dot hybrid particles. Small. 2009;5:718–726.
  • Cortes-Perez NG, Sapin C, Jaffrelo L, et al. Rotavirus-like particles: a novel nanocarrier for the gut. J Biomed Biotechnol. 2010;2010:317545.
  • Charpilienne A, Nejmeddine M, Berois M, et al. Individual rotavirus-like particles containing 120 molecules of fluorescent protein are visible in living cells. J Biol Chem. 2001;276:29361–23967.
  • Denis J, Acosta-Ramirez E, Zhao Y, et al. Development of a universal influenza a vaccine based on the M2e peptide fused to the papaya mosaic virus (PapMV) vaccine platform. Vaccine. 2008;26:3395–3403.
  • Chen C, Kwak ES, Stein B, et al. Packaging of gold particles in viral capsids. J Nanosci Nanotechnol. 2005;5(12):2029–2033.
  • Cadena-Nava RD, Comas-Garcia M, Garmann RF, et al. Self-assembly of viral capsid protein and RNA molecules of different sizes: requirement for a specific high protein/RNA mass ratio. J Virol. 2012;86(6):3318–3326.
  • Millan JG, Brasch M, Anaya-Plaza E, et al. Self-assembly triggered by self-assembly: optically active, paramagnetic micelles encapsulated in protein cage nanoparticles. J Inorg Biochem. 2014;136:140–146.
  • Rurup WF, Verbij F, Koay MST, et al. Predicting the loading of virus-like particles with fluorescent proteins. Biomacromolecules. 2014;15:558–563.
  • Minten IJ, Hendriks LJ, Nolte RJ, et al. Controlled encapsulation of multiple proteins in virus capsids. J Am Chem Soc. 2009;131(49):17771–17773.
  • Comellas-Aragonès M, Engelkamp H, Claessen VI, et al. A virus based single-enzyme nanoreactor. Nat Nanotechnol. 2007;2(10):635–639.
  • Leong HS, Steinmetz NF, Ablack A, et al. Intravital imaging of embryonic and tumor neovasculature using viral nanoparticles. Nat Protoc. 2010;5:1406–1417.
  • Lewis JD, Destito G, Zijlstra A, et al. Viral nanoparticles as tools for intravital vascular imaging. Nat Med. 2006;12(3):354–360.
  • Azizgolshani O, Garmann RF, Cadena-Nava R, et al. Reconstituted plant viral capsids can release genes to mammalian cells. Virology. 2013;441:12–17.
  • Aljabali AA, Shukla S, Lomonossoff GP, et al. CPMV-DOX delivers. Mol Pharm. 2013;10:3–10.
  • Yildiz I, Lee KL, Chen K, et al. Infusion of imaging and therapeutic molecules into the plant virus-based carrier cowpea mosaic virus: cargo-loading and delivery. J Control Release. 2013;172:568–578.
  • Hu Y, Zandi R, Anavitarte A, et al. Packaging of a polymer by aviral capsid: the interplay between polymer length and capsid size. Biophys J. 2008;94:1428–1436.
  • Aljabali AAA, Sainsbury F, Lomonossoff GP, et al. Cowpea mosaic virus unmodified empty viruslike particles loaded with metal and metal oxide. Small. 2010;6:818–821.
  • Prasuhn DE, Yeh RM, Obenaus A, et al. Viral MRI contrast agents: coordination of Gd by native virions and attachment of Gd complexes by azide-alkyne cycloaddition. Chem Commun. 2007;12:1269–1271.
  • Steinmetz NF, Mertens ME, Taurog RE, et al. Potato virus X as a novel platform for potential biomedical applications. Nano Lett. 2010;10(1):305–312.
  • Ren Y, Wong SM, Lim LY. In vitro-reassembled plant virus-like particles for loading of polyacids. J Gen Virol. 2006;87(Pt 9):2749–2754.
  • Loo L, Guenther RH, Basnayake VR, et al. Controlled encapsidation of gold nanoparticles by a viral protein shell. J Am Chem Soc. 2006;128:4502–4503.
  • Werner S, Marillonnet S, Hause G, et al. Immunoabsorbent nanoparticles basedon a tobamovirus displaying protein A. Proc Natl Acad Sci USA. 2006;103:17678–17683.
  • Barnhill HN, Claudel-Gillet S, Ziessel R, et al. Prototype protein assembly as scaffold for time-resolved fluoroimmuno assays. J Am Chem Soc. 2007;129:7799–7806.
  • Barnhill HN, Reuther R, Ferguson PL, et al. Turnip yellow mosaic virus as a chemoaddressable bionanoparticle. Bioconjug Chem. 2007;18:852–859.
  • Finbloom JA, Aanei IL, Bernard JM, et al. Evaluation of three morphologically distinct Virus-Like particles as nanocarriers for Convection-Enhanced drug delivery to glioblastoma. Nanomaterials (Basel). 2018;8(12):1007.
  • Li J, Sun Y, Jia T, et al. Messenger RNA vaccine based on recombinant MS2 virus-like particles against prostate cancer. Int J Cancer. 2014;134:1683–1694.
  • Sun S, Li W, Sun Y, et al. A new RNA vaccine platform based on MS2 virus-like particles produced in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 2011;407(1):124–128.
  • Kovacs EW, Hooker JM, Romanini DW, et al. Dual-surface-modified bacteriophage MS2 as an ideal scaffold for a viral capsid-based drug delivery system. Bioconjug Chem. 2007;18:1140–1147.
  • Stephanopoulos N, Tong GJ, Hsiao SC, et al. Dual-surface modified virus capsids for targeted delivery of photodynamic agents to cancer cells. ACS Nano. 2010;4:6014–6020.
  • Glasgow JE, Asensio MA, Jakobson CM, et al. The influence of electrostatics on small molecule flux through a protein nanoreactor. ACS Synth Biol. 2015;4:1011–1019.
  • Patterson DP, Rynda-Apple A, Harmsen AL, et al. Biomimetic antigenic nanoparticles elicit controlled protective immune response to influenza. ACS Nano. 2013;7(4):3036–3044.
  • Patterson DP, Prevelige PE, Douglas T. Nanoreactors by programmed enzyme encapsulation inside the capsid of the bacteriophage P22. ACS Nano. 2012;6:5000–5009.
  • Uchida M, Morris DS, Kang S, et al. Site-directed coordination chemistry with P22 virus-like particles. Langmuir. 2012;28:1998–2006.
  • Kang S, Uchida M, Oneil A, et al. Implementation of P22 viral capsids as nanoplatforms. Biomacromolecules. 2010;11:2804–2809.
  • Lucon J, Qazi S, Uchida M, et al. Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading. Nat Chem. 2012;4:781–788.
  • Patterson DP, Schwarz B, Waters RS, et al. Encapsulation of an enzyme Cascade within thebacteriophage P22 virus-like particle. ACS Chem Biol. 2014;9:359–365.
  • Waghwani HK, Uchida M, Fu C, et al. Virus-Like particles (VLPs) as a platform for hierarchical compartmentalization. Biomacromolecules. 2020;21(6):2060–2072.
  • Fiedler JD, Brown SD, Lau JL, et al. RNA-directed packaging of enzymes within virus-like particles. Angew Chem Int Ed Engl. 2010;49(50):9648–9651.
  • Das S, Zhao L, Crooke SN, et al. Stabilization of near-infrared fluorescent proteins by packaging in virus-like particles. Biomacromolecules. 2020;21(6):2432–2439.
  • Herbert FC, Brohlin OR, Galbraith T, et al. Supramolecular encapsulation of small-ultrared fluorescent proteins in virus-like nanoparticles for noninvasivei in vivo imaging agents. Bioconjugate Chem. 2020;31:1529–1536.
  • Mullaney JM, Black LW. Activity of foreign proteins targeted within the bacteriophage T4 head and prohead: implications for packaged DNA structure. J Mol Biol. 1998;283(5):913–929.
  • Phelps JP, Dao P, Jin H, et al. Expression and self-assembly of cowpea chlorotic mottle virus-like particles in Pseudomonas fluorescens. J Biotechnology. 2007;128:290–296.
  • Cortes-Perez NG, Kharrat P, Langella P, et al. Heterologous production of human papillomavirus type-16 L1 protein by a lactic acid bacterium. BMC Res Notes. 2009;2:167.
  • Vicente T, Roldão A, Peixoto C, et al. Large-scale production and purification of VLP-based vaccines. J Invertebr Pathol. 2011;107:S42–S48.
  • Kato T, Deo VK, Park EY. Functional virus-like particles production using silkworm and their application in life science. J Biotechnol Biomater. 2012;155:185–192.
  • Sokolenko S, George S, Wagner A, et al. Co-expression vs. co-infection using baculovirus expression vectors in insect cell culture: benefits and drawbacks. Biotechnol Adv. 2012;30:766–781.
  • Molinari P, Peralta A, Taboga O. Production of rotavirus-like particles in Spodoptera frugiperda larvae. J Virol Methods. 2008;147:364–367.
  • Yao L, Wang S, Su S, et al. Construction of a baculovirus-silkworm multigene expression system and its application on producing virus-like particles. PLoS One. 2012;7:e32510.
  • Freivalds J, Dislers A, Ose V, et al. Highly efficient production of phosphorylated hepatitis B core particles in yeast Pichia pastoris. Protein Expr Purif. 2011;75(2):218–224.
  • Rodríguez-Limas WA, Tyo KE, Nielsen J, et al. Molecular and process design for rotavirus-like particle production in Saccharomyces cerevisiae. Microb Cell Fact. 2011;10:33.
  • Rybicki EP. Plant-made vaccines for humans and animals. Plant Biotechnol J. 2010;8(5):620–637.
  • Zeltins A. Plant virus biotechnology platforms for expression of medicinal proteins. In: Y.E. Khudyakov, editor. Medicinal protein engineering. Boca Raton: CRC Press; 2009. p. 481–517.
  • Tacket CO. Plant-based oral vaccines: results of human trials. Curr Top Microbiol Immunol. 2009;332:103–117.
  • Lomonossoff GP, Evans DJ. Applications of plant viruses in bionanotechnology. Curr Top Microbiol Immunol. 2014;375:61–87.
  • Wurm FM. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol. 2004;22(11):1393–1398.
  • Walsh G. Biopharmaceutical benchmarks 2006. Nat Biotechnol. 2006;24(7):769–776.
  • Zeltins A. Construction and characterization of virus-like particles: a review. Mol Biotechnol. 2013;53(1):92–107.
  • Hillebrandt N, Vormittag P, Bluthardt N, et al. Integrated process for capture and purification of virus-like particles: enhancing process performance by cross-flow filtration. Front Bioeng Biotechnol. 2020;8:489.
  • Zhao Q, Li S, Yu H, et al. Virus-like particle-based human vaccines: quality assessment based on structural and functional properties. Trends Biotechnol. 2013;31:654–663.
  • Birnbaum F, Nassal M. Hepatitis B virus nucleocapsid assembly: primary structure requirements in the core protein. J Virol. 1990;64(7):3319–3330.
  • Wróbel B, Yosef Y, Oppenheim AB, et al. Production and purification of SV40 major capsid protein (VP1) in Escherichia coli strains deficient for the GroELS chaperone machine. J Biotechnol. 2000;84:285–289.
  • White LJ, Hardy ME, Estes MK. Biochemical characterization of a smaller form of recombinant norwalk virus capsids assembled in insect cells. J Virol. 1997;71:8066–8072.
  • Freivalds J, Dislers A, Ose V, et al. Assembly of bacteriophage qbeta virus-like particles in yeast Saccharomyces cerevisiae and Pichia pastoris. J Biotechnol. 2006;123(3):297–303.
  • Goldin S, Hulata Y, Baran N, et al. Quantification of T4-like and T7-like cyanophages using the polony pethod phow they are significant members of the virioplankton in the North pacific subtropical gyre. Front Microbiol. 2020;11:1210.
  • Madrigal JL, Jones MK. Quantifying human norovirus virus-like particles binding to commensal bacteria using flow cytometry. J Vis Exp. 2020;158:1–8.
  • Ramishetti S, Huang L. Intelligent design of multifunctional lipid-coated nanoparticle platforms for cancer therapy. Ther Deliv. 2012;3:1429–1445.
  • Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771–782.
  • Gratton SE, Ropp PA, Pohlhaus PD, et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA. 2008;105(33):11613–11618.
  • Decuzzi P, Pasqualini R, Arap W, et al. Intravascular delivery of particulate systems: does geometry really matter? Pharm Res. 2009;26:235–243.
  • Champion JA, Mitragotri S. Shape induced inhibition of phagocytosis of polymer particles. Pharm Res. 2009;26(1):244–249.
  • Smith BR, Kempen P, Bouley D, et al. Shape matters: intravital microscopy reveals surprising geometrical dependence for nanoparticles in tumor models of extravasation. Nano Letts. 2012;12:3369–3377.
  • Kuznetsov YG, Malkin AJ, Lucas RW, et al. Imaging of viruses by atomic force microscopy. J Gen Virol. 2001;82(Part 9):2025–2034.
  • Pajer P, Dresler J, Kabíckova H, et al. Characterization of two historic smallpox specimens from a czech museum. Viruses. 2017;9(8):200.
  • Fontana D, Kratje R, Etcheverrigaray M, et al. Rabies virus-like particles expressed in HEK293 cells. Vaccine. 2014;32(24):2799–2804.
  • Dhillon TS, Dhillon EK, Toyama S, et al. Coliphage HK243: biological and physicochemical characteristics. Microbiol Immunol 1980;24(6):515–524.
  • Schipper ML, Iyer G, Koh AL, et al. Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small. 2009;5:126–134.
  • Aggarwal P, Hall JB, Mcleland CB, et al. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev. 2009;61:428–437.
  • Allen TM, Hansen C. Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim Biophys Acta. 1991;1068(2):133–141.
  • Wang Y, Yang T, Wang X, et al. Materializing sequential killing of tumor vasculature and tumor cells via targeted polymeric micelle system. J Control Release. 2011;149:299–306.
  • Sinha R, Kim GJ, Nie S, et al. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther. 2006;5(8):1909–1917.
  • Seow Y, Wood MJ. Biological gene delivery vehicles: beyond viral vectors. Mol Ther. 2009;17(5):767–777.
  • Shlomai A, Lubelsky Y, Har-Noy O, et al. The “trojan horse” model-delivery of anti-HBV small interfering RNAs by a recombinant HBV vector. Biochem Biophys Res Commun. 2009;390(3):619–623.
  • Fang CY, Tsai YD, Lin MC, et al. Inhibition of human bladder cancer growth by a suicide gene delivered by JC polyomavirus virus-like particles in a mouse model. J Urol. 2015;193:2100–2106.
  • Mertens J, Bondia P, Allende-Ballestero C, et al. Mechanics of virus-like particles labeled with green fluorescent protein. Biophys J. 2018;115(8):1561–1568.
  • Jennings GT, Bachmann MF. The coming of age of virus-like particle vaccines. Biol Chem. 2008;389(5):521–536.
  • Taylor KM, Lin T, Porta C, et al. Influence of three-dimensional structure on the immunogenicity of a peptide expressed on the surface of a plant virus. J Mol Recognit. 2000;13:71–82.
  • Abidin RS, Lua LH, Middelberg AP, et al. Insert engineering and solubility screening improves recovery of virus-like particle subunits displaying hydrophobic epitopes. Protein Sci. 2015;24:1820–1828.
  • Bendahmane M, Koo M, Karrer E, et al. Display of epitopes on the surface of tobacco mosaic virus: impact of charge and isoelectric point of the epitope on virus-host interactions. J Mol Biol. 1999;290(1):9–20.
  • Nassal M, Skamel C, Kratz PA, et al. A fusion product of the complete Borrelia burgdorferi outer surface protein A (OspA) and the hepatitis B virus capsid protein is highly immunogenic and induces protective immunity similar to that seen with an effective lipidated OspA vaccine formula. Eur J Immunol. 2005;35:655–665.
  • Carreira A, Menendez M, Reguera J, et al. In vitro disassembly of a parvovirus capsid and effect on capsid stability of heterologous peptide insertions in surface loops. J Biol Chem. 2004;279:6517–6525.
  • Zochowska M, Piguet AC, Jemielity J, et al. Virus-like particlemediated intracellular delivery of mRNA cap analog with in vivo activity against hepatocellular carcinoma. Nanomedicine. 2015;11:67–76.
  • Maurer P, Jennings GT, Willers J, et al. A therapeutic vaccine for nicotine dependence: preclinical efficacy, and phase I safety and immunogenicity. Eur J Immunol. 2005;35:2031–2040.
  • Kim CH, Axup JY, Schultz PG. Protein conjugation with genetically encoded unnatural amino acids. Curr Opin Chem Biol. 2013;17(3):412–419.
  • Gilis D, Massar S, Cerf NJ, et al. Optimality of the genetic code with respect to protein stability and amino-acid frequencies. Genome Biol. 2001;2(11):RESEARCH0049.
  • Douglas T, Strable E, Willits D, et al. Protein engineering of a viral cage for constrained nanomaterial synthesis. Adv Mater. 2002;14:415–418.
  • Tong R, Hemmati HD, Langer R, et al. Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J Am Chem Soc. 2012;134(21):8848–8855.
  • Lin M, Gao Y, Hornicek F, et al. Near-infrared light activated delivery platform for cancer therapy. Adv Colloid Interface Sci. 2015;226(Part B):123–137.
  • Liu J, Bu W, Pan L, et al. NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene modified mesoporous silica. Angew Chem Int Engl. 2013;52:4375–4379.
  • Cohen BA, Bergkvist M. Targeted in vitro photodynamic therapy via aptamer-labeled, porphyrin-loaded virus capsids. J Photochem Photobiol B. 2013;121:67–74.
  • Zhou Z, Bedwell GJ, Li R, et al. P22 virus-like particles constructed Au/CdS plasmonic photocatalytic nanostructures for enhanced photoactivity. Chem Commun (Camb). 2015;51:1062–1065.
  • Brasch M, de la Escosura A, Ma Y, et al. Encapsulation of phthalocyanine supramolecular stacks into virus-like particles. J Am Chem Soc. 2011;133:6878–6881.
  • Brasch M, Voets IK, Koay MS, et al. Phototriggered cargo release from virus-like assemblies. Faraday Discuss. 2013;166:47–57.
  • Rhee JK, Baksh M, Nycholat C, et al. Glycan-targeted virus-like nanoparticles for photodynamic therapy. Biomacromolecules. 2012;13:2333–2338.
  • Chou T. Stochastic entry of enveloped viruses: fusion versus endocytosis. Biophys J. 2007;93(4):1116–1123.
  • Ohtake N, Niikura K, Suzuki T, et al. Low pH-triggered model drug molecule release from virus-like particles. Chembiochem. 2010;11(7):959–962.
  • Dalmau M, Lim S, Wang SW. Design of a pH-dependent molecular switch in a caged protein platform. Nano Lett. 2009;9:160–166.
  • Wei B, Wei Y, Zhang K, et al. Development of an antisense RNA delivery system using conjugates of the MS2 bacteriophage capsids and HIV-1 TAT cell-penetrating peptide. Biomed Pharmacother. 2009;63:313–318.
  • Nigatu AS, Vupputuri S, Flynn N, et al. Effects of cell-penetrating peptides on transduction efficiency of PEGylated adenovirus. Biomed Pharmacother. 2015;71:153–160.
  • Dominska M, Dykxhoorn DM. Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci. 2010;123:1183–1189.
  • Powers KW, Brown SC, Krishna VB, et al. Research strategies for safety evaluation of nanomaterials. VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci. 2006;90(2):296–303.
  • Moghimi S, Hunter AC, Murray JC. Long-circulating target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53:283–318.
  • Bundy BC, Swartz JR. Efficient disulfide bond formation in virus-like particles. J Biotechnol. 2011;154(4):230–239.
  • Ashcroft AE, Lago H, Macedo JMB, et al. Engineering thermal stability in RNA phage capsids via disulphide bonds. J Nanosci Nanotechnol. 2005;5:2034–2041.
  • Farkas ME, Aanei IL, Behrens CR, et al. PET imaging and biodistribution of chemically modified bacteriophage MS2. Mol Pharm. 2013;10:69–76.
  • Singh P, Prasuhn D, Yeh RM, et al. Bio-distribution, toxicity and pathology of cowpea mosaic virus nanoparticles in vivo. J Control Release. 2007;120:41–50.
  • Kaiser CR, Flenniken ML, Gillitzer E, et al. Biodistribution studies of protein cage nanoparticles demonstrate broad tissue distribution and rapid clearance in vivo. Int J Nanomed. 2007;2:715–733.
  • Shukla S, Ablack AL, Wen AM, et al. Increased tumor homing and tissue penetration of the filamentous plant viral nanoparticle potato virus X. Mol Pharm. 2013;10:33–42.
  • O’Riordan CR, Lachapelle A, Delgado C, et al. PEGylation of adenovirus with retention of infectivity and protection from eutralizing antibody in vitro and in vivo. Hum Gene Ther. 1999;10:1349–1358.
  • Chillon M, Lee JH, Fasbender A, et al. Adenovirus complexed with polyethylene glycol and cationic lipid is shielded from neutralizing antibodies in vitro. Gene Ther. 1998;5:995–1002.
  • Raja KS, Wang Q, Gonzalez MJ, et al. Hybrid virus-polymer materials. 1. Synthesis and properties of PEG-decorated cowpea mosaic virus. Biomacro-molecules. 2003;4:472–476.
  • Lee KL, Shukla S, Wu M, et al. Stealth filaments: polymer chain length and conformation affect the in vivo fate of PEGylated potato virus X. Acta Biomater. 2015;19:166–179.
  • Steinmetz NF. Viral nanoparticles as platforms for next-generation therapeutics and imaging devices. Nanomedicine. 2010;6:634–641.
  • Steinmetz NF, Manchester M. PEGylated viral nanoparticles for biomedicine: the impact of PEG chain length on VNP cell interactions in vitro and ex vivo. Biomacromolecules. 2009;10:784–792.
  • Wongpinyochit T, Uhlmann P, Urquhart AJ, et al. PEGylated silk nanoparticles for anticancer drug delivery. Biomacromolecules. 2015;16(11):3712–3722.
  • Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev. 2003;55(3):403–419.
  • Cu Y, Saltzman WM. Drug delivery: stealth particles give mucus the slip. Nat Mater. 2009;8:11–13.
  • Knop K, Hoogenboom R, Fischer D, et al. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed. 2010;49:6288–6308.
  • Harris JM, Martin NE, Modi M. Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet. Clin Pharmacokinet. 2001;40(7):539–551.
  • Perry JL, Reuter KG, Kai MP, et al. PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 2012;12:5304–5310.
  • Oldenborg PA, Zheleznyak A, Fang YF, et al. Role of CD47 as a marker of self on red blood cells. Science. 2000;288(5473):2051–2054.
  • Rodriguez PL, Harada T, Christian DA, et al. Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science. 2013;339:971–975.
  • Manchester M, Singh P. Virus-based nanoparticles (VNPs): platform technologies for diagnostic imaging. Adv Drug Deliv Rev. 2006;58:1505–1522.
  • Kickhoefer VA, Garcia Y, Mikyas Y, et al. Engineering of vault nanocapsules with enzymatic and fluorescent properties. Proc Natl Acad Sci USA. 2005;102:4348–4352.
  • Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14(10):1014–1022.
  • Lebel MÈ, Langlois MP, Daudelin JF, et al. Complement component 3 regulates IFN-α production by plasmacytoid dendritic cells following TLR7 activation by a plant virus-like nanoparticle. J Immunol. 2017;198:292–299.
  • Wang C, Fernández de Ávila BE, Mundaca-Uribe R, et al. Active delivery of VLPs promotes anti-tumor activity in a mouse ovarian tumor model. Small. 2020;16(20):e1907150.
  • Lewis PE, Poteet EC, Liu D, et al. CTLA-4 blockade, during HIV virus-like particles immunization, alters HIV-specific B-cell responses. Vaccines. 2020;8:284.
  • Shu C, Sun P, Xie H, et al. Ma Y.Virus-like particles presenting the FGF-2 protein or identified antigenic peptides promoted antitumor immune responses in mice. Int J Nanomed. 2020;15:1983–1996.
  • Hoopes PJ, Wagner RJ, Duval K, et al. Treatment of canine oral melanoma with nanotechnology-based immunotherapy and radiation. Mol Pharmaceutics. 2018;15:3717–3722.
  • Cheng K, Du T, Li Y, et al. Dual-antigen-loaded hepatitis B virus core antigen virus-like particles stimulate efficient immunotherapy against melanoma. ACS Appl Mater Interfaces. 2020;12:53682–53690.
  • Eriksson F, Tsagozis P, Lundberg K, et al. Tumor-specific bacteriophages induce tumor destruction through activation of tumor-associated macrophages. J Immunol. 2009;182:3105–3111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.