149
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Screening and characterisation of a novel efficient tumour cell-targeting peptide derived from insulin-like growth factor binding proteins

, , , ORCID Icon & ORCID Icon
Pages 500-510 | Received 18 Oct 2022, Accepted 16 Jan 2023, Published online: 05 Apr 2023

References

  • Guan LY, Lu Y. New developments in molecular targeted therapy of ovarian cancer[J]. Discovery Med. 2018;26(144):219–229.
  • Lee YT, Tan YJ, Oon CE. Molecular targeted therapy: treating cancer with specificity[J]. Eur J Pharmacol. 2018;834:188–196.
  • Van Den Bulk J, Verdegaal EM, De Miranda NF. Cancer immunotherapy: broadening the scope of targetable tumours[J]. Open Biol. 2018;8(6):180037–180047.
  • Soudy R, Byeon N, Raghuwanshi Y, et al. Engineered peptides for applications in Cancer-Targeted drug delivery and tumor detection[J]. Mini Review Med Chem. 2017;17(18):1696–1712.
  • Holly JM, Perks CM. Insulin-like growth factor physiology: what we have learned from human studies[J]. Endocrinol Metab Clin North Am. 2012;41(2):249–263. v.
  • Hwa V, Oh Y, Rosenfeld RG. The insulin-like growth factor-binding protein (IGFBP) superfamily[J]. Endocr Rev. 1999;20(6):761–787.
  • Pollak M. Insulin, insulin-like growth factors and neoplasia[J]. Best Pract Res Clin Endocrinol Metab. 2008;22(4):625–638.
  • Bach LA. IGF-binding proteins[J]. J Mol Endocrinol. 2018;61(1):T11–T28.
  • Takeuchi K, Ito F. Receptor tyrosine kinases and targeted cancer therapeutics[J]. Biol Pharm Bull. 2011;34(12):1774–1780.
  • Renehan AG, Zwahlen M, Minder C, et al. Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis[J]. Lancet. 2004;363(9418):1346–1353.
  • Duan C, Ren H, Gao S. Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins: roles in skeletal muscle growth and differentiation[J]. Gen Comp Endocrinol. 2010;167(3):344–351.
  • Clemmons DR, Busby WH, Arai T, et al. Role of insulin-like growth factor binding proteins in the control of IGF actions[J]. Prog Growth Factor Res. 1995;6(2–4):357–366.
  • Firth SM, Baxter RC. Cellular actions of the insulin-like growth factor binding proteins[J]. Endocr Rev. 2002;23(6):824–854.
  • Oh Y, Muller HL, Zhang H, et al. Synthesis and characterization of IGF-II analogs: applications in the evaluation of IGF receptor function and IGF-independent actions of IGFBPs[J]. Adv Exp Med Biol. 1993;343:41–54.
  • Duan C, Xu Q. Roles of insulin-like growth factor (IGF) binding proteins in regulating IGF actions[J]. Gen Comp Endocrinol. 2005;142(1–2):44–52.
  • Upton Z, Chan SJ, Steiner DF, et al. Evolution of insulin-like growth factor binding proteins[J]. Growth Regul. 1993;3(1):29–32.
  • Daza DO, Sundstrom G, Bergqvist CA, et al. Evolution of the insulin-like growth factor binding protein (IGFBP) family[J]. Endocrinology. 2011;152(6):2278–2289.
  • Forbes BE, Mccarthy P, Norton RS. Insulin-like growth factor binding proteins: a structural perspective[J]. Front Endocrinol (Lausanne). 2012;3:1–13.
  • Allard JB, Duan C. IGF-Binding proteins: why do they exist and why are there so many?[J]. Front Endocrinol (Lausanne). 2018;9:117–129.
  • Siwanowicz I, Popowicz GM, Wisniewska M, et al. Structural basis for the regulation of insulin-like growth factors by IGF binding proteins[J]. Structure. 2005;13(1):155–167.
  • Bunn RC, Fowlkes JL. Insulin-like growth factor binding protein proteolysis[J]. Trends Endocrinol Metab. 2003;14(4):176–181.
  • Xu Q, Yan B, Li S, et al. Fibronectin binds insulin-like growth factor-binding protein 5 and abolishes its ligand-dependent action on cell migration[J]. J Biol Chem. 2004;279(6):4269–4277.
  • Clemmons DR. Use of mutagenesis to probe IGF-binding protein structure/function relationships[J]. Endocr Rev. 2001;22(6):800–817.
  • Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions[J]. Endocr Rev. 1995;16(1):3–34.
  • Rajaram S, Baylink DJ, Mohan S. Insulin-like growth factor-binding proteins in serum and other biological fluids: regulation and functions[J]. Endocr Rev. 1997;18(6):801–831.
  • Leong SR, Baxter RC, Camerato T, et al. Structure and functional expression of the acid-labile subunit of the insulin-like growth factor-binding protein complex[J]. Mol Endocrinol. 1992;6(6):870–876.
  • Guler HP, Zapf J, Schmid C, et al. Insulin-like growth factors I and II in healthy man. Estimations of half-lives and ­production rates[J]. Acta Endocrinol (Copenh. 1989;121(6):753–758.),
  • Kallapur SG, Akeson RA. The neural cell adhesion molecule (NCAM) heparin binding domain binds to cell surface ­heparan sulfate proteoglycans[J]. J Neurosci Res. 1992;33(4):538–548.
  • Choi YJ, Lee JY, Park JH, et al. The identification of a heparin binding domain peptide from bone morphogenetic protein-4 and its role on osteogenesis[J]. Biomaterials. 2010;31(28):7226–7238.
  • Russo VC, Schutt BS, Andaloro E, et al. Insulin-like growth factor binding protein-2 binding to extracellular matrix plays a critical role in neuroblastoma cell proliferation, migration, and invasion[J]. Endocrinology. 2005;146(10):4445–4455.
  • Sureshbabu A, Okajima H, Yamanaka D, et al. IGFBP5 induces cell adhesion, increases cell survival and inhibits cell migration in MCF-7 human breast cancer cells[J]. J Cell Sci. 2012;125(Pt 7):1693–1705.
  • Hwang JR, Cho YJ, Lee Y, et al. The C-terminus of IGFBP-5 suppresses tumor growth by inhibiting angiogenesis[J]. Sci Rep. 2016;6:39334.
  • Zhao J, Gao P, Xiao W, et al. A novel human derived cell-penetrating peptide in drug delivery[J]. Mol Biol Rep. 2011;38(4):2649–2656.
  • Schedlich LJ, Le Page SL, Firth SM, et al. Nuclear import of insulin-like growth factor-binding protein-3 and -5 is mediated by the importin beta subunit[J]. J Biol Chem. 2000;275(31):23462–23470.
  • Xu Q, Li S, Zhao Y, et al. Evidence that IGF binding protein-5 functions as a ligand-independent transcriptional regulator in vascular smooth muscle cells[J]. Circ Res. 2004;94(5):E46–E54.
  • Li M, Li X, Li JC. Possible mechanisms of trichosanthin-induced apoptosis of tumor cells[J]. Anatomical Record (Hoboken). 2010;293(6):986–992.
  • Wang Y, Mi SL, Lou MY, et al. Enhanced green fluorescence protein tracks trichosanthin in human choriocarcinoma cells as a feasible and stable reporter[J]. Frontier Biosci. 2005;10:2279–2284.
  • Wang P, Chen LL, Yan H, et al. Trichosanthin suppresses HeLa cell proliferation through inhibition of the PKC/MAPK signaling pathway[J]. Cell Biol Toxicol. 2009;25(5):479–488.
  • He DX, Tam SC. Trichosanthin affects HSV-1 replication in hep-2 cells[J]. Biochem Biophys Res Commun. 2010;402(4):670–675.
  • Jauset T, Beaulieu ME. Bioactive cell penetrating peptides and proteins in cancer: a bright future ahead[J]. Curr Opin Pharmacol. 2019;47:133–140.
  • Fang EF, Zhang CZ, Zhang L, et al. Trichosanthin inhibits breast cancer cell proliferation in both cell lines and nude mice by promotion of apoptosis[J]. PLoS One. 2012;7(9):41592–41603.
  • Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2009[J]. CA: A Cancer J Clinician. 2009;59(4):225–249.
  • Sivashankari PR, Prabaharan M. Peptides to target tumor vasculature and lymphatics for improved anti-Angiogenesis therapy[J]. Current Cancer Drug Target. 2016;16(6):522–535.
  • Brown KC. Peptidic tumor targeting agents: the road from phage display peptide selections to clinical applications[J]. Curr Pharm Des. 2010;16(9):1040–1054.
  • Cheetham AG, Keith D, Zhang P, et al. Targeting tumors with small molecule peptides[J]. Current Cancer Drug Target. 2016;16(6):489–508.
  • Hoppenz P, Els-Heindl S, Beck-Sickinger AG. Peptide-Drug conjugates and their targets in advanced cancer therapies[J]. Front Chem. 2020;8:571–595.
  • Lamberts SWJ, Hofland LJ. Anniversary review: octreotide, 40 years later[J]. Eur J Endocrinol. 2019;181(5):R173–R183.
  • Nieberler M, Reuning U, Reichart F, et al. Exploring the role of RGD-Recognizing integrins in cancer[J]. Cancers (Basel). 2017;(9(9):116–149.
  • Laakkonen P, Porkka K, Hoffman JA, et al. A tumor-homing peptide with a targeting specificity related to lymphatic vessels[J]. Nat Med. 2002;8(7):751–755.
  • Mitchem JB, Brennan DJ, Knolhoff BL, et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses[J]. Cancer Res. 2013;73(3):1128–1141.
  • Majeed N, Blouin MJ, Kaplan-Lefko PJ, et al. A germ line mutation that delays prostate cancer progression and prolongs survival in a murine prostate cancer model[J]. Oncogene. 2005;24(29):4736–4740.
  • Rowlands MA, Holly JM, Gunnell D, et al. Circulating insulin-like growth factors and IGF-binding proteins in PSA-detected prostate cancer: the large case-control study ProtecT[J]. Cancer Res. 2012;72(2):503–515.
  • Luo Z, Cao XW, Li C, et al. The heparin-binding domain of HB-EGF as an efficient cell-penetrating peptide for drug delivery[J]. J Pept Sci. 2016;22(11–12):689–699.
  • Zhang R, Yang XZ, Wang JW, et al. Evaluating the translocation properties of a new nuclear targeted penetrating peptide using two fluorescent markers[J]. J Drug Targeting. 2015;23(5):444–452.
  • Azar WJ, Zivkovic S, Werther GA, et al. IGFBP-2 nuclear translocation is mediated by a functional NLS sequence and is essential for its pro-tumorigenic actions in cancer cells[J]. Oncogene. 2014;33(5):578–588.
  • Iosef C, Gkourasas T, Jia CY, et al. A functional nuclear localization signal in insulin-like growth factor binding protein-6 mediates its nuclear import[J]. Endocrinology. 2008;149(3):1214–1226.
  • Iosef C, Vilk G, Gkourasas T, et al. Insulin-like growth factor binding protein-6 (IGFBP-6) interacts with DNA-end binding protein Ku80 to regulate cell fate[J]. Cell Signal. 2010;22(7):1033–1043.
  • Su Y, Nishimoto T, Feghali-Bostwick C. IGFBP-5 promotes fibrosis independently of its translocation to the nucleus and its interaction with nucleolin and IGF[J]. PLoS One. 2015;10(6):e0130546–e0130560.
  • Firth SM, Ganeshprasad U, Baxter RC. Structural determinants of ligand and cell surface binding of insulin-like growth factor-binding protein-3[J]. J Biol Chem. 1998;273(5):2632631–2631638.
  • Radulescu RT. Nuclear localization signal in insulin-like growth factor-binding protein type 3[J]. Trends Biochem Sci. 1994;19(7):278.
  • Liu D, Zhang X, Gao J, et al. Core functional sequence of C-terminal GAG-binding domain directs cellular uptake of IGFBP-3-derived peptides[J]. Protein Pept Lett. 2014;21(2):124–131.
  • Li W, Fawcett J, Widmer HR, et al. Nuclear transport of insulin-like growth factor-I and insulin-like growth factor binding protein-3 in opossum kidney cells[J]. Endocrinology. 1997;138(4):1763–1766.
  • Schedlich LJ, Young TF, Firth SM, et al. Insulin-like growth factor-binding protein (IGFBP)-3 and IGFBP-5 share a common nuclear transport pathway in T47D human breast carcinoma cells[J]. J Biol Chem. 1998;273(29):18347–18352.
  • Bitoque DB, Morais J, Oliveira AV, et al. Human-derived NLS enhance the gene transfer efficiency of chitosan[J]. Biosci Rep. 2021;41(1):BSR20201026–BSR20201041.
  • Baxter RC. IGF binding proteins in cancer: mechanistic and clinical insights[J]. Nat Rev Cancer. 2014;14(5):329–341.
  • Teesalu T, Sugahara KN, Kotamraju VR, et al. C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration[J]. Proc Natl Acad Sci U S A. 2009;106(38):16157–16162.
  • Christianson HC, Belting M. Heparan sulfate proteoglycan as a cell-surface endocytosis receptor[J]. Matrix Biol. 2014;35:51–55.
  • Yuan P, Zhang H, Cai C, et al. Chondroitin sulfate proteoglycan 4 functions as the cellular receptor for Clostridium difficile toxin B[J]. Cell Res. 2015;25(2):157–168.
  • Maeda N, Ishii M, Nishimura K, et al. Functions of chondroitin sulfate and heparan sulfate in the developing brain[J]. Neurochem Res. 2011;36(7):1228–1240.
  • Tumova S, Woods A, Couchman JR. Heparan sulfate ­proteoglycans on the cell surface: versatile coordinators of cellular functions[J]. Int J Biochem Cell Biol. 2000;32(3):269–288.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.