249
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Recent advancement on albumin nanoparticles in treating lung carcinoma

, , , , , , , & show all
Pages 486-499 | Received 01 Dec 2022, Accepted 25 Mar 2023, Published online: 03 May 2023

References

  • Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: an overview. Int J Cancer. 2021;149(4):778–789.
  • Soni N, Soni N, Pandey H, et al. Augmented delivery of gemcitabine in lung cancer cells exploring mannose ­anchored solid lipid nanoparticles. J Colloid Interface Sci. 2016;481:107–116.
  • Choudhury H, Pandey M, Gorain B, et al. Nanoemulsions as effective carriers for the treatment of lung cancer. In: Nanotechnology-based targeted drug delivery systems for lung cancer. USA: Elsevier; 2019. p. 217–47; [cited 2019 May 13]. Available from: https://www.sciencedirect.com/science/article/pii/B9780128157206000095.
  • Pulmonary enteric adenocarcinoma: a study of the clinicopathologic and molecular status of nine cases. DOI:10.1016/B978-0-12-815720-6.00007-1
  • Gorain B, Choudhury H, Pandey M, et al. Dendrimer-based nanocarriers in lung cancer therapy. In: Nanotechnology-based targeted drug delivery systems for lung cancer. Amsterdam: Elsevier; 2019. p. 161–192.
  • Gorain B, Bhattamishra SK, Choudhury H, et al. Overexpressed receptors and proteins in lung cancer. In: Nanotechnology-based targeted drug delivery systems for lung cancer. Alexandria (VA): Elsevier; 2019. p. 39–75; [cited 2019 May 13]. Available from: https://www.sciencedirect.com/science/article/pii/B9780128157206000034.
  • Subramanian J, Govindan R. Lung cancer in never smokers: a review. J Clin Oncol. 2007;25(5):561–570.
  • Arora V, Abourehab MAS, Modi G, et al. Dendrimers as prospective nanocarrier for targeted delivery against lung cancer. Eur Polym J. 2022;180:111635.
  • Kalemkerian GP, Akerley W, Bogner P, et al. Small cell lung cancer: clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2013;11(1):78–98.
  • Ju C, Mo R, Xue J, et al. Sequential intra-intercellular nanoparticle delivery system for deep tumor penetration. Angew Chem Int Ed Engl. 2014;53(24):6253–6258.
  • Song P, Kuang S, Panwar N, et al. A self-powered implantable drug-delivery system using biokinetic energy. Adv Mater. 2017;29(11):1605668.
  • Luo Z, Ding X, Hu Y, et al. Engineering a hollow nanocontainer platform with multifunctional molecular machines for tumor-targeted therapy in vitro and in vivo. ACS Nano. 2013;7(11):10271–10284.
  • Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008;132(3):171–183.
  • Lei C, Liu XR, Chen QB, et al. Hyaluronic acid and albumin based nanoparticles for drug delivery. J Control Release. 2021;331:416–433.
  • Aljabali AAA, Bakshi HA, Hakkim FL, et al. Albumin nano-encapsulation of piceatannol enhances its anticancer potential in Colon cancer via downregulation of nuclear p65 and HIF-1α. Cancers (Basel). 2020;12(1):113.
  • Gawde KA, Kesharwani P, Sau S, et al. Synthesis and characterization of folate decorated albumin bio-conjugate nanoparticles loaded with a synthetic curcumin difluorinated analogue. J Colloid Interface Sci. 2017;496:290–299.
  • Kesharwani P, Jain A, Jain A, et al. Cationic bovine serum albumin (CBA) conjugated poly lactic-: co-glycolic acid (PLGA) nanoparticles for extended delivery of methotrexate into brain tumors. RSC Adv. 2016;6(92):89040–89050.
  • Zeeshan F, Madheswaran T, Panneerselvam J, et al. Human serum albumin as multifunctional nanocarrier for cancer therapy. J Pharm Sci. 2021;110:3111–3117 [cited 2021 May 18]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022354921002458.
  • Chen B, He XY, Yi XQ, et al. Dual-peptide-functionalized albumin-based nanoparticles with ph-dependent self-assembly behavior for drug delivery. ACS Appl Mater Interfaces. 2015;7(28):15148–15153.
  • Li F, Zhao Y, Mao C, et al. RGD-modified albumin nanoconjugates for targeted delivery of a porphyrin photosensitizer. Mol Pharm. 2017;14(8):2793–2804.
  • Shen Z, Li Y, Kohama K, et al. Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres. Pharmacol Res. 2011;63(1):51–58.
  • M H, Azzazy E, Christenson RH. All about albumin: biochemistry, genetics, and medical applications. Theodore Peters, Jr. San Diego, CA: Academic Press, 1996, 432 pp, $85.00. ISBN 0-12-552110-3. Clin Chem. 1997;43(10):2014a–2015.
  • De Simone G, Di Masi A, Ascenzi P. Serum albumin: a multifaced enzyme. Int J Mol Sci. 2021;22(18).
  • Aljabali A AA, A. Bakshi H, L. Hakkim F, et al. Albumin Nano-Encapsulation of piceatannol enhances its anticancer potential in Colon cancer via downregulation of nuclear p65 and HIF-1α. Cancers (Basel) [Internet]. 2020;12(1):113; [cited 2020 Feb 19]. Available from: https://www.mdpi.com/2072-6694/12/1/113
  • Karimi M, Bahrami S, Ravari SB, et al. Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Deliv. 2016;13(11):1609–1623.
  • Yang R, An YL, Miao FQ, et al. Preparation of folic acid-conjugated, doxorubicin-loaded, magnetic bovine serum albumin nanospheres and their antitumor effects in vitro and in vivo. Int J Nanomedicine. 2014;9:4231–4243.
  • Ooya T, Haraguchi I. Catechin-Albumin conjugates: enhanced antioxidant capacity and anticancer effects. Int J Food Sci. 2022;2022:1596687.
  • An FF, Zhang XH. Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Theranostics. 2017;7(15):3667–3689.
  • Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release. 2012;157(2):168–182.
  • Mohanty JS, Xavier PL, Chaudhari K, et al. Luminescent, bimetallic AuAg alloy quantum clusters in protein templates. Nanoscale. 2012;4(14):4255–4262.
  • Tada D, Tanabe T, Tachibana A, et al. Drug release from hydrogel containing albumin as crosslinker. J Biosci Bioeng. 2005;100(5):551–555.
  • Mehta A, Dalle Vedove E, Isert L, et al. Targeting KRAS mutant lung cancer cells with siRNA-Loaded bovine serum albumin nanoparticles. Pharm Res. 2019;36(9).
  • Han J, Wang Q, Zhang Z, et al. Cationic bovine serum albumin based self-assembled nanoparticles as siRNA delivery vector for treating lung metastatic cancer. Small. 2014;10(3):524–535.
  • Wang Y, Chen S, Yang X, et al. Preparation optimization of bovine serum albumin nanoparticles and its application for siRNA delivery. Drug Des Devel Ther. 2021;15:1531–1547.
  • Jin G, Jin M, Yin X, et al. A comparative study on the effect of docetaxel-albumin nanoparticles and docetaxel-loaded PEG-albumin nanoparticles against non-small cell lung cancer. Int J Oncol. 2015;47(5):1945–1953.
  • Zhang L, Liu Z, Yang K, et al. Tumor progression of Non-Small cell lung cancer controlled by albumin and micellar nanoparticles of itraconazole, a multitarget angiogenesis inhibitor. Mol Pharm. 2017;14(12):4705–4713.
  • Ming H, Fang L, Gao J, et al. Antitumor effect of nanoparticle 131I-Labeled Arginine-Glycine-Aspartate-Bovine serum Albumin-Polycaprolactone in lung cancer. AJR Am J Roentgenol. 2017;208(5):1116–1126.
  • Kim B, Seo B, Park S, et al. Albumin nanoparticles with synergistic antitumor efficacy against metastatic lung cancers. Colloids Surf B Biointerfaces. 2017;158:157–166.
  • Vaidya B, Kulkarni NS, Shukla SK, et al. Development of inhalable quinacrine loaded bovine serum albumin modified cationic nanoparticles: repurposing quinacrine for lung cancer therapeutics. Int J Pharm. 2020;577.
  • Sabzichi M, Mohammadian J, Asare-Addo K, et al. Surface functionalization of lipidic core nanoparticles with albumin: a great opportunity for quinacrine in lung cancer therapy. J Drug Deliv Sci Technol. 2022;75:103632.
  • Wen Q, Zhang Y, Muluh TA, et al. Erythrocyte membrane-camouflaged gefitinib/albumin nanoparticles for tumor imaging and targeted therapy against lung cancer. Int J Biol Macromol. 2021;193(Pt A):228–237.
  • Aziz A, Sefidbakht Y, Rezaei S, et al. Doxorubicin-loaded, pH-sensitive albumin nanoparticles for lung cancer cell targeting. J Pharm Sci. 2022;111(4):1187–1196.
  • Zu Y, Hu Y, Yu X, et al. Docetaxel-loaded bovine serum albumin nanoparticles conjugated docosahexaenoic acid for inhibiting lung cancer metastasis to bone. Anticancer Agents Med Chem. 2017;17(4):542–551.
  • Melguizo C, Cabeza L, Prados J, et al. Enhanced antitumoral activity of doxorubicin against lung cancer cells using biodegradable poly(butylcyanoacrylate) nanoparticles. Drug Des Devel Ther. 2015;9:6433–6444.
  • Zhou Y, Yu QF, Peng AF, et al. The risk factors of bone metastases in patients with lung cancer. Sci Rep. 2017;7(1):1–6.
  • Hirose M, Tachibana A, Tanabe T. Recombinant human serum albumin hydrogel as a novel drug delivery vehicle. Mater Sci Eng C. 2010;30(5):664–669.
  • Kouchakzadeh H, Shojaosadati SA, Shokri F. Efficient loading and entrapment of tamoxifen in human serum albumin based nanoparticulate delivery system by a modified desolvation technique. Chem Eng Res Des. 2014;92(9):1681–1692.
  • Pignatta S, Orienti I, Falconi M, et al. Albumin nanocapsules containing fenretinide: pre-clinical evaluation of cytotoxic activity in experimental models of human non-small cell lung cancer. Nanomedicine. 2015;11(2):263–273.
  • Choi SH, Byeon HJ, Choi JS, et al. Inhalable self-assembled albumin nanoparticles for treating drug-resistant lung cancer. J Control Release. 2015;197:199–207.
  • Gao Y, Che X, Zheng C, et al. Effect of an albumin-coated mesoporous silicon nanoparticle platform for paclitaxel delivery in human lung cancer cell line A549. J Nanomater. 2016;2016:1–9.
  • Guo H, Fei S, Zhang Y, et al. Teniposide-loaded multilayer modified albumin nanoparticles with increased passive delivery to the lung. RSC Adv. 2016;6(84):81110–81119.
  • Zhang Y, Yang Z, Tan X, et al. Development of a more efficient Albumin-Based delivery system for gambogic acid with low toxicity for lung cancer therapy. AAPS PharmSciTech. 2017;18(6):1987–1997.
  • Elgohary MM, Helmy MW, Mortada SM, et al. Dual-targeted nano-in-nano albumin carriers enhance the efficacy of combined chemo/herbal therapy of lung cancer. Nanomedicine (Lond). 2018;13(17):2221–2224.
  • Shen Y, Li W. HA/HSA co-modified erlotinib–albumin nanoparticles for lung cancer treatment. Drug Des Devel Ther. 2018;12:2285–2292.
  • Qu N, Sun Y, Li Y, et al. Docetaxel-loaded human serum albumin (HSA) nanoparticles: synthesis, characterization, and evaluation. Biomed Eng Online. 2019;18(1):11; [cited 2020 Jul 17]. Available from: https://pubmed.ncbi.nlm.nih.gov/30704488/
  • Pang X, Yang P, Wang L, et al. Human serum albumin nanoparticulate system with encapsulation of gefitinib for enhanced anti-tumor effects in non-small cell lung cancer. J Drug Deliv Sci Technol. 2019;52:997–1007.
  • Zhu X, Zhang H, Lin Y, et al. Mechanisms of gambogic acid-induced apoptosis in non-small cell lung cancer cells in relation to transferrin receptors. J Chemother. 2009;21(6):666–672.
  • Qi Q, You Q, Gu H, et al. Studies on the toxicity of gambogic acid in rats. J Ethnopharmacol. 2008;117(3):433–438.
  • Hao K, Liu XQ, Wang GJ, et al. Pharmacokinetics, tissue distribution and excretion of gambogic acid in rats. Eur J Drug Metab Pharmacokinet. 2007;32(2):63–68.
  • Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog Polym Sci. 2014;39(2):268–307.
  • Jain K, Kesharwani P, Gupta U, et al. A review of glycosylated carriers for drug delivery. Biomaterials. 2012;33(16):4166–4186.
  • Kesharwani P, Banerjee S, Gupta U, et al. PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Vol. 18, Materials today. Amsterdam: Elsevier; 2015. p. 565–572.
  • Kesharwani P, Tekade RK, Jain NK. Generation dependent cancer targeting potential of poly(propyleneimine) dendrimer. Biomaterials. 2014;35(21):5539–5548.
  • Kesharwani P, Choudhury H, Meher JG, et al. Dendrimer-entrapped gold nanoparticles as promising nanocarriers for anticancer therapeutics and imaging. In: Progress in materials science. Vol. 103. Amsterdam: Elsevier Ltd; 2019. p. 484–508.
  • Mishra V, Kesharwani P. Dendrimer technologies for brain tumor. Drug Discov Today. 2016;21(5):766–778; [cited 2016 May 27]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26891979
  • Tekade RK, Tekade M, Kesharwani P, et al. RNAi-combined nano-chemotherapeutics to tackle resistant tumors. Drug Discov Today. 2016;21:1761–1774.
  • Surekha B, Kommana NS, Dubey SK, et al. PAMAM dendrimer as a talented multifunctional biomimetic nanocarrier for cancer diagnosis and therapy. Colloids Surf B Biointerfaces. 2021;204:111837; [cited 2021 May 18]. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0927776521002812
  • Singh V, Sahebkar A, Kesharwani P. Poly (propylene imine) dendrimer as an emerging polymeric nanocarrier for anticancer drug and gene delivery. Eur Polym J [Internet]. 2021;158:110683; [cited 2021 Aug 23]. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0014305721004171
  • Kesharwani P, Tekade RK, Jain NK. Dendrimer generational nomenclature: the need to harmonize. Drug Discov Today [Internet]. 2015;20:497–499 [cited 2015 Apr 15]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25578746
  • Song JM, Molla K, Anandharaj A, et al. Triptolide suppresses the in vitro and in vivo growth of lung cancer cells by targeting hyaluronan-CD44/RHAMM signaling. Oncotarget. 2017;8(16):26927–26940.
  • Nurwidya F, Takahashi F, Kato M, et al. CD44 silencing decreases the expression of stem cell-related factors induced by transforming growth factor β1 and tumor necrosis factor α in lung cancer: preliminary findings. Bosn J Basic Med Sci. 2017;17(3):228.
  • Stinchcombe TE, Socinski MA, Lee CB, et al. Phase I trial of nanoparticle albumin-bound paclitaxel in combination with gemcitabine in patients with thoracic malignancies. J Thorac Oncol. 2008;3(5):521–526.
  • Grilley-Olson JE, Keedy VL, Sandler A, et al. A randomized phase II study of carboplatin with weekly or every-3-week nanoparticle albumin-bound paclitaxel (abraxane) in patients with extensive-stage small cell lung cancer. Oncologist. 2015;20(2):105–106.
  • Okuma Y, Hosomi Y, Takahashi S, et al. A phase II study of nanoparticle albumin-bound paclitaxel plus carboplatin as the first-line therapy in elderly patients with previously untreated advanced non-small cell lung cancer. Cancer Chemother Pharmacol. 2016;78(2):383–388.
  • Shiroyama T, Tamiya M, Minami S, et al. Carboplatin plus weekly nanoparticle albumin-bound paclitaxel in elderly patients with previously untreated advanced squamous non-small-cell lung cancer selected based on mini nutritional assessment short-form scores: a multicenter phase 2 study. Cancer Chemother Pharmacol. 2017;80(3):461–467.
  • Morgensztern D, Cobo M, Ponce Aix S, et al. ABOUND.2L+: a randomized phase 2 study of nanoparticle albumin-bound paclitaxel with or without CC-486 as second-line treatment for advanced nonsquamous non-small cell lung cancer (NSCLC). Cancer. 2018;124(24):4667–4675.
  • Kato Y, Okuma Y, Watanabe K, et al. A single-arm phase II trial of weekly nanoparticle albumin-bound paclitaxel (nab-paclitaxel) monotherapy after standard of chemotherapy for previously treated advanced non-small cell lung cancer. Cancer Chemother Pharmacol. 2019;84(2):351–358.
  • Shoji S, Miura S, Watanabe S, et al. Phase II study of nanoparticle albumin-bound paclitaxel monotherapy for relapsed non-small cell lung cancer with patient-reported outcomes (NLCTG1302). Transl Lung Cancer Res. 2022;11(7):1359–1368.
  • Reynolds C, Barrera D, Jotte R, et al. Phase II trial of nanoparticle albumin-bound paclitaxel, carboplatin, and bevacizumab in first-line patients with advanced nonsquamous non-small cell lung cancer. J Thorac Oncol. 2009;4(12):1537–1543.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.