255
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Octreotide and Octreotide-derived delivery systems

, , , &
Pages 569-584 | Received 15 Feb 2023, Accepted 29 Apr 2023, Published online: 23 May 2023

References

  • Harris AG. Somatostatin and somatostatin analogues: pharmacokinetics and pharmacodynamic effects. Gut. 1994;35(3 Suppl):S1–S4.
  • Gomes-Porras M, Cárdenas-Salas J, Álvarez-Escolá C. Somatostatin analogs in clinical practice: a review. IJMS. 2020;21(5):1682.
  • Desai H, Borges-Neto S, Wong TZ. Molecular imaging and therapy for neuroendocrine tumors. Curr Treat Option On. 2019;20(10):78.
  • Bauer W, Briner U, Doepfner W, et al. SMS 201-995: a very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci. 1982;31(11):1133–1140.
  • Pyronnet S, Bousquet C, Najib S, et al. Antitumor effects of somatostatin. Mol Cell Endocrinol. 2008;286(1-2):230–237.
  • Robbins RJ. Somatostatin and cancer. Metabolism. 1996;45(8 Suppl 1):98–100.
  • Boehm BO. The therapeutic potential of somatostatin receptor ligands in the treatment of obesity and diabetes. Expert Opin Investig Drugs. 2003;12(9):1501–1509.
  • Chan MM, Chan MM, Mengshol JA, et al. Octreotide: a drug often used in the critical care setting but not well understood. Chest. 2013;144(6):1937–1945.
  • Hofland LJ, Lamberts SW. The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocr Rev. 2003;24(1):28–47.
  • Lamberts SWJ, Hofland LJ. ANNIVERSARY REVIEW: octreotide, 40 years later. Eur J Endocrinol. 2019;181(5):R173–r183.
  • Tsukamoto N, Nagaya T, Kuwayama A, et al. Octreotide treatment results in the inhibition of GH gene expression in the adenoma of the patients with acromegaly. Endocr J. 1994;41(4):437–444.
  • Asa SL, Felix I, Kovacs K, et al. Effects of somatostatin on somatotroph adenomas of the human pituitary: an in vitro functional and morphological study. Endocr Pathol. 1990;1(4):228–235.
  • Childs A, Vesely C, Ensell L, et al. Expression of somatostatin receptors 2 and 5 in circulating tumour cells from patients with neuroendocrine tumours. Br J Cancer. 2016;115(12):1540–1547.
  • Ferrante E, Pellegrini C, Bondioni S, et al. Octreotide promotes apoptosis in human somatotroph tumor cells by activating somatostatin receptor type 2. Endocr Relat Cancer. 2006;13(3):955–962.
  • Pagès P, Benali N, Saint-Laurent N, et al. sst2 somatostatin receptor mediates cell cycle arrest and induction of p27(Kip1). evidence for the role of SHP-1. J Biol Chem. 1999;274(21):15186–15193.
  • Pusceddu S, Prinzi N, Raimondi A, et al. Entering the third decade of experience with octreotide LAR in neuroendocrine tumors: a review of current knowledge. Tumori. 2019;105(2):113–120.
  • Yau H, Kinaan M, Quinn SL, et al. Octreotide long-acting repeatable in the treatment of neuroendocrine tumors: patient selection and perspectives. BTT. 2017;11:115–122.
  • Brayden DJ, Maher S. Transient Permeation Enhancer® (TPE®) technology for oral delivery of octreotide: a technological evaluation. Expert Opin Drug Del. 2021;18(10):1501–1512.
  • Samson SL, Nachtigall LB, Fleseriu M, et al. Maintenance of acromegaly control in patients switching from injectable somatostatin receptor ligands to oral octreotide. J Clin Endocr Metab. 2020;105(10):e3785-97–e3797.
  • Lerner EN, van Zanten EH, Stewart GR. Enhanced delivery of octreotide to the brain via transnasal iontophoretic administration. J Drug Target. 2004;12(5):273–280.
  • Hou A, Li L, Huang Y, et al. Fragmented particles containing octreotide acetate prepared by spray drying technique for dry powder inhalation. Drug Deliv and Transl Res. 2018;8(3):693–701.
  • Rinke A, Wittenberg M, Schade-Brittinger C, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors (PROMID): results of long-term survival. Neuroendocrinology. 2017;104(1):26–32.
  • Pusceddu S, De Braud F, Lo Russo G, et al. How do the results of the RADIANT trials impact on the management of NET patients? A systematic review of published studies. Oncotarget. 2016;7(28):44841–44847.
  • Rothen-Weinhold A, Oudry N, Schwach-Abdellaoui K, et al. Formation of peptide impurities in polyester matrices during implant manufacturing. Eur J Pharm Biopharm. 2000;49(3):253–257.
  • Lucke A, Kiermaier J, Göpferich A. Peptide acylation by poly(alpha-hydroxy esters). Pharm Res-Dordr. 2002;19(2):175–181.
  • Murty SB, Goodman J, Thanoo BC, et al. Identification of chemically modified peptide from poly(D,L-lactide-co-glycolide) microspheres under in vitro release conditions. Aaps Pharmscitech. 2003;4(4):392–405.
  • Beig A, Feng L, Walker J, et al. Physical-chemical characterization of octreotide encapsulated in commercial glucose-Star PLGA microspheres. Mol Pharmaceutics. 2020;17(11):4141–4151.
  • Liu J, Xu Y, Wang Y, et al. Proton oriented-"smart depot" for responsive release of Ca(2+) to inhibit peptide acylation in PLGA microspheres. Pharm Res. 2019;36(8):119.
  • Liu J, Xu Y, Wang Y, et al. Effect of inner pH on peptide acylation within PLGA microspheres. Eur J Pharm Sci. 2019;134:69–80.
  • Beig A, Feng L, Walker J, et al. Development and characterization of composition-equivalent formulations to the Sandostatin LAR® by the solvent evaporation method. Drug Deliv and Transl Res. 2022;12(3):695–707.
  • Bishara A, Domb AJ. PLA stereocomplexes for controlled release of somatostatin analogue. J Control Release. 2005;107(3):474–483.
  • Ghassemi AH, van Steenbergen MJ, Barendregt A, et al. Controlled release of octreotide and assessment of peptide acylation from poly(D,L-lactide-co-hydroxymethyl glycolide) compared to PLGA microspheres. Pharm Res. 2012;29(1):110–120.
  • Li T, Wan B, Jog R, et al. Pectin microparticles for peptide delivery: optimization of spray drying processing. Int J Pharmaceut. 2022;613:121384.
  • Yang L, Luo J, Shi S, et al. Development of a pulmonary peptide delivery system using porous nanoparticle-aggregate particles for systemic application. Int J Pharmaceut. 2013;451(1-2):104–111.
  • Schneider EL, Henise J, Reid R, et al. Subcutaneously administered self-cleaving hydrogel-octreotide conjugates provide very long-acting octreotide. Bioconjug Chem. 2016;27(7):1638–1644.
  • Abdellatif AAH, Ibrahim MA, Amin MA, et al. Cetuximab conjugated with octreotide and entrapped calcium alginate-beads for targeting somatostatin receptors. Sci Rep. 2020;10(1):4736.
  • Roberts MJ, Bentley MD, Harris JM. Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev. 2002;54(4):459–476.
  • Na DH, Murty SB, Lee KC, et al. Preparation and stability of poly(ethylene glycol) (PEG)ylated octreotide for application to microsphere delivery. Aaps Pharmscitech. 2003;4(4):E72.
  • Park EJ, Na DH. Optimization of octreotide PEGylation by monitoring with fast reversed-phase high-performance liquid chromatography. Anal Biochem. 2008;380(1):140–142.
  • Na DH, DeLuca PP. PEGylation of octreotide: I. Separation of positional isomers and stability against acylation by poly(D,L-lactide-co-glycolide). Pharm Res. 2005;22(5):736–742.
  • Na DH, Lee KC, DeLuca PP. PEGylation of octreotide: II. Effect of N-terminal Mono-PEGylation on biological activity and pharmacokinetics. Pharm Res. 2005;22(5):743–749.
  • Ahn JH, Park EJ, Lee HS, et al. Reversible blocking of amino groups of octreotide for the inhibition of formation of acylated peptide impurities in poly(lactide-co-glycolide) delivery systems. Aaps Pharmscitech. 2011;12(4):1220–1226.
  • Wang Y, Wang W, Jin K, et al. Somatostatin receptor expression indicates improved prognosis in gastroenteropancreatic neuroendocrine neoplasm, and octreotide long-acting release is effective and safe in Chinese patients with advanced gastroenteropancreatic neuroendocrine tumors. Oncol Lett. 2017;13(3):1165–1174.
  • Ueberberg B, Tourne H, Redmann A, et al. Differential expression of the human somatostatin receptor subtypes sst1 to sst5 in various adrenal tumors and normal adrenal gland. Horm Metab Res. 2005;37(12):722–728.
  • Cervera P, Videau C, Viollet C, et al. Comparison of somatostatin receptor expression in human gliomas and medulloblastomas. J Neuroendocrinol. 2002;14(6):458–471.
  • Zou Y, Tan H, Zhao Y, et al. Expression and selective activation of somatostatin receptor subtypes induces cell cycle arrest in cancer cells. Oncol Lett. 2019;17(2):1723–1731.
  • Behling F, Honegger J, Skardelly M, et al. High expression of somatostatin receptors 2A, 3, and 5 in corticotroph pituitary adenoma. Int J Endocrinol. 2018;2018:1763735.
  • Verhoef C, van Dekken H, Hofland LJ, et al. Somatostatin receptor in human hepatocellular carcinomas: biological, patient and tumor characteristics. Dig Surg. 2008;25(1):21–26.
  • Lechner M, Schartinger VH, Steele CD, et al. Somatostatin receptor 2 expression in nasopharyngeal cancer is induced by Epstein Barr virus infection: impact on prognosis, imaging and therapy. Nat Commun. 2021;12(1):117.
  • Pedraza-Arévalo S, Hormaechea-Agulla D, Gómez-Gómez E, et al. Somatostatin receptor subtype 1 as a potential diagnostic marker and therapeutic target in prostate cancer. Prostate. 2017;77(15):1499–1511.
  • Lehman JM, Hoeksema MD, Staub J, et al. Somatostatin receptor 2 signaling promotes growth and tumor survival in small-cell lung cancer. Int J Cancer. 2019;144(5):1104–1114.
  • Woelfl S, Bogner S, Huber H, et al. Expression of somatostatin receptor subtype 2 and subtype 5 in thyroid malignancies. Nuklearmedizin. 2014;53(5):179–185.
  • Huang CM, Wu YT, Chen ST. Targeting delivery of paclitaxel into tumor cells via somatostatin receptor endocytosis. Chem Biol. 2000;7(7):453–461.
  • Shen H, Hu D, Du J, et al. Paclitaxel-octreotide conjugates in tumor growth inhibition of A549 human non-small cell lung cancer xenografted into nude mice. Eur J Pharmacol. 2008;601(1-3):23–29.
  • Sun ML, Wei JM, Wang XW, et al. Paclitaxel-octreotide conjugates inhibit growth of human non-small cell lung cancer cells in vitro. Exp Oncol. 2007;29(3):186–191.
  • Shen Y, Zhang XY, Chen X, et al. Octreotide reverses the resistance of A2780/pacliaxel ovarian cancer cell line to paclitaxel chemotherapy in vitro. J Cancer Res Ther. 2016;12(2):657–662.
  • Shen Y, Zhang XY, Chen X, et al. Synthetic paclitaxel-octreotide conjugate reverses the resistance of paclitaxel in A2780/taxol ovarian cancer cell line. Oncol Rep. 2017;37(1):219–226.
  • Chen X, Zhang XY, Shen Y, et al. Synthetic paclitaxel-octreotide conjugate reversing the resistance of A2780/taxol to paclitaxel in xenografted tumor in nude mice. Oncotarget. 2016;7(50):83451–83461.
  • Fan LL, Chen X, Zhang XY, et al. Octreotide-paclitaxel conjugate reverses paclitaxel resistance by p38 mitogen-activated protein kinase (MAPK) signaling pathway in A2780/taxol human ovarian cancer cells. Med Sci Monit. 2020;26:e922612.
  • Liu Y, Xia H, Wang Y, et al. Targeted paclitaxel-octreotide conjugates inhibited the growth of paclitaxel-resistant human non-small cell lung cancer A549 cells in vitro. Thorac Cancer. 2021;12(22):3053–3061.
  • Huo M, Zhu Q, Wu Q, et al. Somatostatin receptor-mediated specific delivery of paclitaxel prodrugs for efficient cancer therapy. J Pharm Sci. 2015;104(6):2018–2028.
  • Yin T, Wu Q, Wang L, et al. Well-defined redox-sensitive polyethene glycol-paclitaxel prodrug conjugate for tumor-specific delivery of paclitaxel using octreotide for tumor targeting. Mol Pharm. 2015;12(8):3020–3031.
  • Barçin C, Kurşaklioğlu H, Safali M, et al. Effect of octreotide in the prevention of doxorubicin cardiotoxicity. Anadolu Kardiyol Derg. 2005;5(1):18–23.
  • Dai GF, Wang Z, Zhang JY. Octreotide protects doxorubicin-induced cardiac toxicity via regulating oxidative stress. Eur Rev Med Pharmaco. 2018;22(18):6139–6148.
  • Weckbecker G, Raulf F, Tolcsvai L, et al. Potentiation of the anti-proliferative effects of anti-cancer drugs by octreotide in vitro and in vivo. Digestion. 1996;57 Suppl 1:22–28.
  • Tian X, Baek K-H, Shin I. Dual-targeting delivery system for selective cancer cell death and imaging. Chem Sci. 2013;4(3):947–956.
  • Lelle M, Kaloyanova S, Freidel C, et al. Octreotide-mediated tumor-targeted drug delivery via a cleavable doxorubicin-peptide conjugate. Mol Pharm. 2015;12(12):4290–4300.
  • Nayak T, Norenberg J, Anderson T, et al. A comparison of high- versus low-linear energy transfer somatostatin receptor targeted radionuclide therapy in vitro. Cancer Biother Radiopharm. 2005;20(1):52–57.
  • Beck P, Cui H, Hegemann JD, et al. Targeted delivery of proteasome inhibitors to somatostatin-receptor-expressing cancer cells by octreotide conjugation. ChemMedChem. 2015;10(12):1969–1973.
  • Zhang HY, Xu WQ, Wang YW, et al. Tumor targeted delivery of octreotide-periplogenin conjugate: synthesis, in vitro and in vivo evaluation. Int J Pharm. 2016;502(1-2):98–106.
  • Zhang HY, Xu WQ, Zheng YY, et al. Octreotide-periplocymarin conjugate prodrug for improving targetability and anti-tumor efficiency: synthesis, in vitro and in vivo evaluation. Oncotarget. 2016;7(52):86326–86338.
  • He S, Zhou Z, Li L, et al. Comparison of active and passive targeting of doxorubicin for somatostatin receptor 2 positive tumor models by octreotide-modified HPMA copolymer-doxorubicin conjugates. Drug Deliv. 2016;23(1):285–296.
  • Liu T, Jia T, Yuan X, et al. Development of octreotide-conjugated polymeric prodrug of bufalin for targeted delivery to somatostatin receptor 2 overexpressing breast cancer in vitro and in vivo. Int J Nanomed. 2016;11:2235–2250.
  • Behe M, Du J, Becker W, et al. Biodistribution, blood half-life, and receptor binding of a somatostatin-dextran conjugate. Med Oncol. 2001;18(1):59–64.
  • De Jong M, Bakker WH, Breeman WA, et al. Pre-clinical comparison of [DTPA0] octreotide, [DTPA0,Tyr3] octreotide and [DOTA0,Tyr3] octreotide as carriers for somatostatin receptor-targeted scintigraphy and radionuclide therapy. Int J Cancer. 1998;75(3):406–411.
  • de Jong M, Bakker WH, Krenning EP, et al. Yttrium-90 and indium-111 labelling, receptor binding and biodistribution of [DOTA0,d-Phe1,Tyr3]octreotide, a promising somatostatin analogue for radionuclide therapy. Eur J Nucl Med. 1997;24(4):368–371.
  • de Jong M, Breeman WA, Bakker WH, et al. Comparison of (111)in-labeled somatostatin analogues for tumor scintigraphy and radionuclide therapy. Cancer Res. 1998;58(3):437–441.
  • Lewis JS, Lewis MR, Srinivasan A, et al. Comparison of four 64Cu-labeled somatostatin analogues in vitro and in a tumor-bearing rat model: evaluation of new derivatives for positron emission tomography imaging and targeted radiotherapy. J Med Chem. 1999;42(8):1341–1347.
  • Pryyma A, Matinkhoo K, Bu YJ, et al. Synthesis and preliminary evaluation of octreotate conjugates of bioactive synthetic amatoxins for targeting somatostatin receptor (sstr2) expressing cells. RSC Chem Biol. 2022;3(1):69–78.
  • White BH, Whalen K, Kriksciukaite K, et al. Discovery of an SSTR2-targeting maytansinoid conjugate (PEN-221) with potent activity in vitro and in vivo. J Med Chem. 2019;62(5):2708–2719.
  • Kaščáková S, Hofland LJ, De Bruijn HS, et al. Somatostatin analogues for receptor targeted photodynamic therapy. PLoS One. 2014;9(8):e104448.
  • Campiglia P, Gomez-Monterrey I, Longobardo L, et al. An efficient approach for monosulfide bridge formation in solid-phase peptide synthesis. Tetrahedron Lett. 2004;45(7):1453–1456.
  • Messina MS, Maynard HD. Modification of proteins using olefin metathesis. Mater Chem Front. 2020;4(4):1040–1051.
  • Carotenuto A, D ‘Addona D, Rivalta E, et al. Synthesis of a dicarba-analog of octreotide keeping the type II β -Turn of the pharmacophore in water solution. LOC. 2005;2(3):274–279.
  • Whelan AN, Elaridi J, Harte M, et al. A tandem metathesis–hydrogenation route to dicarba analogues of cystine-containing cyclic peptides. Tetrahedron Lett. 2004;45(52):9545–9547.
  • D’Addona D, Carotenuto A, Novellino E, et al. Novel sst5-selective somatostatin dicarba-analogues: synthesis and conformation-affinity relationships. J Med Chem. 2008;51(3):512–520.
  • Barragán F, Carrion-Salip D, Gómez-Pinto I, et al. Somatostatin subtype-2 receptor-targeted metal-based anticancer complexes. Bioconjug Chem. 2012;23(9):1838–1855.
  • Barragán F, Moreno V, Marchán V. Solid-phase synthesis and DNA binding studies of dichloroplatinum(ii) conjugates of dicarba analogues of octreotide as new anticancer drugs. Chem Commun. 2009;21(31):4705–4707.
  • Barragán F, López-Senín P, Salassa L, et al. Photocontrolled DNA binding of a receptor-targeted organometallic ruthenium(II) complex. J Am Chem Soc. 2011;133(35):14098–14108.
  • Chang CC, Liu DZ, Lin SY, et al. Liposome encapsulation reduces cantharidin toxicity. Food Chem Toxicol. 2008;46(9):3116–3121.
  • Iwase Y, Maitani Y. Octreotide-targeted liposomes loaded with CPT-11 enhanced cytotoxicity for the treatment of medullary thyroid carcinoma. Mol Pharm. 2011;8(2):330–337.
  • Song XL, Ju RJ, Xiao Y, et al. Application of multifunctional targeting epirubicin liposomes in the treatment of non-small-cell lung cancer. Int J Nanomed. 2017;12:7433–7451.
  • Sun M, Wang Y, Shen J, et al. Octreotide-modification enhances the delivery and targeting of doxorubicin-loaded liposomes to somatostatin receptors expressing tumor in vitro and in vivo. Nanotechnology. 2010;21(47):475101.
  • Wang Q, Zhu R, Wang M, et al. Targeted therapy of octreotide-modified oleanolic acid liposomes to somatostatin receptor overexpressing tumor cells. Nanomedicine (Lond). 2017;12(8):927–940.
  • Dai W, Jin W, Zhang J, et al. Spatiotemporally controlled co-delivery of anti-vasculature agent and cytotoxic drug by octreotide-modified stealth liposomes. Pharm Res. 2012;29(10):2902–2911.
  • Ju RJ, Cheng L, Peng XM, et al. Octreotide-modified liposomes containing daunorubicin and dihydroartemisinin for treatment of invasive breast cancer. Artif Cells Nanomed Biotechnol. 2018;46(sup1):616–628.
  • Accardo A, Mangiapia G, Paduano L, et al. Octreotide labeled aggregates containing platinum complexes as nanovectors for drug delivery. J Pept Sci. 2013;19(4):190–197.
  • Zhang J, Jin W, Wang X, et al. A novel octreotide modified lipid vesicle improved the anticancer efficacy of doxorubicin in somatostatin receptor 2 positive tumor models. Mol Pharm. 2010;7(4):1159–1168.
  • Li H, Yuan D, Sun M, et al. Effect of ligand density and PEG modification on octreotide-targeted liposome via somatostatin receptor in vitro and in vivo. Drug Deliv. 2016;23(9):3562–3572.
  • Chen CH, Liu DZ, Fang HW, et al. Evaluation of multi-target and single-target liposomal drugs for the treatment of gastric cancer. Biosci Biotechnol Biochem. 2008;72(6):1586–1594.
  • Li L, Wang Q, Zhang X, et al. Dual-targeting liposomes for enhanced anticancer effect in somatostatin receptor II-positive tumor model. Nanomedicine (Lond). 2018;13(17):2155–2169.
  • Helbok A, Rangger C, von Guggenberg E, et al. Targeting properties of peptide-modified radiolabeled liposomal nanoparticles. Nanomedicine. 2012;8(1):112–118.
  • Abou DS, Thorek DL, Ramos NN, et al. (89)Zr-labeled paramagnetic octreotide-liposomes for PET-MR imaging of cancer. Pharm Res. 2013;30(3):878–888.
  • Gote V, Pal D. Octreotide-Targeted Lcn2 siRNA PEGylated liposomes as a treatment for metastatic breast cancer. Bioengineering (Basel). 2021;8(4):44.
  • Xie D, Du J, Bao M, et al. A one-pot modular assembly strategy for triple-play enhanced cytosolic siRNA delivery. Biomater Sci. 2019;7(3):901–913.
  • Iwase Y, Maitani Y. Dual functional octreotide-modified liposomal irinotecan leads to high therapeutic efficacy for medullary thyroid carcinoma xenografts. Cancer Sci. 2012;103(2):310–316.
  • Chen T, Song X, Gong T, et al. nRGD modified lycobetaine and octreotide combination delivery system to overcome multiple barriers and enhance anti-glioma efficacy. Colloids Surf B Biointerfaces. 2017;156:330–339.
  • Ye Q, Asherman J, Stevenson M, et al. DepoFoam technology: a vehicle for controlled delivery of protein and peptide drugs. J Control Release. 2000;64(1-3):155–166.
  • Damgé C, Vonderscher J, Marbach P, et al. Poly(alkyl cyanoacrylate) nanocapsules as a delivery system in the rat for octreotide, a long-acting somatostatin analogue. J Pharm Pharmacol. 1997;49(10):949–954.
  • Dubey N, Varshney R, Shukla J, et al. Synthesis and evaluation of biodegradable PCL/PEG nanoparticles for neuroendocrine tumor targeted delivery of somatostatin analog. Drug Deliv. 2012;19(3):132–142.
  • Ghofrani M, Shirmard LR, Dehghankelishadi P, et al. Development of Octreotide-Loaded chitosan and heparin nanoparticles: evaluation of surface modification effect on physicochemical properties and macrophage uptake. J Pharm Sci. 2019;108(9):3036–3045.
  • Thanou M, Verhoef JC, Marbach P, et al. Intestinal absorption of octreotide: n -trimethyl chitosan chloride (TMC) ameliorates the permeability and absorption properties of the somatostatin analogue in vitro and in vivo. J Pharm Sci-Us. 2000;89(7):951–957.
  • Huo M, Zou A, Yao C, et al. Somatostatin receptor-mediated tumor-targeting drug delivery using octreotide-PEG-deoxycholic acid conjugate-modified N-deoxycholic acid-O, N-hydroxyethylation chitosan micelles. Biomaterials. 2012;33(27):6393–6407.
  • Zou A, Chen Y, Huo M, et al. In vivo studies of octreotide-modified N-octyl-O, N-carboxymethyl chitosan micelles loaded with doxorubicin for tumor-targeted delivery. J Pharm Sci. 2013;102(1):126–135.
  • Zou A, Huo M, Zhang Y, et al. Octreotide-modified N-octyl-O, N-carboxymethyl chitosan micelles as potential carriers for targeted antitumor drug delivery. J Pharm Sci. 2012;101(2):627–640.
  • An Q, Shi CX, Guo H, et al. Development and characterization of octreotide-modified curcumin plus docetaxel micelles for potential treatment of non-small-cell lung cancer. Pharm Dev Technol. 2019;24(9):1164–1174.
  • Niu J, Su Z, Xiao Y, et al. Octreotide-modified and pH-triggering polymeric micelles loaded with doxorubicin for tumor targeting delivery. Eur J Pharm Sci. 2012;45(1-2):216–226.
  • Banerjee I, De K, Mukherjee D, et al. Paclitaxel-loaded solid lipid nanoparticles modified with tyr-3-octreotide for enhanced anti-angiogenic and anti-glioma therapy. Acta Biomater. 2016;38:69–81.
  • Banerjee I, De M, Dey G, et al. A peptide-modified solid lipid nanoparticle formulation of paclitaxel modulates immunity and outperforms dacarbazine in a murine melanoma model. Biomater Sci. 2019;7(3):1161–1178.
  • Su Z, Niu J, Xiao Y, et al. Effect of octreotide-polyethylene glycol(100) monostearate modification on the pharmacokinetics and cellular uptake of nanostructured lipid carrier loaded with hydroxycamptothecine. Mol Pharm. 2011;8(5):1641–1651.
  • Zhang Y, Wang X, Wang J, et al. Octreotide-modified polymeric micelles as potential carriers for targeted docetaxel delivery to somatostatin receptor overexpressing tumor cells. Pharm Res. 2011;28(5):1167–1178.
  • Zhang Y, Zhang H, Wang X, et al. The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles. Biomaterials. 2012;33(2):679–691.
  • Jaskula-Sztul R, Xu W, Chen G, et al. Thailandepsin A-loaded and octreotide-functionalized unimolecular micelles for targeted neuroendocrine cancer therapy. Biomaterials. 2016;91:1–10.
  • Peng J, Qi X, Chen Y, et al. Octreotide-conjugated PAMAM for targeted delivery to somatostatin receptors over-expressed tumor cells. J Drug Target. 2014;22(5):428–438.
  • Jackson AW, Chandrasekharan P, Ramasamy B, et al. Octreotide functionalized Nano-Contrast agent for targeted magnetic resonance imaging. Biomacromolecules. 2016;17(12):3902–3910.
  • Hong Y, Zhu H, Hu J, et al. Synthesis and radiolabeling of (111)in-core-cross linked polymeric micelle-octreotide for near-infrared fluoroscopy and single photon emission computed tomography imaging. Bioorg Med Chem Lett. 2014;24(12):2781–2785.
  • Xia L, Guo X, Liu T, et al. Multimodality imaging of naturally active melanin nanoparticles targeting somatostatin receptor subtype 2 in human small-cell lung cancer. Nanoscale. 2019;11(30):14400–14409.
  • Bai J, Tian Y, Liu F, et al. Octreotide-Conjugated Core-Cross-Linked micelles with pH/redox responsivity loaded with etoposide for neuroendocrine neoplasms therapy and bioimaging with photoquenching resistance. ACS Appl Mater Interfaces. 2019;11(20):18111–18122.
  • Vijayan VM, Shenoy SJ, Muthu J. Octreotide-conjugated fluorescent PEGylated polymeric nanogel for theranostic applications. Mater Sci Eng C Mater Biol Appl. 2017;76:490–500.
  • Kim I, Han EH, Ryu J, et al. One-Dimensional supramolecular nanoplatforms for theranostics based on Co-Assembly of peptide amphiphiles. Biomacromolecules. 2016;17(10):3234–3243.
  • Zhu HZ, Hou J, Guo Y, et al. Identification and imaging of miR-155 in the early screening of lung cancer by targeted delivery of octreotide-conjugated chitosan-molecular beacon nanoparticles. Drug Deliv. 2018;25(1):1974–1983.
  • Braga TL, Pinto SR, Dos Reis SRR, et al. Octreotide nanoparticles showed affinity for in vivo MIA paca-2 inducted pancreas ductal adenocarcinoma mimicking pancreatic Polypeptide-Secreting tumor of the distal pancreas (PPoma). Pharm Res. 2019;36(10):143.
  • Erfani Jabarian L, Rouini MR, Atyabi F, et al. In vitro and in vivo evaluation of an in situ gel forming system for the delivery of PEGylated octreotide. Eur J Pharm Sci. 2013;48(1-2):87–96.
  • Dorkoosh FA, Coos Verhoef J, Ambagts MH, et al. Peroral delivery systems based on superporous hydrogel polymers: release characteristics for the peptide drugs buserelin, octreotide and insulin. Eur J Pharm Sci. 2002;15(5):433–439.
  • Dorkoosh FA, Verhoef JC, Verheijden JH, et al. Peroral absorption of octreotide in pigs formulated in delivery systems on the basis of superporous hydrogel polymers. Pharm Res. 2002;19(10):1532–1536.
  • Patel SP, Vaishya R, Patel A, et al. Optimization of novel pentablock copolymer based composite formulation for sustained delivery of peptide/protein in the treatment of ocular diseases. J Microencapsul. 2016;33(2):103–113.
  • Wang T, Zhang C, Zhong W, et al. Modification of Three-Phase drug release mode of octreotide PLGA microspheres by Microsphere-Gel composite system. Aaps Pharmscitech. 2019;20(6):228.
  • Mendoza-Nava H, Ferro-Flores G, Ocampo-García B, et al. Laser heating of gold nanospheres functionalized with octreotide: in vitro effect on HeLa cell viability. Photomed Laser Surg. 2013;31(1):17–22.
  • Xiao Y, Jaskula-Sztul R, Javadi A, et al. Co-delivery of doxorubicin and siRNA using octreotide-conjugated gold nanorods for targeted neuroendocrine cancer therapy. Nanoscale. 2012;4(22):7185–7193.
  • Surujpaul PP, Gutiérrez-Wing C, Ocampo-García B, et al. Gold nanoparticles conjugated to [Tyr3]octreotide peptide. Biophys Chem. 2008;138(3):83–90.
  • Orocio-Rodríguez E, Ferro-Flores G, Santos-Cuevas CL, et al. Two novel nanosized radiolabeled analogues of somatostatin for neuroendocrine tumor imaging. J Nanosci Nanotechnol. 2015;15(6):4159–4169.
  • Ocampo-García B, Ferro-Flores G, Morales-Avila E, et al. Kit for preparation of multimeric receptor-specific 99mTc-radiopharmaceuticals based on gold nanoparticles. Nucl Med Commun. 2011;32(11):1095–1104.
  • Hernández B, López-Tobar E, Sanchez-Cortes S, et al. From bulk to plasmonic nanoparticle surfaces: the behavior of two potent therapeutic peptides, octreotide and pasireotide. Phys Chem Chem Phys. 2016;18(35):24437–24450.
  • Hernández B, Coïc YM, López-Tobar E, et al. Dynamical behavior of somatostatin-14 and its cyclic analogues as analyzed in bulk and on plasmonic silver nanoparticles. Adv Protein Chem Str. 2018;112:81–121.
  • Abdellatif AAH, Hennig R, Pollinger K, et al. Fluorescent nanoparticles coated with a somatostatin analogue target blood monocyte for efficient leukaemia treatment. Pharm Res. 2020;37(11):217.
  • Zhang X, Yang C, Zhou J, et al. Somatostatin receptor-mediated tumor-targeting nanocarriers based on octreotide-PEG conjugated nanographene oxide for combined chemo and photothermal therapy. Small. 2016;12(26):3578–3590.
  • Li X, Du X, Huo T, et al. Specific targeting of breast tumor by octreotide-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 3.0-Tesla magnetic resonance scanner. Acta Radiol. 2009;50(6):583–594.
  • Amato R, Giannaccini M, Dal Monte M, et al. Association of the somatostatin analog octreotide with magnetic nanoparticles for intraocular delivery: a possible approach for the treatment of diabetic retinopathy. Front Bioeng Biotech. 2020;8:144.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.