189
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

A critical review on the role of nanotheranostics mediated approaches for targeting β amyloid in Alzheimer’s

, , , , , , & show all
Pages 725-744 | Received 22 Apr 2023, Accepted 12 Jul 2023, Published online: 19 Jul 2023

References

  • Breijyeh Z, Karaman R. Comprehensive review on alzheimer’s disease: causes and treatment. Molecules. 2020;25(24):5789. doi:10.3390/molecules25245789.
  • Dementia [Internet]. 2023. https://www.who.int/news-room/fact-sheets/detail/dementia
  • Vogt A-CS, Jennings GT, Mohsen MO, et al. Alzheimer’s disease: a brief history of immunotherapies targeting amyloid β. Int J Mol Sci. 2023;24:3895. doi:10.3390/ijms24043895.
  • Marcuzzi A. Alzheimer’s disease epidemic in Europe. 2020.
  • Lee J, Meijer E, Langa KM, et al. Prevalence of dementia in India: national and state estimates from a nationwide study. Alzheimer’s Dement. 2023. doi:10.1002/alz.12928
  • Gaugler J, James B, Johnson T, et al. Alzheimer’s disease facts and figures. Alzheimers Dement. 2022;18:700–789.
  • Revi M. Alzheimer’s disease therapeutic approaches. Adv Exp Med Biol. 2020;1195:105–116.
  • Kumar A, Chaudhary RK, Singh R, et al. Nanotheranostic applications for detection and targeting neurodegenerative diseases. Front Neurosci. 2020;14:305. doi:10.3389/fnins.2020.00305.
  • Padmanabhan P, Palanivel M, Kumar A, et al. Nanotheranostic agents for neurodegenerative diseases. Emerg Top Life Sci. 2020;4(6):645–675. doi:10.1042/ETLS20190141.
  • Singh R, Deshmukh R. Carbon nanotube as an emerging theranostic tool for oncology. J Drug Deliv Sci Technol. 2022;74:103586. doi:10.1016/j.jddst.2022.103586.
  • Rastogi V, Yadav P, Bhattacharya SS, et al. Carbon nanotubes: an emerging drug carrier for targeting cancer cells. J Drug Delivery. 2014;2014:670815. doi:10.1155/2014/670815.
  • Rizwanullah M, Ahmad MZ, Garg A, et al. Advancement in design of nanostructured lipid carriers for cancer targeting and theranostic application. Biochim Biophys Acta Gen Subj. 2021;1865(9):129936. doi:10.1016/j.bbagen.2021.129936.
  • Muthu MS, Leong DT, Mei L, et al. Nanotheranostics - application and further development of nanomedicine strategies for advanced theranostics. Theran Ivyspring Inter Publis. 2014;4(6):660–677. doi:10.7150/thno.8698.
  • Carro CE, Pilozzi AR, Huang X. Nanoneurotoxicity and potential nanotheranostics for alzheimer’s disease. EC Pharmacol Toxicol. 2019;7(12):1–7.
  • Mufson EJ, Mahady L, Waters D, et al. Hippocampal plasticity during the progression of Alzheimer’s disease HHS public access. Neuroscience. 2015;309:51–67.
  • Vyas Y, Montgomery JM, Cheyne JE. Hippocampal deficits in amyloid-β-Related rodent models of alzheimer’s disease. Front Neurosci. 2020;14:266. doi:10.3389/fnins.2020.00266.
  • Chen GF, Xu TH, Yan Y, et al. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin. 2017;38(9):1205–1235. doi:10.1038/aps.2017.28.
  • Li Y, Rinne JO, Mosconi L, et al. Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2008;35(12):2169–2181. doi:10.1007/s00259-008-0833-y.
  • Chételat G, La Joie R, Villain N, et al. Amyloid imaging in cognitively normal individuals, at-risk populations and preclinical alzheimer’s disease. Neuroimage Clin. 2013;2:356–365. doi:10.1016/j.nicl.2013.02.006.
  • Gella A, Durany N. Oxidative stress in alzheimer disease. Cell Adh Migr. 2009;3(1):88–93. doi:10.4161/cam.3.1.7402.
  • Rose VL. Alzheimer’s disease genetic fact sheet. Am Fam Physician. 1998;58:578.
  • Atri A. Current and future treatments in alzheimer’s disease. Semin Neurol. 2019;39(2):227–240. Thieme Medical Publishers doi:10.1055/s-0039-1678581.
  • Yiannopoulou KG, Papageorgiou SG. Current and future treatments in Alzheimer disease: an update. J Cent Nerv Syst Dis. 2020;12:1179573520907397. doi:10.1177/1179573520907397.
  • Frozza RL, Lourenco MV, De Felice FG. Challenges for Alzheimer’s disease therapy: insights from novel mechanisms beyond memory defects. Front Neurosci. 2018;12:37. doi:10.3389/fnins.2018.00037.
  • Cunha S, Forbes B, Lobo JMS, et al. Improving drug delivery for alzheimer’s disease through nose-to-brain delivery using nanoemulsions, nanostructured lipid carriers (NLC) and in situ hydrogels. Int J Nanomedicine. 2021;16:4373–4390. doi:10.2147/IJN.S305851.
  • Cai Z, Qiao PF, Wan CQ, et al. Role of Blood-Brain barrier in Alzheimer’s disease. J Alzheimers Dis. 2018;63(4):1223–1234. doi:10.3233/JAD-180098.
  • Zenaro E, Piacentino G, Constantin G. The blood-brain barrier in Alzheimer’s disease. Neurobiol Dis. 2017;107:41–56. doi:10.1016/j.nbd.2016.07.007.
  • Erickson MA, Banks WA. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J Cereb Blood Flow Metab. 2013;33(10):1500–1513. doi:10.1038/jcbfm.2013.135.
  • Nguyen TT, Nguyen TD, Nguyen TKO, et al. Advances in developing therapeutic strategies for Alzheimer’s disease. Biomed Pharmacother. 2021;139:111623.
  • Tsuji A. Small molecular drug transfer across the Blood-Brain barrier via Carrier-Mediated transport systems. NeuroRx. 2005;2(1):54–62. doi:10.1602/neurorx.2.1.54.
  • Sanchez-Covarrubias L, Slosky LM, Thompson BJ, et al. Transporters at CNS barrier sites . Curr Pharm Des. 2014;20(10):1422–1449. doi:10.2174/13816128113199990463.
  • Zhang M, Xi Z, Zinman L, et al. Mutation analysis of CHCHD10 in different neurodegenerative diseases. Brain. 2015;138(Pt 9):e380. doi:10.1093/brain/awv082.
  • Dilnawaz F, Singh A, Mewar S, et al. The transport of non-surfactant based paclitaxel loaded magnetic nanoparticles across the blood brain barrier in a rat model. Biomaterials [Internet]. 2012;33Jul 4cited(10):2936–2951. doi:10.1016/j.biomaterials.2011.12.046.
  • Ruff J, Hüwel S, Kogan MJ, et al. The effects of gold nanoparticles functionalized with ß-amyloid specific peptides on an in vitro model of blood–brain barrier. Nanomedicine. 2017;13(5):1645–1652. doi:10.1016/j.nano.2017.02.013.
  • Kim MJ, Rehman SU, Amin FU, et al. Enhanced neuroprotection of anthocyanin-loaded PEG-gold nanoparticles against Aβ1-42-induced neuroinflammation and neurodegeneration via the NF-KB/JNK/GSK3β signaling pathway. Nanomedicine. 2017;13(8):2533–2544. doi:10.1016/j.nano.2017.06.022.
  • Tak K, Sharma R, Dave V, et al. Clitoria ternatea mediated synthesis of graphene quantum dots for the treatment of alzheimer’s disease. ACS Chem Neurosci. 2020;11(22):3741–3748. doi:10.1021/acschemneuro.0c00273.
  • Liu H, Dong X, Liu F, et al. Iminodiacetic acid-conjugated nanoparticles as a bifunctional modulator against Zn2+-mediated amyloid β-protein aggregation and cytotoxicity. J Colloid Interface Sci. 2017;505:973–982. doi:10.1016/j.jcis.2017.06.093.
  • Mirsadeghi S, Shanehsazzadeh S, Atyabi F, et al. Effect of PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) under magnetic field on amyloid beta fibrillation process. Mater Sci Eng C Mater Biol Appl. 2016;59:390–397. doi:10.1016/j.msec.2015.10.026.
  • Yang L, Yin T, Liu Y, et al. Gold nanoparticle-capped mesoporous silica-based H2O2-responsive controlled release system for alzheimer’s disease treatment. Acta Biomater. 2016;46:177–190. doi:10.1016/j.actbio.2016.09.010.
  • Liao YH, Chang YJ, Yoshiike Y, et al. Negatively charged gold nanoparticles inhibit alzheimer’s amyloid-β fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Small. 2012;8(23):3631–3639. doi:10.1002/smll.201201068.
  • Hu B, Dai F, Fan Z, et al. Nanotheranostics: Congo red/Rutin-MNPs with enhanced magnetic resonance imaging and H2O2-Responsive therapy of alzheimer’s disease in APPswe/PS1dE9 transgenic mice. Adv Mater. 2015;27(37):5499–5505. doi:10.1002/adma.201502227.
  • Kwon HJ, Cha MY, Kim D, et al. Mitochondria-Targeting ceria nanoparticles as antioxidants for alzheimeŕs disease. ACS Nano. 2016;10(2):2860–2870. doi:10.1021/acsnano.5b08045.
  • Mars A, Hamami M, Bechnak L, et al. Curcumin-graphene quantum dots for dual mode sensing platform: electrochemical and fluorescence detection of APOe4, responsible of alzheimer’s disease. Anal Chim Acta. 2018;1036:141–146. doi:10.1016/j.aca.2018.06.075.
  • Zheng Y, Zhang L, Zhao J, et al. Advances in aptamers against Aβ and applications in Aβ detection and regulation for alzheimer’s disease. Theranostics. 2022;12(5):2095–2114. doi:10.7150/thno.69465.
  • Zhang Y, Figueroa-Miranda G, Wu C, et al. Electrochemical dual-aptamer biosensors based on nanostructured multielectrode arrays for the detection of neuronal biomarkers. Nanoscale. 2020;12(31):16501–16513. doi:10.1039/d0nr03421e.
  • Oyarzún MP, Tapia-Arellano A, Cabrera P, et al. Plasmonic nanoparticles as optical sensing probes for the detection of alzheimer’s disease. Sensors. 2021;21:2022–2030. doi:10.3390/s21062067.
  • Kim K, Kim M-J, Won Kim D, et al. Clinically accurate diagnosis of alzheimer’s disease via multiplexed sensing of core biomarkers in human plasma. Nature Communicat. 11(1):119.
  • Kievit FM, Zhang M. Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater. 2011; 23(36):H217–47. doi:10.1002/adma.201102313.
  • Lee S, Kim J, Bark CW, et al. Spotlight on nano-theranostics in South Korea: applications in diagnostics and treatment of diseases. Int J Nanomedicine. 2015;10(Spec Iss):3–8. doi:10.2147/IJN.S91389.
  • Mir Najib Ullah SN, Afzal O, Altamimi ASA, et al. Nanomedicine in the management of alzheimer’s disease: state-of-the-Art. Biomedicines. 2023;11:1752. doi:10.3390/biomedicines11061752.
  • Alyautdin R, Khalin I, Nafeeza MI, et al. Nanoscale drug delivery systems and the blood–brain barrier. Int J Nanomedicine. 2014;9:795–811. doi:10.2147/IJN.S52236.
  • Mudshinge SR, Deore AB, Patil S, et al. Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J. 2011;19(3):129–141. doi:10.1016/j.jsps.2011.04.001.
  • Tao X, Mao S, Zhang Q, et al. Brain-targeted polysorbate 80-emulsified donepezil drug-loaded nanoparticles for neuroprotection. Nanoscale Res Lett. 2021;16(1):132. doi:10.1186/s11671-021-03584-1.
  • Sánchez-López E, Ettcheto M, Egea MA, et al. Memantine loaded PLGA PEGylated nanoparticles for alzheimer’s disease: in vitro and in vivo characterization. J Nanobiotechnology. 2018;16(1):32. doi:10.1186/s12951-018-0356-z.
  • Ahmad J, Akhter S, Rizwanullah M, et al. Nanotechnology based theranostic approaches in alzheimer’s disease management: Current status and future perspective. Curr Alzheimer Res. 2017;14(11):1164–1181. doi:10.2174/1567205014666170508121031.
  • Barage SH, Sonawane KD. Amyloid Cascade hypothesis: Pathogenesis and therapeutic strategies in alzheimer’s disease. Neuropeptides. 2015;52:1–18. doi:10.1016/j.npep.2015.06.008.
  • Javed I, He J, Kakinen A, et al. Probing the aggregation and immune response of human islet amyloid polypeptides with Ligand-Stabilized gold nanoparticles. ACS Appl Mater Interfaces. 2019;11(11):10462–10471. doi:10.1021/acsami.8b19506.
  • Gladytz A, Abel B, Risselada HJ. Gold-Induced fibril growth: the mechanism of Surface-Facilitated amyloid aggregation. Angew Chem Int Ed Engl. 2016;55(37):11242–11246. doi:10.1002/anie.201605151.
  • Canovi M, Markoutsa E, Lazar AN, et al. The binding affinity of anti-Aβ1-42 MAb-decorated nanoliposomes to Aβ1-42 peptides in vitro and to amyloid deposits in post-mortem tissue. Biomaterials. 2011;32(23):5489–5497. doi:10.1016/j.biomaterials.2011.04.020.
  • Nazem A, Mansoori GA. Nanotechnology for alzheimer’s disease detection and treatment. Insciences J. 2011;1(4):169–193. doi:10.5640/insc.0104169.
  • Sharma B, Pervushin K. Magnetic nanoparticles as in vivo tracers for alzheimer’s disease. Magnetochemistry. 2020;6(1):13. doi:10.3390/magnetochemistry6010013.
  • Sharma M, Dube T, Chibh S, et al. Nanotheranostics, a future remedy of neurological disorders. Expert Opin Drug Deliv. 2019;16(2):113–128. doi:10.1080/17425247.2019.1562443.
  • Aulić S, Bolognesi ML, Legname G. Small-molecule theranostic probes: a promising future in neurodegenerative diseases. Int J Cell Biol. 2013;2013:150952. doi:10.1155/2013/150952.
  • Bhanderi M, Shah J, Gorain B, et al. Optimized rivastigmine nanoparticles coated with eudragit for intranasal application to brain delivery: evaluation and nasal ciliotoxicity studies. Materials (Basel). 2021;14:6291. doi:10.3390/ma14216291.
  • Silva S, Marto J, Gonçalves L, et al. Formulation, characterization and evaluation against SH-SY5Y cells of new tacrine and tacrine-MAP loaded with lipid nanoparticles. Nanomaterials. 2020;10(10):2089. doi:10.3390/nano10102089.
  • Arbez-Gindre C, Steele BR, Micha-Screttas M. Dendrimers in alzheimer’s disease: recent approaches in Multi-Targeting strategies. Pharmaceutics. 2023;15:898. doi:10.3390/pharmaceutics15030898.
  • Zhu Y, Liu C, Pang Z. Dendrimer-based drug delivery systems for brain targeting. Biomolecules. 2019;9:790. doi:10.3390/biom9120790.
  • Liu Y, Xu L-P, Dai W, et al. Graphene quantum dots for the inhibition of β amyloid aggregation. Nanoscale. 2015;7(45):19060–19065. doi:10.1039/c5nr06282a.
  • Hasannejadasl B, Janbaz FP, Choupani E, et al. Quantum dots application in neurodegenerative diseases. Thrita. 2021;9(2):e100105. doi:10.5812/thrita.100105.
  • Li X, Yang Y, Zhao H, et al. Enhanced in vivo blood–brain barrier penetration by circular tau–transferrin receptor bifunctional aptamer for tauopathy therapy. J Am Chem Soc. 2020;142(8):3862–3872. doi:10.1021/jacs.9b11490.
  • Ruan Y, Xiong Y, Fang W, et al. Highly sensitive curcumin-conjugated nanotheranostic platform for detecting amyloid-beta plaques by magnetic resonance imaging and reversing cognitive deficits of alzheimer’s disease via NLRP3-inhibition. J Nanobiotechnology. 2022; 20(1):322. doi:10.1186/s12951-022-01524-4.
  • Van Giau V, An SSA, Hulme JP. Mitochondrial therapeutic interventions in alzheimer’s disease. J Neurol Sci. 2018; 395:62–70. doi:10.1016/j.jns.2018.09.033.
  • Tramutola A, Lanzillotta C, Perluigi M, et al. Oxidative stress, protein modification and alzheimer disease. Brain Res Bull. 2017;133:88–96. doi:10.1016/j.brainresbull.2016.06.005.
  • Hauptmann S, Scherping I, Dröse S, et al. Mitochondrial dysfunction: an early event in alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol Aging. 2009;30(10):1574–1586. doi:10.1016/j.neurobiolaging.2007.12.005.
  • Du H, Guo L, Yan S, et al. Early deficits in synaptic mitochondria in an alzheimer’s disease mouse model. Proc Natl Acad Sci U S A. 2010;107(43):18670–18675. doi:10.1073/pnas.1006586107.
  • Harwansh RK, Bahadur S, Deshmukh R, et al. Exciting potential of nanoparticlized lipidic system for effective treatment of breast cancer and clinical updates: a translational prospective. Curr Pharm Des. 2020;26(11):1191–1205. doi:10.2174/1381612826666200131101156.
  • Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev. 2010;62(11):1064–1079. doi:10.1016/j.addr.2010.07.009.
  • Huo X, Zhang Y, Jin X, et al. A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in alzheimer’s disease. J Photochem Photobiol B. 2019;190:98–102. doi:10.1016/j.jphotobiol.2018.11.008.
  • Hou K, Zhao J, Wang H, et al. Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of alzheimer’s disease. Nat Commun. 2020;11(1):4790. doi:10.1038/s41467-020-18525-2.
  • Khan NH, Mir M, Ngowi EE, et al. Nanomedicine: a promising way to manage alzheimer’s disease. Front Bioeng Biotechnol. 2021;9:630055. doi:10.3389/fbioe.2021.630055.
  • Marrache S, Dhar S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc Natl Acad Sci U S A. 2012;109(40):16288–16293. doi:10.1073/pnas.1210096109.
  • Tiwari SK, Agarwal S, Seth B, et al. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in alzheimer’s disease model via canonical wnt/β-catenin pathway. ACS Nano. 2014;8(1):76–103. doi:10.1021/nn405077y.
  • Wang ZH, Wang ZY, Sun CS, et al. Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Biomaterials. 2010;31(5):908–915. doi:10.1016/j.biomaterials.2009.09.104.
  • Luo Q, Lin YX, Yang PP, et al. A self-destructive nanosweeper that captures and clears amyloid β-peptides. Nat Commun. 2018;9(1):1802. doi:10.1038/s41467-018-04255-z.
  • Carradori D, Balducci C, Re F, et al. Antibody-functionalized polymer nanoparticle leading to memory recovery in alzheimer’s disease-like transgenic mouse model. Nanomedicine. 2018;14(2):609–618. doi:10.1016/j.nano.2017.12.006.
  • Vilella A, Belletti D, Sauer AK, et al. Reduced plaque size and inflammation in the APP23 mouse model for alzheimer’s disease after chronic application of polymeric nanoparticles for CNS targeted zinc delivery. J Trace Elem Med Biol. 2018;49:210–221. doi:10.1016/j.jtemb.2017.12.006.
  • Meng Q, Wang A, Hua H, et al. Intranasal delivery of huperzine a to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of alzheimer’s disease. Int J Nanomedicine. 2018;13:705–718. doi:10.2147/IJN.S151474.
  • Joseph A, Wood T, Chen CC, et al. Curcumin-loaded polymeric nanoparticles for neuroprotection in neonatal rats with hypoxic-ischemic encephalopathy. Nano Res. 2018;11(10):5670–5688. doi:10.1007/s12274-018-2104-y.
  • Eriksen JL, Sagi SA, Smith TE, et al. NSAIDs and enantiomers of flurbiprofen target gamma-secretase and lower abeta 42 in vivo. J Clin Invest. 2003;112(3):440–449. doi:10.1172/JCI18162.
  • Muntimadugu E, Dhommati R, Jain A, et al. Intranasal delivery of nanoparticle encapsulated tarenflurbil: a potential brain targeting strategy for alzheimer’s disease. Eur J Pharm Sci. 2016;92:224–234. doi:10.1016/j.ejps.2016.05.012.
  • Pinheiro RGR, Granja A, Loureiro JA, et al. RVG29-Functionalized lipid nanoparticles for quercetin brain delivery and alzheimer’s disease. Pharm Res. 2020;37(7):139. doi:10.1007/s11095-020-02865-1.
  • Rassu G, Soddu E, Posadino AM, et al. Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for alzheimer’s therapy. Colloids Surf B Biointerfaces. 2017;152:296–301. doi:10.1016/j.colsurfb.2017.01.031.
  • Zhang C, Wan X, Zheng X, et al. Dual-functional nanoparticles targeting amyloid plaques in the brains of alzheimer’s disease mice. Biomaterials. 2014;35(1):456–465. doi:10.1016/j.biomaterials.2013.09.063.
  • Skaat H, Corem-Slakmon E, Grinberg I, et al. Antibody-conjugated, dual-modal, near-infrared fluorescent iron oxide nanoparticles for antiamyloidgenic activity and specific detection of amyloid-β fibrils. Int J Nanomedicine. 2013;8:4063–4076. doi:10.2147/IJN.S52833.
  • Agyare EK, Jaruszewski KM, Curran GL, et al. Engineering theranostic nanovehicles capable of targeting cerebrovascular amyloid deposits. J Control Release. 2014;185:121–129. doi:10.1016/j.jconrel.2014.04.010.
  • Jaruszewski KM, Curran GL, Swaminathan SK, et al. Multimodal nanoprobes to target cerebrovascular amyloid in alzheimer’s disease brain. Biomaterials. 2014;35(6):1967–1976. doi:10.1016/j.biomaterials.2013.10.075.
  • Dehvari K, Lin K-S. Synthesis, characterization and potential applications of multifunctional PEO-PPOPEO-magnetic drug delivery system. Curr Med Chem. 2012;19(30):5199–5204. doi:10.2174/092986712803530584.
  • Choi J, Choi HJ, Jung DC, et al. Nanoparticle assisted magnetic resonance imaging of the early reversible stages of amyloid β self-assembly. Chem Commun. 2008;(19):2197–2199. doi:10.1039/b803294g.
  • Tokuraku K, Marquardt M, Ikezu T. Real-time imaging and quantification of amyloid-beta peptide aggregates by novel quantum-dot nanoprobes. PLoS One [Internet]. 2009; 4(12):e8492. doi:10.1371/journal.pone.0008492.
  • Zhang D, Fa H-B, Zhou J-T, et al. The detection of β-amyloid plaques in an alzheimer’s disease rat model with DDNP-SPIO. Clin Radiol. 2015;70(1):74–80. doi:10.1016/j.crad.2014.09.019.
  • Sillerud LO, Solberg NO, Chamberlain R, et al. SPION-enhanced magnetic resonance imaging of alzheimer’s disease plaques in AβPP/PS-1 transgenic mouse brain. J Alzheimers Dis. 2013;34(2):349–365. doi:10.3233/JAD-121171.
  • Rastogi V, Yadav P, Porwal M, et al. Dendrimer as nanocarrier for drug delivery and drug targeting therapeutics: a fundamental to advanced systematic review. Inter J Polymeric Mater Polymeric Biomater. 2022; doi:10.1080/00914037.2022.2158334.
  • Stiriba SE, Frey H, Haag R. Dendritic polymers in biomedical applications: from potential to clinical use in diagnostics and therapy. Angew Chem Int Ed Engl. 2002;41(8):1329–1334. doi:10.1002/1521-3773(20020415)41:8<1329::AID-ANIE1329>3.0.CO;2-P.
  • Al-Azzawi S, Masheta D, Guildford AL, et al. Dendrimeric poly(Epsilon-Lysine) delivery systems for the enhanced permeability of flurbiprofen across the Blood-Brain barrier in Alzheimer’s disease. Int J Mol Sci. 2018;19(10):3224. doi:10.3390/ijms19103224.
  • Aso E, Martinsson I, Appelhans D, et al. Poly(propylene imine) dendrimers with histidine-maltose shell as novel type of nanoparticles for synapse and memory protection. Nanomedicine. 2019;17:198–209. doi:10.1016/j.nano.2019.01.010.
  • Wasiak T, Ionov M, Nieznanski K, et al. Phosphorus dendrimers affect alzheimer’s (Aβ1-28) peptide and MAP-Tau protein aggregation. Mol Pharm. 2012;9(3):458–469. doi:10.1021/mp2005627.
  • Ray S, Li Z, Hsu CH, et al. Dendrimer- and copolymer-based nanoparticles for magnetic resonance cancer theranostics. Theranostics. 2018;8(22):6322–6349. doi:10.7150/thno.27828.
  • Devedžić A, University of Sarajevo Bosnia and Herzegovina. Beauty of fine Dots-Detection and treatment of alzheimer’s disease using CdSe/ZnS quantum dots. NTMB. 2017;4(2):1–5. doi:10.24966/NTMB-2044/100016.
  • Xiao S, Zhou D, Luan P, et al. Graphene quantum dots conjugated neuroprotective peptide improve learning and memory capability. Biomaterials. 2016;106:98–110. doi:10.1016/j.biomaterials.2016.08.021.
  • Guo X, Lie Q, Liu Y, et al. Multifunctional selenium quantum dots for the treatment of alzheimer’s disease by reducing Aβ-Neurotoxicity and oxidative stress and alleviate neuroinflammation. ACS Appl Mater Interfaces. 2021;13(26):30261–30273. doi:10.1021/acsami.1c00690.
  • Tang M, Pi J, Long Y, et al. Quantum dots-based sandwich immunoassay for sensitive detection of alzheimer’s disease-related Aβ 1-42. Spectrochim Acta A Mol Biomol Spectrosc. 2018; 201:82–87. doi:10.1016/j.saa.2018.04.060.
  • Pi J, Long Y, Huang N, et al. A sandwich immunoassay for detection of Aβ1-42 based on quantum dots. Talanta. 2016;146:10–15. doi:10.1016/j.talanta.2015.08.022.
  • Medina-Sánchez M, Miserere S, Morales-Narváez E, et al. On-chip magneto-immunoassay for alzheimer’s biomarker electrochemical detection by using quantum dots as labels. Biosens Bioelectron. 2014;54:279–284. doi:10.1016/j.bios.2013.10.069.
  • Ho YP, Leong KW. Quantum dot-based theranostics. Nanoscale [Internet]. 2010;2(1):60–68. doi:10.1039/b9nr00178f.
  • Zheng Y, Wang P, Li S, et al. Development of DNA aptamer as a β-Amyloid aggregation inhibitor. ACS Appl Bio Mater. 2020;3(12):8611–8618. doi:10.1021/acsabm.0c00996.
  • Rahimi F, Murakami K, Summers JL, et al. RNA aptamers generated against oligomeric Abeta40 recognize common amyloid aptatopes with low specificity but high sensitivity. PLoS One [Internet]. 2009; 4(11):e7694. doi:10.1371/journal.pone.0007694.
  • Takahashi T, Tada K, Mihara H. RNA aptamers selected against amyloid beta-peptide (abeta) inhibit the aggregation of abeta. Mol Biosyst. 2009;5(9):986–991. doi:10.1039/b903391b.
  • Babu E, Muthu Mareeswaran P, Sathish V, et al. Sensing and inhibition of amyloid-β based on the simple luminescent aptamer-ruthenium complex system. Talanta. 2015;134:348–353. doi:10.1016/j.talanta.2014.11.020.
  • Li Q, Maier SH, Li P, et al. Aptamers: a novel targeted theranostic platform for pancreatic ductal adenocarcinoma. Radiat Oncol. 2020;15(1):189. doi:10.1186/s13014-020-01624-1.
  • Andreasen N, Minthon L, Davidsson P, et al. Evaluation of CSF-tau and CSF-Abeta42 as diagnostic markers for alzheimer disease in clinical practice. Arch Neurol. 2001;58(3):373–379. doi:10.1001/archneur.58.3.373.
  • Johnson KA, Fox NC, Sperling RA, et al. Brain imaging in Alzheimer disease. Cold Spring Harb Perspect Med. 2012;2(4):a006213. doi:10.1101/cshperspect.a006213.
  • Wadghiri YZ, Sigurdsson EM, Sadowski M, et al. Detection of alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magn Reson Med. 2003;50(2):293–302. doi:10.1002/mrm.10529.
  • Yang J, Zaim Wadghiri Y, Minh Hoang D, et al. Detection of amyloid plaques targeted by USPIO-Aβ1-42 in alzheimer’s disease transgenic mice using magnetic resonance microimaging. Neuroimage [Internet]. 2011; 55(4):1600–1609. doi:10.1016/j.neuroimage.2011.01.023.
  • Viola KL, Sbarboro J, Sureka R, et al. Towards non-invasive diagnostic imaging of early-stage alzheimer’s disease. Nat Nanotechnol. 2015;10(1):91–98. doi:10.1038/nnano.2014.254.
  • Murar M, Albertazzi L, Pujals S. Advanced optical imaging-guided nanotheranostics towards personalized cancer drug delivery. Nanomaterials. 2022;12(3):399. doi:10.3390/nano12030399.
  • Biancalana M, Koide S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta. 2010;1804(7):1405–1412. doi:10.1016/j.bbapap.2010.04.001.
  • Shukla R, Singh A, Handa M, et al. Nanotechnological ­approaches for targeting amyloid-β aggregation with ­potential for neurodegenerative disease therapy and diagnosis. Drug Discov Today. 2021;26(8):1972–1979. doi:10.1016/j.drudis.2021.04.011.
  • Nesterov EE, Skoch J, Hyman BT, et al. In vivo optical imaging of amyloid aggregates in brain: design of fluorescent markers. Angew Chem Int Ed Engl. 2005;44(34):5452–5456. doi:10.1002/anie.200500845.
  • Jain KK. Nanotechnology in clinical laboratory diagnostics. Clin Chim Acta. 2005; 358(1-2):37–54. doi:10.1016/j.cccn.2005.03.014.
  • Jaiswal JK, Mattoussi H, Mauro JM, et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol. 2003;21(1):47–51. doi:10.1038/nbt767.
  • Akhter S, Zaki Ahmad M, Singh A, et al. Cancer targeted metallic nanoparticle: targeting overview, recent advancement and toxicity concern. Curr Pharm Des. 2011;17(18):1834–1850. doi:10.2174/138161211796391001.
  • Dubertret B, Skourides P, Norris DJ, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science. 2002;298(5599):1759–1762. doi:10.1126/science.1077194.
  • Georganopoulou DG, Chang L, Nam JM, et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for alzheimer’s disease. Proc Natl Acad Sci U S A. 2005;102(7):2273–2276. doi:10.1073/pnas.0409336102.
  • Moghimi SM. Bionanotechnologies for treatment and diagnosis of Alzheimer’s disease. Nanomedicine. 2011;7(5):515–518. doi:10.1016/j.nano.2011.05.001.
  • Haes AJ, Chang L, Klein WL, et al. Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc. 2005;127(7):2264–2271. doi:10.1021/ja044087q.
  • Kang DY, Lee JH, Oh BK, et al. Ultra-sensitive immunosensor for β-amyloid (1–42) using scanning tunneling microscopy-based electrical detection. Biosens Bioelectron. 2009;24(5):1431–1436. doi:10.1016/j.bios.2008.08.018.
  • Rodríguez-Galván A, Contreras-Torres FF. Scanning tunneling microscopy of biological structures: an elusive goal for many years. Nanomater. 2022;12(17):3013. doi:10.3390/nano12173013.
  • Neely A, Perry C, Varisli B, et al. Ultrasensitive and highly selective detection of alzheimer’s disease biomarker using Two-Photon rayleigh scattering properties of gold nanoparticle. ACS Nano [Internet]. 2009;3(9):2834–2840. doi:10.1021/nn900813b.
  • Kim JW, Galanzha EI, Zaharoff DA, et al. Nanotheranostics of circulating tumor cells, infections and other pathological features in vivo. Mol Pharm. 2013;10(3):813–830. doi:10.1021/mp300577s.
  • Chhabra R, Tosi G, Grabrucker A. Emerging use of nanotechnology in the treatment of neurological disorders. Curr Pharm Des. 2015;21(22):3111–3130. doi:10.2174/1381612821666150531164124.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.