638
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Emerging targeted therapeutic strategies for the treatment of triple-negative breast cancer

, , , , & ORCID Icon
Pages 889-907 | Received 16 Mar 2023, Accepted 30 Jul 2023, Published online: 29 Aug 2023

References

  • Grabinski VF, Brawley OW. Disparities in breast cancer. Obstet Gynecol Clin North Am. 2022; 49(1):149–165. doi: 10.1016/j.ogc.2021.11.010.
  • Patel P, Wahan SK, Vishakha S, et al. Recent progress in histone deacetylase (HDAC) 1 inhibitors as anticancer agent. Curr Cancer Drug Targets. 2022;23(1):47–70. doi: 10.2174/1568009622666220624090542.
  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. doi: 10.3322/caac.21708.
  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660.
  • Dawood S. Triple-negative breast cancer: epidemiology and management options. Drugs. 2010; 70(17):2247–2258. doi: 10.2165/11538150-000000000-00000.
  • Lehmann BD, Jovanovic B, Chen X, et al. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS One. 2016;11(6):e0157368. doi: 10.1371/journal.pone.0157368.
  • Ensenyat-Mendez M, Llinas-Arias P, Orozco JIJ, et al. Current triple-negative breast cancer subtypes: dissecting the most aggressive form of breast cancer. Front Oncol. 2021;11:681476. doi: 10.3389/fonc.2021.681476.
  • Miglietta F, Griguolo G, Bottosso M, et al. Evolution of HER2-low expression from primary to recurrent breast cancer. NPJ Breast Cancer. 2021;7(1):137. doi: 10.1038/s41523-021-00343-4.
  • Popovic M, Silovski T, Krizic M, et al. HER2 low breast cancer: a new subtype or a trojan for cytotoxic drug delivery? Int J Mol Sci. 2023;24(9):8206. doi: 10.3390/ijms24098206.
  • da Silva JL, Carvalho GS, Zanetti de Albuquerque L, et al. Exploring real-world HER2-low data in early-stage triple-negative breast cancer: insights and implications. Breast Cancer (Dove Med Press). 2023;15:337–347. doi: 10.2147/BCTT.S408743.
  • Zhang H, Peng Y. Current biological, pathological and clinical landscape of HER2-Low breast cancer. Cancers (Basel). 2022; 15(1):126. doi: 10.3390/cancers15010126.
  • Qiu J, Xue X, Hu C, et al. Comparison of clinicopathological features and prognosis in triple-negative and non-triple negative breast cancer. J Cancer. 2016;7(2):167–173. doi: 10.7150/jca.10944.
  • Astvatsaturyan K, Yue Y, Walts AE, et al. Androgen receptor positive triple negative breast cancer: clinicopathologic, prognostic, and predictive features. PLoS One. 2018;13(6):e0197827. doi: 10.1371/journal.pone.0197827.
  • Alluri P, Newman LA. Basal-like and triple-negative breast cancers: searching for positives among many negatives. Surg Oncol Clin N Am. 2014; 23(3):567–577. doi: 10.1016/j.soc.2014.03.003.
  • Yin L, Duan JJ, Bian XW, et al. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22(1):61. doi: 10.1186/s13058-020-01296-5.
  • Landry I, Sumbly V, Vest M. Advancements in the treatment of Triple-Negative breast cancer: a narrative review of the literature. Cureus. 2022; 14(2):e21970. doi: 10.7759/cureus.21970.
  • Almansour NM. Triple-Negative breast cancer: a brief review about epidemiology, risk factors, signaling pathways, treatment and role of artificial intelligence. Front Mol Biosci. 2022;9:836417. doi: 10.3389/fmolb.2022.836417.
  • Thakur KK, Bordoloi D, Kunnumakkara AB. Alarming burden of Triple-Negative breast cancer in India. Clin Breast Cancer. 2018; 18(3):e393–e399. doi: 10.1016/j.clbc.2017.07.013.
  • Plasilova ML, Hayse B, Killelea BK, et al. Features of triple-negative breast cancer: analysis of 38,813 cases from the national cancer database. Medicine (Baltimore). 2016;95(35):e4614. doi: 10.1097/MD.0000000000004614.
  • Jamdade VS, Sethi N, Mundhe NA, et al. Therapeutic targets of triple-negative breast cancer: a review. Br J Pharmacol. 2015;172(17):4228–4237. doi: 10.1111/bph.13211.
  • Prakash O, Hossain F, Danos D, et al. Racial disparities in triple negative breast cancer: a review of the role of biologic and non-biologic factors. Front Public Health. 2020;8:576964. doi: 10.3389/fpubh.2020.576964.
  • Thummuri D, Kumar S, Surapaneni SK, et al. Epigenetic regulation of protein tyrosine phosphatase PTPN12 in triple-negative breast cancer. Life Sci. 2015;130:73–80. doi: 10.1016/j.lfs.2015.03.016.
  • Boyle P. Triple-negative breast cancer: epidemiological considerations and recommendations. Ann Oncol. 2012; 23(Suppl 6):vi7–12. doi: 10.1093/annonc/mds187.
  • Jitariu AA, Cimpean AM, Ribatti D, et al. Triple negative breast cancer: the kiss of death. Oncotarget. 2017;8(28):46652–46662. doi: 10.18632/oncotarget.16938.
  • Becker S. A historic and scientific review of breast cancer: the next global healthcare challenge. Int J Gynaecol Obstet. 2015; 131 (Suppl 1):S36–S9. doi: 10.1016/j.ijgo.2015.03.015.
  • Thompson AM, Moulder-Thompson SL. Neoadjuvant treatment of breast cancer. Ann Oncol. 2012; 23(Suppl 10):x231–6. doi: 10.1093/annonc/mds324.
  • Blum JL, Flynn PJ, Yothers G, et al. Anthracyclines in early breast cancer: the ABC Trials-USOR 06-090, NSABP B-46-I/USOR 07132, and NSABP B-49 (NRG oncology). J Clin Oncol. 2017;35(23):2647–2655. doi: 10.1200/JCO.2016.71.4147.
  • Kurmi BD, Paliwal SR. Development and optimization of TPGS-based stealth liposome of doxorubicin using Box-Behnken design: characterization, hemocompatibility, and cytotoxicity evaluation in breast cancer cells. J Liposome Res. 2022; 32(2):129–145. doi: 10.1080/08982104.2021.1903034.
  • Kurmi BD, Paliwal R, Paliwal SR. Dual cancer targeting using estrogen functionalized chitosan nanoparticles loaded with doxorubicin-estrone conjugate: a quality by design approach. Int J Biol Macromol. 2020; 164:2881–2894. doi: 10.1016/j.ijbiomac.2020.08.172.
  • Tekchandani P, Kurmi BD, Paliwal R, et al. Galactosylated TPGS micelles for docetaxel targeting to hepatic carcinoma: development, characterization, and biodistribution study. AAPS PharmSciTech. 2020;21(5):174. doi: 10.1208/s12249-020-01690-4.
  • Manjunath M, Choudhary B. Triple-negative breast cancer: a run-through of features, classification and current therapies. Oncol Lett. 2021; 22(1):512. doi: 10.3892/ol.2021.12773.
  • Wang J, Shi M, Ling R, et al. Adjuvant chemotherapy and radiotherapy in triple-negative breast carcinoma: a prospective randomized controlled multi-center trial. Radiother Oncol. 2011;100(2):200–204. doi: 10.1016/j.radonc.2011.07.007.
  • Park JH, Ahn JH, Kim SB. How shall we treat early triple-negative breast cancer (TNBC): from the current standard to upcoming immuno-molecular strategies. ESMO Open. 2018;3(Suppl 1):e000357. doi: 10.1136/esmoopen-2018-000357.
  • Huang L, Liu Q, Chen S, et al. Cisplatin versus carboplatin in combination with paclitaxel as neoadjuvant regimen for triple negative breast cancer. Onco Targets Ther. 2017;10:5739–5744. doi: 10.2147/OTT.S145934.
  • Kim GM, Jeung H-C, Jung KH, et al. PEARLY: a randomized, multicenter, open-label, phase III trial comparing anthracyclines followed by taxane versus anthracyclines followed by taxane plus carboplatin as (neo) adjuvant therapy in patients with early triple-negative breast cancer. J Clin Oncol. 2017;35:15(Suppl):TPS587–TPS587. doi: 10.1200/JCO.2017.35.15_suppl.TPS587.
  • Bertrand N, Wu J, Xu X, et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25. doi: 10.1016/j.addr.2013.11.009.
  • Kurmi BD, Kayat J, Gajbhiye V, et al. Micro- and nanocarrier-mediated lung targeting. Expert Opin Drug Deliv. 2010;7(7):781–794. doi: 10.1517/17425247.2010.492212.
  • Kurmi BD, Gajbhiye V, Kayat J, et al. Lactoferrin-conjugated dendritic nanoconstructs for lung targeting of methotrexate. J Pharm Sci. 2011;100(6):2311–2320. doi: 10.1002/jps.22469.
  • Bazak R, Houri M, Achy SE, et al. Passive targeting of nanoparticles to cancer: a comprehensive review of the literature. Mol Clin Oncol. 2014;2(6):904–908. doi: 10.3892/mco.2014.356.
  • Ghosh S, Javia A, Shetty S, et al. Triple negative breast cancer and non-small cell lung cancer: clinical challenges and nano-formulation approaches. J Control Release. 2021;337:27–58. doi: 10.1016/j.jconrel.2021.07.014.
  • Suk JS, Xu Q, Kim N, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99(Pt A):28–51. doi: 10.1016/j.addr.2015.09.012.
  • Biswas S, Deshpande PP, Perche F, et al. Octa-arginine-modified pegylated liposomal doxorubicin: an effective treatment strategy for non-small cell lung cancer. Cancer Lett. 2013;335(1):191–200. doi: 10.1016/j.canlet.2013.02.020.
  • Palma G, Conte C, Barbieri A, et al. Antitumor activity of PEGylated biodegradable nanoparticles for sustained release of docetaxel in triple-negative breast cancer. Int J Pharm. 2014;473(1-2):55–63. doi: 10.1016/j.ijpharm.2014.06.058.
  • Shi J, Xiao Z, Votruba AR, et al. Differentially charged hollow core/shell lipid-polymer-lipid hybrid nanoparticles for small interfering RNA delivery. Angew Chem Int Ed Engl. 2011;50(31):7027–7031. doi: 10.1002/anie.201101554.
  • Subhan MA, Yalamarty SSK, Filipczak N, et al. Recent advances in tumor targeting via EPR effect for cancer treatment. J Pers Med. 2021;11(6):571. doi: 10.3390/jpm11060571.
  • Bakrania AK, Variya BC, Patel SS. Novel targets for paclitaxel nano formulations: hopes and hypes in triple negative breast cancer. Pharmacol Res. 2016; 111:577–591. doi: 10.1016/j.phrs.2016.07.023.
  • Attia MF, Anton N, Wallyn J, et al. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol. 2019;71(8):1185–1198. doi: 10.1111/jphp.13098.
  • Yu B, Tai HC, Xue W, et al. Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol. 2010;27(7):286–298. doi: 10.3109/09687688.2010.521200.
  • Thakur V, Kutty RV. Recent advances in nanotheranostics for triple negative breast cancer treatment. J Exp Clin Cancer Res. 2019; 38(1):430. doi: 10.1186/s13046-019-1443-1.
  • Vadevoo SMP, Gurung S, Khan F, et al. Peptide-based targeted therapeutics and apoptosis imaging probes for cancer therapy. Arch Pharm Res. 2019;42(2):150–158. doi: 10.1007/s12272-019-01125-0.
  • Newton EE, Mueller LE, Treadwell SM, et al. Molecular targets of Triple-Negative breast cancer: where do We stand? Cancers (Basel). 2022;14(3):482. doi: 10.3390/cancers14030482.
  • Pawar A, Prabhu P. Nanosoldiers: a promising strategy to combat triple negative breast cancer. Biomed Pharmacother. 2019; 110:319–341. doi: 10.1016/j.biopha.2018.11.122.
  • Li Y, Zhan Z, Yin X, et al. Targeted therapeutic strategies for Triple-Negative breast cancer. Front Oncol. 2021;11:731535. doi: 10.3389/fonc.2021.731535.
  • Kumar P, Aggarwal R. An overview of triple-negative breast cancer. Arch Gynecol Obstet. 2016; 293(2):247–269. doi: 10.1007/s00404-015-3859-y.
  • Jung KH, Lee JH, Park JW, et al. Targeted therapy of triple negative MDA-MB-468 breast cancer with curcumin delivered by epidermal growth factor-conjugated phospholipid nanoparticles. Oncol Lett. 2018;15(6):9093–9100. doi: 10.3892/ol.2018.8471.
  • Miller-Kleinhenz JM, Bozeman EN, Yang L. Targeted nanoparticles for image-guided treatment of triple-negative breast cancer: clinical significance and technological advances. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015; 7(6):797–816. doi: 10.1002/wnan.1343.
  • Brinkman AM, Chen G, Wang Y, et al. Aminoflavone-loaded EGFR-targeted unimolecular micelle nanoparticles exhibit anti-cancer effects in triple negative breast cancer. Biomaterials. 2016;101:20–31. doi: 10.1016/j.biomaterials.2016.05.041.
  • Burande AS, Viswanadh MK, Jha A, et al. EGFR targeted paclitaxel and piperine Co-loaded liposomes for the treatment of triple negative breast cancer. AAPS PharmSciTech. 2020;21(5):151. doi: 10.1208/s12249-020-01671-7.
  • Ghosh A, Bhowmik A, Bhandary S, et al. Formulation and antitumorigenic activities of nanoencapsulated nifetepimine: a promising approach in treating triple negative breast carcinoma. Nanomedicine. 2016;12(7):1973–1985. doi: 10.1016/j.nano.2016.04.011.
  • Nabil G, Alzhrani R, Alsaab HO, et al. CD44 targeted nanomaterials for treatment of Triple-Negative breast cancer. Cancers (Basel). 2021;13(4):898. doi: 10.3390/cancers13040898.
  • Necela BM, Crozier JA, Andorfer CA, et al. Folate receptor-alpha (FOLR1) expression and function in triple negative tumors. PLoS One. 2015;10(3):e0122209. doi: 10.1371/journal.pone.0122209.
  • Paulmurugan R, Bhethanabotla R, Mishra K, et al. Folate Receptor-Targeted polymeric micellar nanocarriers for delivery of orlistat as a repurposed drug against Triple-Negative breast cancer. Mol Cancer Ther. 2016;15(2):221–231. doi: 10.1158/1535-7163.MCT-15-0579.
  • Gajaria P, Kadu V, Patil A, et al. Triple negative breast cancer: expression of folate receptor alpha in indian population. Ann Diagn Pathol. 2020;49:151598. doi: 10.1016/j.anndiagpath.2020.151598.
  • Holmes DI, Zachary I. The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol. 2005;6(2):209. doi: 10.1186/gb-2005-6-2-209.
  • Zhu X, Zhou W. The emerging regulation of VEGFR-2 in triple-negative breast cancer. JFiE. 2015;6:159.
  • Mohan N, Luo X, Shen Y, et al. A novel bispecific antibody targeting EGFR and VEGFR2 is effective against triple negative breast cancer via multiple mechanisms of action. Cancers (Basel). 2021;13(5):1027. doi: 10.3390/cancers13051027.
  • Anestis A, Zoi I, Papavassiliou AG, et al. Androgen receptor in breast cancer—clinical and preclinical research insights. Molecules. 2020;25(2):358. doi: 10.3390/molecules25020358.
  • Gerratana L, Basile D, Buono G, et al. Androgen receptor in triple negative breast cancer: a potential target for the targetless subtype. Cancer Treat Rev. 2018;68:102–110. doi: 10.1016/j.ctrv.2018.06.005.
  • Ismail S, Kherbek H, Skef J, et al. Triple-negative apocrine carcinoma as a rare cause of a breast lump in a syrian female: a case report and review of the literature. BMC Womens Health. 2021;21(1):396. doi: 10.1186/s12905-021-01539-3.
  • Vranic S, Gatalica Z. An update on the molecular and clinical characteristics of apocrine carcinoma of the breast. Clin Breast Cancer. 2022; 22(4):e576–e585. doi: 10.1016/j.clbc.2021.12.009.
  • Shen Y, Li X, Dong D, et al. Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am J Cancer Res. 2018;8(6):916–931.
  • Mazzucchelli S, Truffi M, Baccarini F, et al. H-Ferritin-nanocaged olaparib: a promising choice for both BRCA-mutated and sporadic triple negative breast cancer. Sci Rep. 2017;7(1):7505. doi: 10.1038/s41598-017-07617-7.
  • Basu A, Upadhyay P, Ghosh A, et al. Hyaluronic acid engrafted metformin loaded graphene oxide nanoparticle as CD44 targeted anti-cancer therapy for triple negative breast cancer. Biochim Biophys Acta Gen Subj. 2021;1865(3):129841. doi: 10.1016/j.bbagen.2020.129841.
  • Wang Z, Sau S, Alsaab HO, et al. CD44 directed nanomicellar payload delivery platform for selective anticancer effect and tumor specific imaging of triple negative breast cancer. Nanomedicine. 2018;14(4):1441–1454. doi: 10.1016/j.nano.2018.04.004.
  • Sang M, Han L, Luo R, et al. CD44 targeted redox-triggered self-assembly with magnetic enhanced EPR effects for effective amplification of gambogic acid to treat triple-negative breast cancer. Biomater Sci. 2019;8(1):212–223. doi: 10.1039/c9bm01171d.
  • Fan Y, Wang Q, Lin G, et al. Combination of using prodrug-modified cationic liposome nanocomplexes and a potentiating strategy via targeted co-delivery of gemcitabine and docetaxel for CD44-overexpressed triple negative breast cancer therapy. Acta Biomater. 2017;62:257–272. doi: 10.1016/j.actbio.2017.08.034.
  • Yue G, Wang C, Liu B, et al. Liposomes co-delivery system of doxorubicin and astragaloside IV co-modified by folate ligand and octa-arginine polypeptide for anti-breast cancer. RSC Adv. 2020;10(20):11573–11581. doi: 10.1039/c9ra09040a.
  • Laha D, Pal K, Chowdhuri AR, et al. Fabrication of curcumin-loaded folic acid-tagged metal organic framework for triple negative breast cancer therapy in in vitro and in vivo systems. New J Chem. 2019;43(1):217–229. doi: 10.1039/C8NJ03350A.
  • Agnello L, Tortorella S, d’Argenio A, et al. Optimizing cisplatin delivery to triple-negative breast cancer through novel EGFR aptamer-conjugated polymeric nanovectors. J Exp Clin Cancer Res. 2021;40(1):239. doi: 10.1186/s13046-021-02039-w.
  • Tekchandani P, Kurmi BD, Paliwal SR. Nanomedicine to deal with cancer cell biology in Multi-Drug resistance. Mini Rev Med Chem. 2017;17(18):1793–1810. doi: 10.2174/1389557516666160219123222.
  • Bianchini G, Balko JM, Mayer IA, et al. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 2016;13(11):674–690. doi: 10.1038/nrclinonc.2016.66.
  • Yamamoto S, Schulze KL, Bellen HJ. Introduction to notch signaling. Methods Mol Biol. 2014;1187:1–14. doi: 10.1007/978-1-4939-1139-4_1.
  • Aster JC, Pear WS, Blacklow SC. The varied roles of notch in cancer. Annu Rev Pathol. 2017;12(1):245–275. doi: 10.1146/annurev-pathol-052016-100127.
  • Edwards A, Brennan K. Notch signalling in breast development and cancer. Front Cell Dev Biol. 2021;9:692173. doi: 10.3389/fcell.2021.692173.
  • Zhou L, Wang D, Sheng D, et al. NOTCH4 maintains quiescent mesenchymal-like breast cancer stem cells via transcriptionally activating SLUG and GAS1 in triple-negative breast cancer. Theranostics. 2020;10(5):2405–2421. doi: 10.7150/thno.38875.
  • Speiser J, Foreman K, Drinka E, et al. Notch-1 and notch-4 biomarker expression in triple-negative breast cancer. Int J Surg Pathol. 2012;20(2):139–145. doi: 10.1177/1066896911427035.
  • Takebe N, Nguyen D, Yang SX. Targeting notch signaling pathway in cancer: clinical development advances and challenges. Pharmacol Ther. 2014; 141(2):140–149. doi: 10.1016/j.pharmthera.2013.09.005.
  • Shih Ie M, Wang TL. Notch signaling, gamma-secretase inhibitors, and cancer therapy. Cancer Res. 2007; 67(5):1879–1882. doi: 10.1158/0008-5472.CAN-06-3958.
  • Li ZL, Chen C, Yang Y, et al. Gamma secretase inhibitor enhances sensitivity to doxorubicin in MDA-MB-231 cells. Int J Clin Exp Pathol. 2015;8(5):4378–4387.
  • Locatelli MA, Aftimos P, Dees EC, et al. Phase I study of the gamma secretase inhibitor PF-03084014 in combination with docetaxel in patients with advanced triple-negative breast cancer. Oncotarget. 2017;8(2):2320–2328. doi: 10.18632/oncotarget.13727.
  • Venkatesh V, Nataraj R, Thangaraj GS, et al. Targeting notch signalling pathway of cancer stem cells. Stem Cell Investig. 2018;5:5–5. doi: 10.21037/sci.2018.02.02.
  • Giuli MV, Giuliani E, Screpanti I, et al. Notch signaling activation as a hallmark for Triple-Negative breast cancer subtype. J Oncol. 2019;2019:8707053–8707015. doi: 10.1155/2019/8707053.
  • Yen WC, Fischer MM, Axelrod F, et al. Targeting notch signaling with a Notch2/Notch3 antagonist (tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency. Clin Cancer Res. 2015;21(9):2084–2095. doi: 10.1158/1078-0432.CCR-14-2808.
  • Mittal S, Sharma A, Balaji SA, et al. Coordinate hyperactivation of Notch1 and ras/MAPK pathways correlates with poor patient survival: novel therapeutic strategy for aggressive breast cancers. Mol Cancer Ther. 2014;13(12):3198–3209. doi: 10.1158/1535-7163.MCT-14-0280.
  • Khan MA, Jain VK, Rizwanullah M, et al. PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: a review on drug discovery and future challenges. Drug Discov Today. 2019;24(11):2181–2191. doi: 10.1016/j.drudis.2019.09.001.
  • Costa RLB, Han HS, Gradishar WJ. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review. Breast Cancer Res Treat. 2018; 169(3):397–406. doi: 10.1007/s10549-018-4697-y.
  • Mayer IA, Arteaga CL. The PI3K/AKT pathway as a target for cancer treatment. Annu Rev Med. 2016;67(1):11–28. doi: 10.1146/annurev-med-062913-051343.
  • Massihnia D, Galvano A, Fanale D, et al. Triple negative breast cancer: shedding light onto the role of pi3k/akt/mtor pathway. Oncotarget. 2016;7(37):60712–60722. doi: 10.18632/oncotarget.10858.
  • Killock D. AKT inhibition improves OS in TNBC. Nat Rev Clin Oncol. 2020; 17(3):135–135. doi: 10.1038/s41571-019-0322-1.
  • Chin YR, Yoshida T, Marusyk A, et al. Targeting Akt3 signaling in triple-negative breast cancer. Cancer Res. 2014;74(3):964–973. doi: 10.1158/0008-5472.CAN-13-2175.
  • Deng M, Wang J, Chen Y, et al. Combination of SF1126 and gefitinib induces apoptosis of triple-negative breast cancer cells through the PI3K/AKT-mTOR pathway. Anticancer Drugs. 2015;26(4):422–427. doi: 10.1097/CAD.0000000000000202.
  • Jovanovic B, Mayer IA, Mayer EL, et al. A randomized phase II neoadjuvant study of cisplatin, paclitaxel with or without everolimus in patients with stage II/III Triple-Negative breast cancer (TNBC): responses and long-term outcome correlated with increased frequency of DNA damage response gene mutations, TNBC subtype, AR status, and Ki67. Clin Cancer Res. 2017;23(15):4035–4045. doi: 10.1158/1078-0432.CCR-16-3055.
  • Morales J, Li L, Fattah FJ, et al. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr. 2014;24(1):15–28. doi: 10.1615/critreveukaryotgeneexpr.2013006875.
  • Schiewer MJ, Knudsen KE. Transcriptional roles of PARP1 in cancer. Mol Cancer Res. 2014; 12(8):1069–1080. doi: 10.1158/1541-7786.MCR-13-0672.
  • Geenen JJJ, Linn SC, Beijnen JH, et al. PARP inhibitors in the treatment of Triple-Negative breast cancer. Clin Pharmacokinet. 2018;57(4):427–437. doi: 10.1007/s40262-017-0587-4.
  • Layman RM, Arun B. PARP inhibitors in Triple-Negative breast cancer including those with BRCA mutations. Cancer J. 2021 Jan-Feb 01;27(1):67–75. doi: 10.1097/PPO.0000000000000499.
  • Won KA, Spruck C. Triplenegative breast cancer therapy: current and future perspectives (review). Int J Oncol. 2020; 57(6):1245–1261. doi: 10.3892/ijo.2020.5135.
  • Nagayama A, Vidula N, Ellisen L, et al. Novel antibody-drug conjugates for triple negative breast cancer. Ther Adv Med Oncol. 2020;12:1758835920915980. doi: 10.1177/1758835920915980.
  • Tray N, Adams S, Esteva FJ. Antibody-drug conjugates in triple negative breast cancer. Future Oncol. 2018; 14(25):2651–2661. doi: 10.2217/fon-2018-0131.
  • Fenn KM, Kalinsky K. Sacituzumab govitecan: antibody-drug conjugate in triple-negative breast cancer and other solid tumors. Drugs Today (Barc). 2019; 55(9):575–585. doi: 10.1358/dot.2019.55.9.3039669.
  • Bardia A, Mayer IA, Vahdat LT, et al. Sacituzumab govitecan-hziy in refractory metastatic Triple-Negative breast cancer. N Engl J Med. 2019;380(8):741–751. doi: 10.1056/NEJMoa1814213.
  • Weiss J, Glode A, Messersmith WA, et al. Sacituzumab govitecan: breakthrough targeted therapy for triple-negative breast cancer. Expert Rev Anticancer Ther. 2019;19(8):673–679. doi: 10.1080/14737140.2019.1654378.
  • Sussman D, Smith LM, Anderson ME, et al. SGN-LIV1A: a novel antibody-drug conjugate targeting LIV-1 for the treatment of metastatic breast cancer. Mol Cancer Ther. 2014;13(12):2991–3000. doi: 10.1158/1535-7163.MCT-13-0896.
  • Lyons TG. Targeted therapies for Triple-Negative breast cancer. Curr Treat Options Oncol. 2019; 20(11):82. doi: 10.1007/s11864-019-0682-x.
  • Valencia GA, Rioja P, Morante Z, et al. Immunotherapy in triple-negative breast cancer: a literature review and new advances. World J Clin Oncol. 2022;13(3):219–236. doi: 10.5306/wjco.v13.i3.219.
  • Dieci MV, Miglietta F, Guarneri V. Immune infiltrates in breast cancer: recent updates and clinical implications. Cells. 2021; 10(2):223. doi: 10.3390/cells10020223.
  • Planes-Laine G, Rochigneux P, Bertucci F, et al. PD-1/PD-L1 targeting in breast cancer: the first clinical evidences are emerging. A literature review. Cancers (Basel). 2019;11(7):1033. doi: 10.3390/cancers11071033.
  • Sabatier R, Finetti P, Mamessier E, et al. Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget. 2015;6(7):5449–5464. doi: 10.18632/oncotarget.3216.
  • Mittendorf EA, Philips AV, Meric-Bernstam F, et al. PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res. 2014;2(4):361–370. doi: 10.1158/2326-6066.CIR-13-0127.
  • Wesolowski J, Tankiewicz-Kwedlo A, Pawlak D. Modern immunotherapy in the treatment of Triple-Negative breast cancer. Cancers (Basel). 2022; 14(16):3860. doi: 10.3390/cancers14163860.
  • Emens LA, Adams S, Barrios CH, et al. First-line atezolizumab plus nab-paclitaxel for unresectable, locally advanced, or metastatic triple-negative breast cancer: IMpassion130 final overall survival analysis. Ann Oncol. 2021;32(12):1650–1993. doi: 10.1016/j.annonc.2021.05.355.
  • Mohan N, Hosain S, Zhao J, et al. Atezolizumab potentiates tcell-mediated cytotoxicity and coordinates with FAK to suppress cell invasion and motility in PD-L1(+) triple negative breast cancer cells. Oncoimmunology. 2019;8(9):e1624128. doi: 10.1080/2162402X.2019.1624128.
  • Schmid P, Salgado R, Park YH, et al. Pembrolizumab plus chemotherapy as neoadjuvant treatment of high-risk, early-stage triple-negative breast cancer: results from the phase 1b open-label, multicohort KEYNOTE-173 study. Ann Oncol. 2020;31(5):569–581. doi: 10.1016/j.annonc.2020.01.072.
  • Cortés J, Lipatov O, Im S, et al. KEYNOTE-119: phase 3 study of pembrolizumab (pembro) versus single-agent chemotherapy (chemo) for metastatic triple-negative breast cancer (mTNBC). Ann Oncol. 2019;30(Suppl 5):v851–v934.
  • Cortes J, Rugo HS, Cescon DW, et al. Pembrolizumab plus chemotherapy in advanced Triple-Negative breast cancer. N Engl J Med. 2022;387(3):217–226. doi: 10.1056/NEJMoa2202809.
  • Yao Y, Zhou Y, Liu L, et al. Nanoparticle-Based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci. 2020;7:193. doi: 10.3389/fmolb.2020.00193.
  • Nakhaei P, Margiana R, Bokov DO, et al. Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front Bioeng Biotechnol. 2021;9:705886. doi: 10.3389/fbioe.2021.705886.
  • Kumari L, Choudhari Y, Patel P, et al. Advancement in solubilization approaches: a step towards bioavailability enhancement of poorly soluble drugs. Life (Basel). 2023;13(5):1099. doi: 10.3390/life13051099.
  • Olusanya TOB, Haj Ahmad RR, Ibegbu DM, et al. Liposomal drug delivery systems and anticancer drugs. Molecules. 2018;23(4):907. doi: 10.3390/molecules23040907.
  • Si Y, Zhang Y, Ngo HG, et al. Targeted liposomal chemotherapies to treat Triple-Negative breast cancer. Cancers (Basel). 2021;13(15):3749. doi: 10.3390/cancers13153749.
  • Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond). 2013; 8(9):1509–1528. doi: 10.2217/nnm.13.118.
  • George TA, Chen MM, Czosseck A, et al. Liposome-encapsulated anthraquinone improves efficacy and safety in triple negative breast cancer. J Control Release. 2022;342:31–43. doi: 10.1016/j.jconrel.2021.12.001.
  • Hwang D, Ramsey JD, Kabanov AV. Polymeric micelles for the delivery of poorly soluble drugs: from nanoformulation to clinical approval. Adv Drug Deliv Rev. 2020;156:80–118. doi: 10.1016/j.addr.2020.09.009.
  • Jhaveri AM, Torchilin VP. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol. 2014;5:77. doi: 10.3389/fphar.2014.00077.
  • Zhang Y, Huang Y, Li S. Polymeric micelles: nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech. 2014; 15(4):862–871. doi: 10.1208/s12249-014-0113-z.
  • Das SS, Bharadwaj P, Bilal M, et al. Stimuli-Responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers (Basel). 2020;12(6):1397. doi: 10.3390/polym12061397.
  • Sang MM, Liu FL, Wang Y, et al. A novel redox/pH dual-responsive and hyaluronic acid-decorated multifunctional magnetic complex micelle for targeted gambogic acid delivery for the treatment of triple negative breast cancer. Drug Deliv. 2018;25(1):1846–1857. doi: 10.1080/10717544.2018.1486472.
  • Kutty RV, Feng SS. Cetuximab conjugated vitamin E TPGS micelles for targeted delivery of docetaxel for treatment of triple negative breast cancers. Biomaterials. 2013; 34(38):10160–10171. doi: 10.1016/j.biomaterials.2013.09.043.
  • Begines B, Ortiz T, Perez-Aranda M, et al. Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomaterials (Basel). 2020;10(7):1403. doi: 10.3390/nano10071403.
  • Kadkhoda J, Aghanejad A, Safari B, et al. Aptamer-conjugated gold nanoparticles for targeted paclitaxel delivery and photothermal therapy in breast cancer. J Drug Deliv Sci Technol. 2022;67:102954. doi: 10.1016/j.jddst.2021.102954.
  • Fortuni B, Inose T, Ricci M, et al. Polymeric engineering of nanoparticles for highly efficient multifunctional drug delivery systems. Sci Rep. 2019;9(1):2666. doi: 10.1038/s41598-019-39107-3.
  • Dubey SK, Salunkhe S, Agrawal M, et al. Understanding the pharmaceutical aspects of dendrimers for the delivery of anticancer drugs. Curr Drug Targets. 2020;21(6):528–540. doi: 10.2174/1389450120666191031092259.
  • Jain V, Kumar H, Anod HV, et al. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J Control Release. 2020;326:628–647. doi: 10.1016/j.jconrel.2020.07.003.
  • Liu C, Gao H, Zhao Z, et al. Improved tumor targeting and penetration by a dual-functional poly (amidoamine) dendrimer for the therapy of triple-negative breast cancer. J Mater Chem B. 2019;7(23):3724–3736. doi: 10.1039/C9TB00433E.
  • Chittasupho C, Anuchapreeda S, Sarisuta N. CXCR4 targeted dendrimer for anti-cancer drug delivery and breast cancer cell migration inhibition. Eur J Pharm Biopharm. 2017; 119:310–321. doi: 10.1016/j.ejpb.2017.07.003.
  • Khalid K, Tan X, Mohd Zaid HF, et al. Advanced in developmental organic and inorganic nanomaterial: a review. Bioengineered. 2020;11(1):328–355. doi: 10.1080/21655979.2020.1736240.
  • Li T, Shi S, Goel S, et al. Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer. Acta Biomater. 2019;89:1–13. doi: 10.1016/j.actbio.2019.02.031.
  • Zhang T, Liu H, Li L, et al. Leukocyte/platelet hybrid membrane-camouflaged dendritic large pore mesoporous silica nanoparticles co-loaded with photo/chemotherapeutic agents for triple negative breast cancer combination treatment. Bioact Mater. 2021;6(11):3865–3878. doi: 10.1016/j.bioactmat.2021.04.004.
  • Castilho ML, Jesus VPS, Vieira PFA, et al. Chlorin e6-EGF conjugated gold nanoparticles as a nanomedicine based therapeutic agent for triple negative breast cancer. Photodiagnosis Photodyn Ther. 2021;33:102186. doi: 10.1016/j.pdpdt.2021.102186.
  • Azizi M, Ghourchian H, Yazdian F, et al. Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line. Sci Rep. 2017;7(1):5178. doi: 10.1038/s41598-017-05461-3.
  • Rosenblum D, Joshi N, Tao W, et al. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018;9(1):1410. doi: 10.1038/s41467-018-03705-y.
  • Pillai G, Ceballos-Coronel ML. Science and technology of the emerging nanomedicines in cancer therapy: a primer for physicians and pharmacists. SAGE Open Med. 2013;1:2050312113513759. doi: 10.1177/2050312113513759.
  • Ni C, Fang J, Qian H, et al. Liposomal doxorubicin-related palmar-plantar erythrodysesthesia (hand-foot syndrome): a case report. J Int Med Res. 2020;48(12):300060520974854. doi: 10.1177/0300060520974854.
  • Portera CC, Walshe JM, Rosing DR, et al. Cardiac toxicity and efficacy of trastuzumab combined with pertuzumab in patients with [corrected] human epidermal growth factor receptor 2-positive metastatic breast cancer. Clin Cancer Res. 2008;14(9):2710–2716. doi: 10.1158/1078-0432.CCR-07-4636.
  • Lin HF, Liao KF, Chang CM, et al. Correlation of the tamoxifen use with the increased risk of deep vein thrombosis and pulmonary embolism in elderly women with breast cancer: a case-control study. Medicine (Baltimore). 2018;97(51):e12842. doi: 10.1097/MD.0000000000012842.
  • Zou L, Wang H, He B, et al. Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics. 2016;6(6):762–772. doi: 10.7150/thno.14988.
  • Chen J, Ning C, Zhou Z, et al. Nanomaterials as photothermal therapeutic agents. Prog Mater Sci. 2019;99:1–26. doi: 10.1016/j.pmatsci.2018.07.005.
  • Zhao L, Zhang X, Wang X, et al. Recent advances in selective photothermal therapy of tumor. J Nanobiotechnol. 2021;19(1):335. doi: 10.1186/s12951-021-01080-3.
  • Hou YJ, Yang XX, Liu RQ, et al. Pathological mechanism of photodynamic therapy and photothermal therapy based on nanoparticles. Int J Nanomedicine. 2020;15:6827–6838. doi: 10.2147/IJN.S269321.
  • Kadkhoda J, Tarighatnia A, Tohidkia MR, et al. Photothermal therapy-mediated autophagy in breast cancer treatment: progress and trends. Life Sci. 2022;298:120499. doi: 10.1016/j.lfs.2022.120499.
  • Han HS, Choi KY. Advances in nanomaterial-mediated photothermal cancer therapies: toward clinical applications. Biomedicines. 2021;9(3):305. doi: 10.3390/biomedicines9030305.
  • Zhang M, Kim HS, Jin T, et al. Near-infrared photothermal therapy using anti-EGFR-gold nanorod conjugates for triple negative breast cancer. Oncotarget. 2017;8(49):86566–86575. doi: 10.18632/oncotarget.21243.
  • Ye H, Wang K, Wang M, et al. Bioinspired nanoplatelets for chemo-photothermal therapy of breast cancer metastasis inhibition. Biomaterials. 2019;206:1–12. doi: 10.1016/j.biomaterials.2019.03.024.
  • Abrahamse H, Hamblin MR. New photosensitizers for photodynamic therapy. Biochem J. 2016; 473(4):347–364. doi: 10.1042/BJ20150942.
  • van Straten D, Mashayekhi V, de Bruijn HS, et al. Oncologic photodynamic therapy: basic principles, current clinical status and future directions. Cancers (Basel). 2017;9(2):19. doi: 10.3390/cancers9020019.
  • Lim DJ. Methylene Blue-Based nano and microparticles: fabrication and applications in photodynamic therapy. Polymers (Basel). 2021;13(22):3955. doi: 10.3390/polym13223955.
  • Ostanska E, Aebisher D, Bartusik-Aebisher D. The potential of photodynamic therapy in current breast cancer treatment methodologies. Biomed Pharmacother. 2021; 137:111302. doi: 10.1016/j.biopha.2021.111302.
  • Czarnecka-Czapczynska M, Aebisher D, Oles P, et al. The role of photodynamic therapy in breast cancer - A review of in vitro research. Biomed Pharmacother. 2021;144:112342. doi: 10.1016/j.biopha.2021.112342.
  • Ibarra LE, Camorani S, Agnello L, et al. Selective photo-assisted eradication of Triple-Negative breast cancer cells through aptamer decoration of doped conjugated polymer nanoparticles. Pharmaceutics. 2022;14(3):626. doi: 10.3390/pharmaceutics14030626.
  • Dos Santos AF, Terra LF, Wailemann RA, et al. Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells. BMC Cancer. 2017;17(1):194. doi: 10.1186/s12885-017-3179-7.
  • Yousefi Sadeghloo A, Khorsandi K, Kianmehr Z. Synergistic effect of photodynamic treatment and doxorubicin on triple negative breast cancer cells. Photochem Photobiol Sci. 2020; 19(11):1580–1589. doi: 10.1039/d0pp00132e.
  • Sun S, Xu Y, Fu P, et al. Ultrasound-targeted photodynamic and gene dual therapy for effectively inhibiting triple negative breast cancer by cationic porphyrin lipid microbubbles loaded with HIF1α-siRNA. Nanoscale Adv. 2018;10(42):19945–19956. doi: 10.1039/c8nr03074j.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.