194
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Recent developments in nanoparticles for the treatment of diabetes

, &
Pages 908-919 | Received 26 Jun 2023, Accepted 14 Sep 2023, Published online: 25 Sep 2023

References

  • American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2008;31(1):S55–S60.
  • Piero MN, Nzaro GM, Njagi JM. Diabetes mellitus—a devastating metabolic disorder. AJBPS. 2015;4(40):1–7. doi: 10.15272/ajbps.v4i40.645.
  • Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and ­projections for 2045. Diabetes Res Clin Pract. 2018;138:271–281. doi: 10.1016/j.diabres.2018.02.023.
  • Zheng Y, Ley SH, Hu FB. Global etiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98. doi: 10.1038/nrendo.2017.151.
  • Sarkar BK, Akter R, Das J, et al. Diabetes mellitus: a comprehensive review. J Pharmacog Phytochem. 2019;8(6):2362–2371.
  • Sivieri K, de Oliveira SM, de Souza Marquez A, et al. Insights on β-glucan as a prebiotic coadjuvant in the treatment of diabetes mellitus: a review. Food Hydrocol Health. 2022;2:100056. doi: 10.1016/j.fhfh.2022.100056.
  • Yeung AW, Tzvetkov NT, Durazzo A, et al. Natural products in diabetes research: quantitative literature analysis. Nat Prod Res. 2021;35(24):5813–5827. doi: 10.1080/14786419.2020.1821019.
  • Sathasivampillai SV, Rajamanoharan PR, Munday M, et al. Plants used to treat diabetes in Sri Lankan siddha medicine—an ethnopharmacological review of historical and modern sources. J Ethnopharmacol. 2017;198:531–599. doi: 10.1016/j.jep.2016.07.053.
  • Harsoliya MS, Patel VM, Modasiya M. Recent advances & applications of nanotechnology in diabetes. Int J Pharm Biol Arch. 2012;3:255–261.
  • Mohanraj VJ, Chen YJ. Nanoparticles-a review. Trop J Pharm Res. 2007;5(1):561–573. doi: 10.4314/tjpr.v5i1.14634.
  • Mu L, Feng SS. A novel controlled release formulation for the anticancer drug paclitaxel (taxol®): PLGA nanoparticles containing vitamin E TPGS. J Control Release. 2003;86(1):33–48. doi: 10.1016/S0168-3659(02)00320-6.
  • Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci. 2002;6(4):319–327. doi: 10.1016/S1359-0286(02)00117-1.
  • Vo TN, Kasper FK, Mikos AG. Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev. 2012;64(12):1292–1309. doi: 10.1016/j.addr.2012.01.016.
  • Kohane DS. Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng. 2007;96(2):203–209. doi: 10.1002/bit.21301.
  • Zhang J, Saltzman M. Engineering biodegradable nanoparticles for drug and gene delivery. Chem Eng Prog. 2013;109(3):25.
  • Emerich DF, Thanos CG. Targeted nanoparticle-based drug delivery and diagnosis. J Drug Target. 2007;15(3):163–183. doi: 10.1080/10611860701231810.
  • Onoue S, Yamada S, Chan HK. Nano drugs: pharmacokinetics and safety. Int J Nanomedicine. 2014;9:1025–1037. doi: 10.2147/IJN.S38378.
  • Mu Q, Jiang G, Chen L, et al. Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev. 2014;114(15):7740–7781. doi: 10.1021/cr400295a.
  • Park HS, Nam SH, Kim J, et al. Clear-cut observation of clearance of sustainable upconverting nanoparticles from the lymphatic system of small living mice. Sci Rep. 2016;6(1):27407. doi: 10.1038/srep27407.
  • Alexis F, Pridgen E, Molnar LK, et al. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–515. doi: 10.1021/mp800051m.
  • McMillan J, Batrakova E, Gendelman HE. Cell delivery of therapeutic nanoparticles. Prog Mol Biol Transl Sci. 2011;104:563–601. doi: 10.1016/B978-0-12-416020-0.00014-0.
  • Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2(4):MR17–71. doi: 10.1116/1.2815690.
  • Prokop A, Davidson JM. Nanovehicular intracellular delivery systems. J Pharm Sci. 2008;97(9):3518–3590. doi: 10.1002/jps.21270.
  • Bantz C, Koshkina O, Lang T, et al. The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions. Beilstein J Nanotechnol. 2014;5(1):1774–1786. doi: 10.3762/bjnano.5.188.
  • Kou L, Sun J, Zhai Y, et al. The endocytosis and intracellular fate of nanomedicines: implication for rational design. Asian J Pharm Sci. 2013;8(1):1–10. doi: 10.1016/j.ajps.2013.07.001.
  • Sykes EA, Dai Q, Sarsons CD, et al. Tailoring nanoparticle designs to target cancer based on tumor pathophysiology. Proc Natl Acad Sci U S A. 2016;113(9):E1142–E1151. doi: 10.1073/pnas.1521265113.
  • Son GH, Lee BJ, Cho CW. Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles. J Pharmaceu Invest. 2017;47(4):287–296. doi: 10.1007/s40005-017-0320-1.
  • Lee JH, Yeo Y. Controlled drug release from pharmaceutical nanocarriers. Chem Eng Sci. 2015;125:75–84. doi: 10.1016/j.ces.2014.08.046.
  • Wong CY, Al-Salami H, Dass CR. Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. J Control Release. 2017;264:247–275. doi: 10.1016/j.jconrel.2017.09.003.
  • Gedawy A, Martinez J, Al-Salami H, et al. Oral insulin delivery: existing barriers and current counter-strategies. J Pharm Pharmacol. 2018;70(2):197–213. doi: 10.1111/jphp.12852.
  • Wong CY, Martinez J, Dass CR. Oral delivery of insulin for the treatment of diabetes: status quo, challenges, and opportunities. J Pharm Pharmacol. 2016;68(9):1093–1108. doi: 10.1111/jphp.12607.
  • Lin CH, Chen CH, Lin ZC, et al. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal. 2017;25(2):219–234. doi: 10.1016/j.jfda.2017.02.001.
  • Chaudhary S, Garg T, Murthy RS, et al. Recent approaches of lipid-based delivery system for lymphatic targeting via the oral route. J Drug Target. 2014;22(10):871–882. doi: 10.3109/1061186X.2014.950664.
  • Jose S, Fangueiro JF, Smitha J, et al. Predictive modeling of insulin release profile from cross-linked chitosan microspheres. Eur J Med Chem. 2013;60:249–253. doi: 10.1016/j.ejmech.2012.12.011.
  • Sharma DK, Pattnaik G, Behera A. Development and in-vitro, in-vivo evaluation of pioglitazone-loaded polymeric nanoparticles using Central composite design surface response methodology. OpenNano. 2023;11:100141. doi: 10.1016/j.onano.2023.100141.
  • Andreani T, Fangueiro JF, Severino P, et al. The influence of polysaccharide coating on the physicochemical parameters and cytotoxicity of silica nanoparticles for hydrophilic biomolecules delivery. Nanomaterials (Basel). 2019;9(8):1081. doi: 10.3390/nano9081081.
  • Li X, Guo S, Zhu C, et al. Intestinal mucosa permeability following oral insulin delivery using core-shell corona ­nanolipoparticles. Biomaterials. 2013;34(37):9678–9687. doi: 10.1016/j.biomaterials.2013.08.048.
  • Sonaje K, Lin YH, Juang JH, et al. In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomaterials. 2009;30(12):2329–2339. doi: 10.1016/j.biomaterials.2008.12.066.
  • Tahtat D, Mahlous M, Benamer S, et al. Oral delivery of insulin from alginate/chitosan crosslinked by glutaraldehyde. Int J Biol Macromol. 2013;58:160–168. doi: 10.1016/j.ijbiomac.2013.03.064.
  • Hu Q, Luo Y. Recent advances of polysaccharide-based nanoparticles for oral insulin delivery. Int J Biol Macromol. 2018;120(Pt A):775–782. doi: 10.1016/j.ijbiomac.2018.08.152.
  • Burova TV, Grinberg NV, Tur DR, et al. Ternary interpolyelectrolyte complexes insulin-poly (methylaminophosphazene)-dextran sulfate for oral delivery of insulin. Langmuir. 2013;29(7):2273–2281. doi: 10.1021/la303860t.
  • Silva AM, Alvarado HL, Abrego G, et al. In vitro cytotoxicity of oleanolic/ursolic acids-loaded in PLGA nanoparticles in different cell lines. Pharmaceutics. 2019;11(8):362. doi: 10.3390/pharmaceutics11080362.
  • Sun S, Liang N, Piao H, et al. Insulin-SO (sodium oleate) complex-loaded PLGA nanoparticles: formulation, characterization and in vivo evaluation. J Microencapsul. 2010;27(6):471–478. doi: 10.3109/02652040903515490.
  • Kamei N, Morishita M, Eda Y, et al. Usefulness of cell-penetrating peptides to improve intestinal insulin absorption. J Control Release. 2008;132(1):21–25. doi: 10.1016/j.jconrel.2008.08.001.
  • Thompson C, Cheng WP, Gadad P, et al. Uptake and transport of novel amphiphilic polyelectrolyte-insulin nanocomplexes by caco-2 cells—towards oral insulin. Pharm Res. 2011;28(4):886–896. doi: 10.1007/s11095-010-0345-x.
  • Pridgen EM, Alexis F, Kuo TT, et al. Transepithelial transport of Fc-targeted nanoparticles by the neonatal Fc receptor for oral delivery. Sci Transl Med. 2013;5(213):213ra167. doi: 10.1126/scitranslmed.3007049.
  • Shan W, Zhu X, Tao W, et al. Enhanced oral delivery of protein drugs using zwitterion-functionalized nanoparticles to overcome both the diffusion and absorption barriers. ACS Appl Mater Interf. 2016;8(38):25444–25453. doi: 10.1021/acsami.6b08183.
  • Chen S, Guo F, Deng T, et al. Eudragit S100-coated chitosan nanoparticles co-loading tat for enhanced oral colon absorption of insulin. Aaps Pharmscitech. 2017;18(4):1277–1287. doi: 10.1208/s12249-016-0594-z.
  • Kesharwani P, Gorain B, Low SY, et al. Nanotechnology-based approaches for anti-diabetic drug delivery. Diabetes Res Clin Pract. 2018;136:52–77. doi: 10.1016/j.diabres.2017.11.018.
  • Hasan AA, Madkor H, Wageh S. Formulation and evaluation of metformin hydrochloride-loaded niosomes as controlled release drug delivery system. Drug Deliv. 2013;20(3–4):120–126. doi: 10.3109/10717544.2013.779332.
  • Namdev S, Gujar K, Mandlik S, et al. Preparation and in vivo characterization of niosomal carriers of the antidiabetic drug repaglinide. PCI-Approved-IJPSN. 2015;8(1):2756–2767. doi: 10.37285/ijpsn.2015.8.1.8.
  • Labieniec-Watala M, Przygodzki T, Sebekova K, et al. Can metabolic impairments in experimental diabetes be cured with poly (amido) amine (PAMAM) G4 dendrimers?–in the search for minimizing the adverse effects of PAMAM administration. Int J Pharm. 2014;464(1–2):152–167. doi: 10.1016/j.ijpharm.2014.01.011.
  • Dong Z, Hamid KA, Gao Y, et al. Polyamidoamine dendrimers can improve the pulmonary absorption of insulin and calcitonin in rats. J Pharm Sci. 2011;100(5):1866–1878. doi: 10.1002/jps.22428.
  • Fang X, Yang T, Wang L, et al. Nano-cage-mediated refolding of insulin by PEG-PE micelle. Biomaterials. 2016;77:139–148. doi: 10.1016/j.biomaterials.2015.11.007.
  • Li X, Wu W, Li J. Glucose-responsive micelles for insulin release. J Control Release. 2015;213:e122–e123. doi: 10.1016/j.jconrel.2015.05.206.
  • Damgé C, Socha M, Ubrich N, et al. Poly (ε-caprolactone)/eudragit nanoparticles for oral delivery of aspart-insulin in the treatment of diabetes. J Pharm Sci. 2010;99(2):879–889. doi: 10.1002/jps.21874.
  • Salvioni L, Fiandra L, Del Curto MD, et al. Oral delivery of insulin via polyethylene imine-based nanoparticles for colonic release allows glycemic control in diabetic rats. Pharmacol Res. 2016;110:122–130. doi: 10.1016/j.phrs.2016.05.016.
  • Andreani T, Silva AM, Souto EB. Silica-based matrices: state of the art and new perspectives for therapeutic drug delivery. Biotechnol Appl Biochem. 2015;62(6):754–764. doi: 10.1002/bab.1322.
  • He H, Ye J, Sheng J, et al. Overcoming oral insulin delivery barriers: application of cell-penetrating peptide and silica-based nanoporous composites. Front Chem Sci Eng. 2013;7(1):9–19. doi: 10.1007/s11705-013-1306-9.
  • Doktorovova S, Kovačević AB, Garcia ML, et al. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: current evidence from in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2016;108:235–252. doi: 10.1016/j.ejpb.2016.08.001.
  • Fangueiro JF, Gonzalez-Mira E, Martins-Lopes P, et al. A novel lipid nanocarrier for insulin delivery: production, characterization and toxicity testing. Pharm Dev Technol. 2013;18(3):545–549. doi: 10.3109/10837450.2011.591804.
  • Severino P, Andreani T, Chaud VM, et al. Essential oils as active ingredients of lipid nanocarriers for chemotherapeutic use. Curr Pharm Biotechnol. 2015;16(4):365–370. doi: 10.2174/1389201016666150206111253.
  • Liu L, Tang Y, Gao C, et al. Characterization and biodistribution in vivo of quercetin-loaded cationic nanostructured lipid carriers. Colloids Surf B Biointerf. 2014;115:125–131. doi: 10.1016/j.colsurfb.2013.11.029.
  • Alam M, Rizwanullah M, Mir SR, et al. Promising prospects of lipid-based topical nanocarriers for the treatment of psoriasis. OpenNano. 2023;10:100123. doi: 10.1016/j.onano.2023.100123.
  • Zhang X, Qi J, Lu Y, et al. Enhanced hypoglycemic effect of biotin-modified liposomes loading insulin: effect of formulation variables, intracellular trafficking, and cytotoxicity. Nanoscale Res Lett. 2014;9(1):185. doi: 10.1186/1556-276X-9-185.
  • Agrawal AK, Harde H, Thanki K, et al. Improved stability and antidiabetic potential of insulin-containing folic acid functionalized polymer stabilized multilayered liposomes following oral administration. Biomacromolecules. 2014;15(1):350–360. doi: 10.1021/bm401580k.
  • Hu S, Niu M, Hu F, et al. Integrity and stability of oral liposomes containing bile salts studied in simulated and ex vivo gastrointestinal media. Int J Pharm. 2013;441(1–2):693–700. doi: 10.1016/j.ijpharm.2012.10.025.
  • Niu M, Lu Y, Hovgaard L, et al. Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: the effect of cholate type, particle size, and administered dose. Eur J Pharm Biopharm. 2012;81(2):265–272. doi: 10.1016/j.ejpb.2012.02.009.
  • Mazayen ZM, Ghoneim AM, Elbatanony RS, et al. Pharmaceutical nanotechnology: from the bench to the market. Futur J Pharm Sci. 2022;8(1):12. doi: 10.1186/s43094-022-00400-0.
  • Li X, Qi J, Xie Y, et al. Nanoemulsions coated with alginate/chitosan as oral insulin delivery systems: preparation, characterization, and hypoglycemic effect in rats. Int J Nanomedicine. 2013;8:23–32. doi: 10.2147/IJN.S38507.
  • Vaculikova E, Pokorna A, Placha D, et al. Improvement of glibenclamide water solubility by nanoparticle preparation. J Nanosci Nanotechnol. 2019;19(5):3031–3034. doi: 10.1166/jnn.2019.15876.
  • Wang Z, Wu J, Zhou Q, et al. Berberine nanosuspension enhances hypoglycemic efficacy in streptozotocin-induced diabetic C57BL/6 mice. Evid Based Complement Alternat Med. 2015;2015:239749. doi: 10.1155/2015/239749.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.