117
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Absorption enhancer approach for protein delivery by various routes of administration: a rapid review

, , , &
Pages 950-961 | Received 26 Apr 2023, Accepted 09 Oct 2023, Published online: 26 Oct 2023

References

  • Lorenzo JM, Munekata PE, Gomez B, et al. Bioactive peptides as natural antioxidants in food products–a review. Trends Food Sci Technol. 2018;79:136–147. doi: 10.1016/j.tifs.2018.07.003.
  • Sarmadi BH, Ismail A. Antioxidative peptides from food proteins: a review. Peptides. 2010;31(10):1949–1956. doi: 10.1016/j.peptides.2010.06.020.
  • Zhao E, Hou J, Ke X, et al. The roles of sirtuin family proteins in cancer progression. Cancers (Basel). 2019;11(12):1949. doi: 10.3390/cancers11121949.
  • Shoshan-Barmatz V, Nahon-Crystal E, Shteinfer-Kuzmine A, et al. VDAC1, mitochondrial dysfunction, and Alzheimer’s disease. Pharmacol Res. 2018;131:87–101. doi: 10.1016/j.phrs.2018.03.010.
  • Satarker S, Nampoothiri M. Structural proteins in severe acute respiratory syndrome coronavirus-2. Arch Med Res. 2020;51(6):482–491. doi: 10.1016/j.arcmed.2020.05.012.
  • Nasri R, Nasri M. Marine-derived bioactive peptides as new anticoagulant agents: a review. Curr Protein Pept Sci. 2013;14(3):199–204. doi: 10.2174/13892037113149990042.
  • Raeisi Estabragh MA, Bami MS, Ohadi M, et al. Carrier-based systems as strategies for oral delivery of therapeutic peptides and proteins: a mini-review. Int J Pept Res Ther. 2021(2):1589–1596. doi: 10.1007/s10989-021-10193-0.
  • Lori SM, Ohadi M, Estabragh ARM, et al. pH-sensitive polymer-based carriers as a useful approach for oral delivery of therapeutic protein: a review. Protein Pept Lett. 2021;28(11):1230–1237. doi: 10.2174/0929866528666210720142841.
  • Pechenov S, Revell J, Will S, et al. Development of an orally delivered GLP-1 receptor agonist through peptide engineering and drug delivery to treat chronic disease. Sci Rep. 2021;11(1):22521. doi: 10.1038/s41598-021-01750-0.
  • Abdelkader H, Fathalla Z, Seyfoddin A, et al. Polymeric long-acting drug delivery systems (LADDS) for treatment of chronic diseases: inserts, patches, wafers, and implants. Adv Drug Deliv Rev. 2021;177:113957. doi: 10.1016/j.addr.2021.113957.
  • Bami MS, Raeisi Estabragh MA, Khazaeli P, et al. pH-responsive drug delivery systems as intelligent carriers for targeted drug therapy: brief history, properties, synthesis, mechanism and application. J Drug Delivery Sci Technol. 2022;70:102987. doi: 10.1016/j.jddst.2021.102987.
  • Bajracharya R, Song JG, Back SY, et al. Recent advancements in non-invasive formulations for protein drug delivery. Comput Struct Biotechnol J. 2019;17:1290–1308. doi: 10.1016/j.csbj.2019.09.004.
  • Yadav AR, Mohite SK. Recent advances in protein and peptide drug delivery. Res J. Pharm Dosage Form Technol. 2020;12(3):205–212. doi: 10.5958/0975-4377.2020.00035.X.
  • Brown TD, Whitehead KA, Mitragotri S. Materials for oral delivery of proteins and peptides. Nat Rev Mater. 2019;5(2):127–148. doi: 10.1038/s41578-019-0156-6.
  • Hoang Thi TT, Pilkington EH, Nguyen DH, et al. The importance of poly (ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers (Basel). 2020;12(2):298. doi: 10.3390/polym12020298.
  • Raeisi Estabragh MA, Sajadi Bami M, Dehghannoudeh G, et al. Cellulose derivatives and natural gums as gelling agents for preparation of emulgel-based dosage forms: a brief review. Int J Biol Macromol. 2023;241:124538. doi: 10.1016/j.ijbiomac.2023.124538.
  • Ukai H, Imanishi A, Kaneda A, et al. Absorption-enhancing mechanisms of capryol 90, a novel absorption enhancer, for improving the intestinal absorption of poorly absorbed drugs: contributions to trans-or Para-cellular pathways. Pharm Res. 2020;37(12):248. doi: 10.1007/s11095-020-02963-0.
  • Tomono T, Yagi H, Ukawa M, et al. Nasal absorption enhancement of protein drugs independent to their chemical properties in the presence of hyaluronic acid modified with tetraglycine-L-octaarginine. Eur J Pharm Biopharm. 2020;154:186–194. doi: 10.1016/j.ejpb.2020.07.003.
  • Ghadiri M, Young PM, Traini D. Strategies to enhance drug absorption via nasal and pulmonary routes. Pharmaceutics. 2019;11(3):113. doi: 10.3390/pharmaceutics11030113.
  • Ukai H, Iwasa K, Deguchi T, et al. Enhanced intestinal absorption of insulin by capryol 90, a novel absorption enhancer in rats: implications in oral insulin delivery. Pharmaceutics. 2020;12(5):462. doi: 10.3390/pharmaceutics12050462.
  • Sis MJ, Webber MJ. Drug delivery with designed peptide assemblies. Trends Pharmacol Sci. 2019;40(10):747–762. doi: 10.1016/j.tips.2019.08.003.
  • Shah JN, Guo G-Q, Krishnan A, et al. Peptides-based therapeutics: emerging potential therapeutic agents for COVID-19. Therapies. 2022;77(3):319–328. doi: 10.1016/j.therap.2021.09.007.
  • Verma S, Goand UK, Husain A, et al. Challenges of peptide and protein drug delivery by oral route: current strategies to improve the bioavailability. Drug Dev Res. 2021;82(7):927–944. doi: 10.1002/ddr.21832.
  • Karami Fath M, Babakhaniyan K, Zokaei M, et al. Anti-cancer peptide-based therapeutic strategies in solid tumors. Cell Mol Biol Lett. 2022;27(1):33. doi: 10.1186/s11658-022-00332-w.
  • Patel N, Gupta AGA, Singh A, et al. Protein and peptide based drug delivery: pharmaceutical approaches.Int J Indig Herb Drug. 2021;6(2):40–48. doi: 10.46956/ijihd.vi.131.
  • Tesauro D, Accardo A, Diaferia C, et al. Peptide-based drug-delivery systems in biotechnological applications: recent advances and perspectives. Molecules. 2019;24(2):351. doi: 10.3390/molecules24020351.
  • Cao S-J, Xu S, Wang H-M, et al. Nanoparticles: oral delivery for protein and peptide drugs. Aaps Pharmscitech. 2019;20(5):190. doi: 10.1208/s12249-019-1325-z.
  • Duarte BDP, Bonatto D. The heat shock protein 47 as a potential biomarker and a therapeutic agent in cancer research. J Cancer Res Clin Oncol. 2018;44(12):2319–2328. doi: 10.1007/s00432-018-2739-9.
  • Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery technologies. Nat Biomed Eng. 2021;5(9):951–967. doi: 10.1038/s41551-021-00698-w.
  • Choonara BF, Choonara YE, Kumar P, et al. A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules. Biotechnol Adv. 2014;32(7):1269–1282. doi: 10.1016/j.biotechadv.2014.07.006.
  • Gautam M. A review: in situ nasal drug delivery. J Innov Dev Pharm Tech Sci. 2021;4(3):58–62.
  • Laffleur F, Bauer B. Progress in nasal drug delivery systems. Int J Pharm. 2021;607:120994. doi: 10.1016/j.ijpharm.2021.120994.
  • Chavda VP, Jogi G, Shah N, et al. Advanced particulate carrier-mediated technologies for nasal drug delivery. J Drug Delivery Sci Technol. 2022;74:103569. doi: 10.1016/j.jddst.2022.103569.
  • Iqbal Z, Dilnawaz F. Nanocarriers for vaginal drug delivery. Recent Pat Drug Deliv Formul. 2019;13(1):3–15. doi: 10.2174/1872211313666190215141507.
  • Gaballa SA, Kompella UB, Elgarhy O, et al. Corticosteroids in ophthalmology: drug delivery innovations, pharmacology, clinical applications, and future perspectives. Drug Deliv Transl Res. 2021;11(3):866–893. doi: 10.1007/s13346-020-00843-z.
  • Choradiya BR, Patil SB. A comprehensive review on nanoemulsion as an ophthalmic drug delivery system. J Mol Liq. 2021;339:116751. doi: 10.1016/j.molliq.2021.116751.
  • Omerović N, Vranić E. Application of nanoparticles in ocular drug delivery systems. Health Technol. 2020;10(1):61–78. doi: 10.1007/s12553-019-00381-w.
  • Moiseev RV, Morrison PW, Steele F, et al. Penetration enhancers in ocular drug delivery. Pharmaceutics. 2019;11(7):321. doi: 10.3390/pharmaceutics11070321.
  • Pham DT, Chokamonsirikun A, Phattaravorakarn V, et al. Polymeric micelles for pulmonary drug delivery: a comprehensive review. J Mater Sci. 2021;56(3):2016–2036. doi: 10.1007/s10853-020-05361-4.
  • Rangaraj N, Pailla SR, Sampathi S. Insight into pulmonary drug delivery: mechanism of drug deposition to device characterization and regulatory requirements. Pulm Pharmacol Ther. 2019;54:1–21. doi: 10.1016/j.pupt.2018.11.004.
  • Sodha SJ, Patel M, Nagarkar R, et al. Translation of pulmonary protein therapy from bench to bedside: addressing the bioavailability challenges. J Drug Delivery Sci Technol. 2021;64:102664. doi: 10.1016/j.jddst.2021.102664.
  • Melo M, Nunes R, Sarmento B, et al. Rectal administration of nanosystems: from drug delivery to diagnostics. Mater Today Chem. 2018;10:128–141. doi: 10.1016/j.mtchem.2018.09.001.
  • Choudhury A, Das S, Kar M. A review on novelty and potentiality of vaginal drug delivery. Int J Pharm Tech Res. 2011;3(2):1033–1044.
  • Lalan MS, Patel VN, Misra A. Polymers in vaginal drug delivery: recent advancements. Applications of polymers in drug delivery. Netherlands: Elsevier; 2021. p. 281–303.
  • Protopapa C, Siamidi A, Pavlou P, et al. Excipients used for modified nasal drug delivery: a Mini-Review of the recent advances. Materials (Basel). 2022;15(19):6547. doi: 10.3390/ma15196547.
  • Ramadon D, McCrudden MT, Courtenay AJ, et al. Enhancement strategies for transdermal drug delivery systems: current trends and applications. Drug Deliv Transl Res. 2022;12(4):758–791. doi: 10.1007/s13346-021-00909-6.
  • Kováčik A, Kopečná M, Vávrová K. Permeation enhancers in transdermal drug delivery: benefits and limitations. Expert Opin Drug Deliv. 2020;17(2):145–155. doi: 10.1080/17425247.2020.1713087.
  • Kumar RS, Hemanth R. Proteins and peptide drugs: different routes of administration for their delivery. J Drug Deliv Ther. 2019;9(4-A):815–819.
  • Raeisi Estabragh MA, Pardakhty A, Ahmadzadeh S, et al. Successful application of alpha lipoic acid niosomal formulation in cerebral ischemic reperfusion injury in rat model. Adv Pharm Bull. 2022;12(3):541–549. doi: 10.34172/apb.2022.058.
  • Mato YL. Nasal route for vaccine and drug delivery: features and current opportunities. Int J Pharm. 2019;572:118813.
  • Homayun B, Lin X, Choi H-J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics. 2019;11(3):129. doi: 10.3390/pharmaceutics11030129.
  • Jamaledin R, Di Natale C, Onesto V, et al. Progress in microneedle-mediated protein delivery. J Clin Med. 2020;9(2):542. doi: 10.3390/jcm9020542.
  • Hussein NR, Omer HK, Elhissi AM, et al. Advances in nasal drug delivery systems. In: Advances in medical and surgical engineering. Netherlands: Elsevier; 2020. p. 279–311.
  • Ibrahim SS. The role of surface active agents in ophthalmic drug delivery: a comprehensive review. J Pharm Sci. 2019;108(6):1923–1933. doi: 10.1016/j.xphs.2019.01.016.
  • Gote V, Sikder S, Sicotte J, et al. Ocular drug delivery: present innovations and future challenges. J Pharmacol Exp Ther. 2019;370(3):602–624. doi: 10.1124/jpet.119.256933.
  • Liang W, Pan HW, Vllasaliu D, et al. Pulmonary delivery of biological drugs. Pharmaceutics. 2020;12(11):1025. doi: 10.3390/pharmaceutics12111025.
  • Ferrati S, Wu T, Kanapuram SR, et al. Dosing considerations for inhaled biologics. Int J Pharm. 2018;549(1–2):58–66. doi: 10.1016/j.ijpharm.2018.07.054.
  • Purohit TJ, Hanning SM, Wu Z. Advances in rectal drug delivery systems. Pharm Dev Technol. 2018;23(10):942–952. doi: 10.1080/10837450.2018.1484766.
  • Jain KK. An overview of drug delivery systems. Methods Mol Biol. 2020;2059:1–54. doi: 10.1007/978-1-4939-9798-5_1.
  • Ariza-Sáenz M, Espina M, Bolaños N, et al. Penetration of polymeric nanoparticles loaded with an HIV-1 inhibitor peptide derived from GB virus C in a vaginal mucosa model. Eur J Pharm Biopharm. 2017;120:98–106. doi: 10.1016/j.ejpb.2017.08.008.
  • McCrudden MT, Singh TRR, Migalska K, et al. Strategies for enhanced peptide and protein delivery. Ther Deliv. 2013;4(5):593–614. doi: 10.4155/tde.13.31.
  • Lai-Cheong JE, McGrath JA. Structure and function of skin, hair and nails. Medicine. 2017;45(6):347–351. doi: 10.1016/j.mpmed.2017.03.004.
  • Vasyuchenko EP, Orekhov PS, Armeev GA, et al. CPE-DB: an open database of chemical penetration enhancers. Pharmaceutics. 2021;13(1):66. doi: 10.3390/pharmaceutics13010066.
  • Aungst BJ. Absorption enhancers: applications and advances. AAPS J. 2012;14(1):10–18. doi: 10.1208/s12248-011-9307-4.
  • Sezer AD. Smart drug delivery system. BoD–books on demand; InTech; 2016. doi: 10.5772/60475.
  • Prasad YR, Puthli S, Eaimtrakarn S, et al. Enhanced intestinal absorption of vancomycin with labrasol and D-α-tocopheryl PEG 1000 succinate in rats. Int J Pharm. 2003;250(1):181–190. doi: 10.1016/s0378-5173(02)00544-6.
  • Eaimtrakarn S, Rama Prasad Y, Ohno T, et al. Absorption enhancing effect of labrasol on the intestinal absorption of insulin in rats. J Drug Target. 2002;10(3):255–260. doi: 10.1080/10611860290022688.
  • Hu Z, Tawa R, Konishi T, et al. A novel emulsifier, labrasol, enhances gastrointestinal absorption of gentamicin. Life Sci. 2001;69(24):2899–2910. doi: 10.1016/s0024-3205(01)01375-3.
  • Ukai H, Kawagoe A, Sato E, et al. Propylene glycol caprylate as a novel potential absorption enhancer for improving the intestinal absorption of insulin: efficacy, safety, and absorption-enhancing mechanisms. J Pharm Sci. 2020;109(4):1483–1492. doi: 10.1016/j.xphs.2019.12.012.
  • Jassim ZE, Ej A-A.  A review on strategies for improving nasal drug delivery systems.  Drug Invent Today. 2018;10:2857–2864.
  • Sajadi Bami M, Raeisi Estabragh MA, Ohadi M, et al. Biosurfactants aided bioremediation mechanisms: a mini-review. Soil Sediment Contam. 2022;31(7):801–817. doi: 10.1080/15320383.2021.2016603.
  • Zhang Y, Zhu J, Tang Y, et al. The preparation and application of pulmonary surfactant nanoparticles as absorption enhancers in insulin dry powder delivery. Drug Dev Ind Pharm. 2009;35(9):1059–1065. doi: 10.1080/03639040902769628.
  • Perinelli DR, Vllasaliu D, Bonacucina G, et al. Rhamnolipids as epithelial permeability enhancers for macromolecular therapeutics. Eur J Pharm Biopharm. 2017;119:419–425. doi: 10.1016/j.ejpb.2017.07.011.
  • Basabe-Burgos O, Zebialowicz J, Stichtenoth G, et al. Natural derived surfactant preparation as a carrier of polymyxin E for treatment of Pseudomonas aeruginosa pneumonia in a near-term rabbit model. J Aerosol Med Pulm Drug Deliv. 2019;32(2):110–118. 2019/04/01doi: 10.1089/jamp.2018.1468.
  • Takatsuka S, Morita T, Horikiri Y, et al. Influence of various combinations of mucolytic agent and non-ionic surfactant on intestinal absorption of poorly absorbed hydrophilic compounds. Int J Pharm. 2008;349(1–2):94–100. doi: 10.1016/j.ijpharm.2007.07.031.
  • Hussain A, Arnold JJ, Khan MA, et al. Absorption enhancers in pulmonary protein delivery. J Control Release. 2004;94(1):15–24. doi: 10.1016/j.jconrel.2003.10.001.
  • Park E-S, Chang S-Y, Hahn M, et al. Enhancing effect of polyoxyethylene alkyl ethers on the skin permeation of ibuprofen. Int J Pharm. 2000;209(1–2):109–119. doi: 10.1016/s0378-5173(00)00559-7.
  • Veldhuizen R, Nag K, Orgeig S, et al. The role of lipids in pulmonary surfactant. Biochim Biophys Acta. Disease1998;1408(2–3):90–108. doi: 10.1016/s0925-4439(98)00061-1.
  • Hoyer H, Perera G, Bernkop-Schnürch A. Noninvasive delivery systems for peptides and proteins in osteoporosis therapy: a retroperspective. Drug Dev Ind Pharm. 2010;36(1):31–44. doi: 10.3109/03639040903059342.
  • Ventura C, Fresta M, Paolino D, et al. Biomembrane model interaction and percutaneous absorption of papaverine through rat skin: effects of cyclodextrins as penetration enhancers. J Drug Target. 2001;9(5):379–393. doi: 10.3109/10611860108998773.
  • Zheng X, Shao X, Zhang C, et al. Intranasal H102 Peptide-Loaded liposomes for brain delivery to treat Alzheimer’s disease. Pharm Res. 2015;32(12):3837–3849. 2015/12/01doi: 10.1007/s11095-015-1744-9.
  • Johansson F, Hjertberg E, Eirefelt S, et al. Mechanisms for absorption enhancement of inhaled insulin by sodium taurocholate. Eur J Pharm Sci. 2002;17(1–2):63–71. doi: 10.1016/s0928-0987(02)00133-1.
  • Marttin E, Verhoef J, Merkus F. Efficacy, safety and mechanism of cyclodextrins as absorption enhancers in nasal delivery of peptide and protein drugs. J Drug Target. 1998;6(1):17–36. doi: 10.3109/10611869808997878.
  • Hussain A, Yang T, Zaghloul A-A, et al. Pulmonary absorption of insulin mediated by tetradecyl-β-maltoside and dimethyl-β-cyclodextrin. Pharm Res. 2003;20(10):1551–1557. doi: 10.1023/a:1026118813943.
  • Kushwaha SK, Keshari RK, Rai A. Advances in nasal trans-mucosal drug delivery. J Appl Pharm Sci. 2011;1:21–28.
  • Welling SH, Hubálek F, Jacobsen J, et al. The role of citric acid in oral peptide and protein formulations: relationship between calcium chelation and proteolysis inhibition. Eur J Pharm Biopharm. 2014;86(3):544–551. doi: 10.1016/j.ejpb.2013.12.017.
  • Davis SS, Illum L. Absorption enhancers for nasal drug delivery. Clin Pharmacokinet. 2003;42(13):1107–1128. doi: 10.2165/00003088-200342130-00003.
  • Donnelly A, Kellaway I, Taylor G, et al. Absorption enhancers as tools to determine the route of nasal absorption of peptides. J Drug Target. 1998;5(2):121–127. doi: 10.3109/10611869808995865.
  • Miyake M, Minami T, Yamazaki H, et al. Arachidonic acid with taurine enhances pulmonary absorption of macromolecules without any serious histopathological damages. Eur J Pharm Biopharm. 2017;114:22–28. doi: 10.1016/j.ejpb.2016.12.020.
  • Gopalakrishnan S, Pandey N, Tamiz AP, et al. Mechanism of action of ZOT-derived peptide at-1002, a tight junction regulator and absorption enhancer. Int J Pharm. 2009;365(1–2):121–130. doi: 10.1016/j.ijpharm.2008.08.047.
  • Patel A, Cholkar K, Agrahari V, et al. Ocular drug delivery systems: an overview. World J Pharmacol. 2013;2(2):47–64. doi: 10.5497/wjp.v2.i2.47.
  • Gaudana R, Jwala J, Boddu SH, et al. Recent perspectives in ocular drug delivery. Pharm Res. 2009;26(5):1197–1216. doi: 10.1007/s11095-008-9694-0.
  • Garcia Del Valle I, Alvarez-Lorenzo C. Atropine in topical formulations for the management of anterior and posterior segment ocular diseases. Expert Opin Drug Deliv. 2021;18(9):1245–1260. doi: 10.1080/17425247.2021.1909568.
  • Fernandes AR, Sanchez-Lopez E, Santos T, et al. Development and characterization of nanoemulsions for ophthalmic applications: role of cationic surfactants. Materials. 2021;14(24):7541. doi: 10.3390/ma14247541.
  • Mandal A, Pal D, Agrahari V, et al. Ocular delivery of proteins and peptides: challenges and novel formulation approaches. Adv Drug Deliv Rev. 2018;126:67–95. doi: 10.1016/j.addr.2018.01.008.
  • Yamamoto A, Muranishi S. Rectal drug delivery systems improvement of rectal peptide absorption by absorption enhancers, protease inhibitors and chemical modification. Adv Drug Delivery Rev. 1997;28(2):275–299. doi: 10.1016/S0169-409X(97)00077-X.
  • Ferguson LM, Rohan LC. The importance of the vaginal delivery route for antiretrovirals in HIV prevention. Ther Deliv. 2011;2(12):1535–1550. doi: 10.4155/tde.11.126.
  • Yang Y, Zhou R, Wang Y, et al. Recent advances in oral and transdermal protein delivery systems. Angew Chem Int Ed Engl. 2023;62(10):e202214795. doi: 10.1002/anie.202214795.
  • Lane ME. Skin penetration enhancers. Int J Pharm. 2013;447(1–2):12–21. doi: 10.1016/j.ijpharm.2013.02.040.
  • Atef B, Ishak RAH, Badawy SS, et al. Exploring the potential of oleic acid in nanotechnology-mediated dermal drug delivery: an up-to-date review. J Drug Deliv Sci Technol. 2022;67:103032. doi: 10.1016/j.jddst.2021.103032.
  • Kheilnezhad B, Hadjizadeh A. Factors affecting the penetration of niosome into the skin, their laboratory measurements and dependency to the niosome composition: a review. Curr Drug Deliv. 2021;18(5):555–569. doi: 10.2174/1567201817999200820161438.
  • Morris SAV, Bobbitt JR, Ananthapadmanabhan KP, et al. The effect of prolonged exposure on sodium dodecyl sulfate penetration into human skin. Toxicol In Vitro. 2021;77:105246. doi: 10.1016/j.tiv.2021.105246.
  • Vater C, Apanovic A, Riethmüller C, et al. Changes in skin barrier function after repeated exposition to Phospholipid-Based surfactants and sodium dodecyl sulfate in vivo and corneocyte surface analysis by atomic force microscopy. Pharmaceutics. 2021;13(4):436. doi: 10.3390/pharmaceutics13040436.
  • Stern R, Jedrzejas MJ. Hyaluronidases: their genomics, structures, and mechanisms of action. Chem Rev. 2006;106(3):818–839. doi: 10.1021/cr050247k.
  • Maher S, Casettari L, Illum L. Transmucosal absorption enhancers in the drug delivery field. MDPI. 2019;11(7):339. doi: 10.3390/pharmaceutics11070339.
  • Kaur IP, Smitha R. Penetration enhancers and ocular bioadhesives: two new avenues for ophthalmic drug delivery. Drug Dev Ind Pharm. 2002;28(4):353–369. doi: 10.1081/ddc-120002997.
  • Liu C, Tai L, Zhang W, et al. Penetratin, a potentially powerful absorption enhancer for noninvasive intraocular drug delivery. Mol Pharm. 2014;11(4):1218–1227. doi: 10.1021/mp400681n.
  • Richardson J, Illum L. VIII: the vaginal route of peptide and protein drug delivery. Adv Drug Delivery Rev. 1992;8(2–3):341–366. doi: 10.1016/0169-409X(92)90008-E.
  • Sohi H, Ahuja A, Ahmad FJ, et al. Critical evaluation of permeation enhancers for oral mucosal drug delivery. Drug Dev Ind Pharm. 2010;36(3):254–282. 2010/03/01doi: 10.3109/03639040903117348.
  • Daraee H, Etemadi A, Kouhi M, et al. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):381–391. 2016/01/02doi: 10.3109/21691401.2014.953633.
  • Sarmento B, Andrade F, da Silva SB, et al. Cell-based in vitro models for predicting drug permeability. Expert Opin Drug Metab Toxicol. 2012;8(5):607–621. 2012/05/01doi: 10.1517/17425255.2012.673586.
  • Yang NJ, Hinner MJ. Getting across the cell membrane: an overview for small molecules, peptides, and proteins. In: Gautier A, Hinner MJ, editors. Site-Specific protein labeling: methods and protocols. New York (NY): Springer New York; 2015. p. 29–53.
  • Sugita M, Fujie T, Yanagisawa K, et al. Lipid composition is critical for accurate membrane permeability prediction of cyclic peptides by molecular dynamics simulations. J Chem Inf Model. 2022;62(18):4549–4560. doi: 10.1021/acs.jcim.2c00931.
  • Elnaggar YSR, Omran S, Hazzah HA, et al. Anionic versus cationic bilosomes as oral nanocarriers for enhanced delivery of the hydrophilic drug risedronate. Int J Pharm. 2019;564:410–425. doi: 10.1016/j.ijpharm.2019.04.069.
  • McCartney F, Gleeson JP, Brayden DJ. Safety concerns over the use of intestinal permeation enhancers: a mini-review. Tissue Barriers. 2016;4(2):e1176822. doi: 10.1080/21688370.2016.1176822.
  • Suzuki M, Machida M, Adachi K, et al. Histopathological study of the effects of a single intratracheal instillation of surface active agents on lung in rats. J Toxicol Sci. 2000;25(1):49–55. doi: 10.2131/jts.25.49.
  • Deli MA. Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochim Biophys Acta. 2009;1788(4):892–910. 01/doi: 10.1016/j.bbamem.2008.09.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.