126
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Chitosan tamarind-based nanoparticles as a promising approach for topical application of curcumin intended for burn healing: in vitro and in vivo study

, , , &
Pages 1081-1097 | Received 13 Jun 2023, Accepted 21 Oct 2023, Published online: 05 Nov 2023

References

  • Nacer Khodja A, Mahlous M, Tahtat D, et al. Evaluation of healing activity of PVA/chitosan hydrogels on deep second degree burn: pharmacological and toxicological tests. Burns. 2013;39(1):98–104. doi: 10.1016/j.burns.2012.05.021.
  • Jaiprakash B, Chandramohan, Reddy DN. Burn wound healing activity of Euphorbia hirta. Ancient Sci Life. 2006;25(3–4):16–18.
  • Shanmugasundaram N, Uma TS, Ramyaa Lakshmi TS, et al. Efficiency of controlled topical delivery of silver sulfadiazine in infected burn wounds. J Biomed Mater Res A. 2009;89(2):472–482. doi: 10.1002/jbm.a.31997.
  • Panahi Y, Fazlolahzadeh O, Atkin SL, et al. Evidence of curcumin and curcumin analogue effects in skin diseases: a narrative review. J Cell Physiol. 2019;234(2):1165–1178. doi: 10.1002/jcp.27096.
  • Mehrabani D, Farjam M, Geramizadeh B, et al. The healing effect of curcumin on burn wounds in rat. World J Plast Surg. 2015;4(1):29–35.
  • Nawaz A, Safdar M, Arshad MS, et al. Formulation development and in vitro permeability of curcumin films using different penetration enhancers. Drug Deliv Lett. 2018;8(1):78–84. doi: 10.2174/2210303107666171121161647.
  • Alven S, Nqoro X, Aderibigbe BA. Polymer-based materials loaded with curcumin for wound healing applications. Polymers. 2020;12(10):2286. doi: 10.3390/polym12102286.
  • Zheng D, Huang C, Huang H, et al. Antibacterial mechanism of curcumin: a review. Chem Biodivers. 2020;17(8):e2000171.
  • Jana S, Saha A, Nayak AK, et al. Aceclofenac-loaded chitosan-tamarind seed polysaccharide interpenetrating polymeric network microparticles. Colloids Surf B Biointerfaces. 2013;105:303–309. doi: 10.1016/j.colsurfb.2013.01.013.
  • Dutta PK, Dutta J, Tripathi VS. Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res India. 2004;63:20–31.
  • Mehta P, Rasekh M, Patel M, et al. Applications of electrical, centrifugal, and pressurised emerging technologies for fibrous structure engineering in drug delivery, regenerative medicine and theranostics. Antioxidants. 2021;175:113823.
  • Ardean C, Davidescu CM, Nemeş NS, et al. Factors influencing the antibacterial activity of chitosan and chitosan modified by functionalization. Int J Mol Sci. 2021;22(14):7449. doi: 10.3390/ijms22147449.
  • Alavi M, Hamblin MR, Martinez F, et al. Micro and nanoformulations of insulin: new approaches. Nano Micro Biosyst. 2022;1(1):1–7.
  • El-Feky GS, Sharaf SS, El Shafei A, et al. Using chitosan nanoparticles as drug carriers for the development of a silver sulfadiazine wound dressing. Carbohydr Polym. 2017;158:11–19. doi: 10.1016/j.carbpol.2016.11.054.
  • Ak B, Rimi D. A new nasal drug delivery system for diazepam using natural mucoadhesive polysaccharide obtained from tamarind seeds. Saudi Pharm J. 2006;14(2):115–119.
  • Malviya R, Raj S, Fuloria S, et al. Evaluation of antitumor efficacy of chitosan-tamarind gum polysaccharide polyelectrolyte complex stabilized nanoparticles of simvastatin. Int J Nanomedicine. 2021;16:2533–2553. doi: 10.2147/IJN.S300991.
  • Mohanty C, Sahoo SK. Curcumin and its topical formulations for wound healing applications. Drug Discov Today. 2017;22(10):1582–1592. doi: 10.1016/j.drudis.2017.07.001.
  • Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, et al. Nanomedicine and advanced technologies for burns: preventing infection and facilitating wound healing. Adv Drug Deliv Rev. 2018;123:33–64. doi: 10.1016/j.addr.2017.08.001.
  • Zaghloul N, El Hoffy NM, Mahmoud AA, et al. Cyclodextrin stabilized freeze-dried silica/chitosan nanoparticles for improved terconazole ocular bioavailability. Pharmaceutics. 2022;14(3):470. doi: 10.3390/pharmaceutics14030470.
  • Musso YS, Salgado PR, Mauri AN. Smart edible films based on gelatin and curcumin. Food Hydrocolloids. 2017;66:8–15. doi: 10.1016/j.foodhyd.2016.11.007.
  • Briones AV, Sato T. Encapsulation of glucose oxidase (GOD) in polyelectrolyte complexes of chitosan–carrageenan. React Funct Polym. 2010;70(1):19–27. doi: 10.1016/j.reactfunctpolym.2009.09.009.
  • Mende M, Schwarz S, Petzold G, et al. Destabilization of model silica dispersions by polyelectrolyte complex particles with different charge excess, hydrophobicity, and particle size. J Appl Polym Sci. 2007;103(6):3776–3784. doi: 10.1002/app.25573.
  • Khalid A, Ahmed N, Qindeel M, et al. Development of novel biopolymer-based nanoparticles loaded cream for potential treatment of topical fungal infections. Drug Dev Ind Pharm. 2021;47(7):1090–1099. doi: 10.1080/03639045.2021.1957914.
  • Abo-Elseoud WS, Hassan ML, Sabaa MW, et al. Chitosan nanoparticles/cellulose nanocrystals nanocomposites as a carrier system for the controlled release of repaglinide. Int J Biol Macromol. 2018;111:604–613. doi: 10.1016/j.ijbiomac.2018.01.044.
  • Khalil RM, El Arini SK, AbouSamra MM, et al. Development of lecithin/chitosan nanoparticles for promoting topical delivery of propranolol hydrochloride: design, optimization and in-vivo evaluation. J Pharm Sci. 2021;110(3):1337–1348. doi: 10.1016/j.xphs.2020.11.025.
  • Ammar HO, Ghorab MM, Mostafa DM, et al. Development of folic acid-loaded nanostructured lipid carriers for topical delivery: preparation, characterisation and ex vivo investigation. J Microencapsul. 2020;37(5):366–383. doi: 10.1080/02652048.2020.1761904.
  • Shalaby ES, Shalaby SI. Optimization of folic acid Span 60-organogel to enhance its in vitro and in vivo photoprotection: a comparative study. Ther Deliv. 2023;13(11):517–530. doi: 10.4155/tde-2022-0048.
  • Makoni PA, Wa Kasongo K, Walker RB. Short term stability testing of efavirenz-loaded solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) dispersions. Pharmaceutics. 2019;11(8):397. doi: 10.3390/pharmaceutics11080397.
  • Etman M, Nada H, Nada A, et al. Formulation of sustained-release ketorolac tromethamine pellets. J Pharm Technol. 2008;32:12.
  • Qindeel M, Khan D, Ahmed N, et al. Surfactant-free, self-assembled nanomicelles-based transdermal hydrogel for safe and targeted delivery of methotrexate against rheumatoid arthritis. ACS Nano. 2020;14:(4):4662–4681. doi: 10.1021/acsnano.0c00364.
  • Gong C, Lu C, Li B, et al. Injectable dopamine-modified poly (α,β-aspartic acid) nanocomposite hydrogel as bioadhesive drug delivery system. J Biomed Mater Res A. 2017;105(4):1000–1008. doi: 10.1002/jbm.a.35931.
  • Monteiro CRAV, do Carmo MS, Melo BO, et al. In vitro antimicrobial activity and probiotic potential of Bifidobacterium and Lactobacillus against species of Clostridium. Nutrients. 2019;11(2):448. doi: 10.3390/nu11020448.
  • Brand-Williams W, Cuvelier M-E, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol. 1995;28(1):25–30. doi: 10.1016/S0023-6438(95)80008-5.
  • Cai EZ, Ang CH, Raju A, et al. Creation of consistent burn wounds: a rat model. Arch Plast Surg. 2014;41(4):317–324. doi: 10.5999/aps.2014.41.4.317.
  • Asfour MH, Elmotasem H, Mostafa DM, et al. Chitosan based pickering emulsion as a promising approach for topical application of rutin in a solubilized form intended for wound healing: in vitro and in vivo study. Int J Pharm. 2017;534(1–2):325–338. doi: 10.1016/j.ijpharm.2017.10.044.
  • Jollow D, Mitchell J, Zampaglione N, et al. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology. 1974;11(3):151–169. doi: 10.1159/000136485.
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–358. doi: 10.1016/0003-2697(79)90738-3.
  • Sedik AA, Elgohary R. Neuroprotective effect of tangeretin against chromium-induced acute brain injury in rats: targeting Nrf2 signaling pathway, inflammatory mediators, and apoptosis. Inflammopharmacology. 2023;31(3):1465–1480. doi: 10.1007/s10787-023-01167-3.
  • Sedik AA, Salama M, Fathy K, et al. Cold plasma approach fortifies the topical application of thymoquinone intended for wound healing via up-regulating the levels of TGF-ß, VEGF, and α-SMA in rats. Int Immunopharmacol. 2023;122:110634. doi: 10.1016/j.intimp.2023.110634.
  • Drury RAB, Wallington EA. Carleton’s histological technique. 5th ed. New York: Churchill Livingstone; 1980.
  • Lai W-F, Shum HC. Hypromellose-graft-chitosan and its polyelectrolyte complex as novel systems for sustained drug delivery. ACS Appl Mater Interfaces. 2015;7(19):10501–10510. doi: 10.1021/acsami.5b01984.
  • Luckanagul JA, Pitakchatwong C, Bhuket PRN, et al. Chitosan-based polymer hybrids for thermo-responsive nanogel delivery of curcumin. Carbohydr Polym. 2018;181:1119–1127. doi: 10.1016/j.carbpol.2017.11.027.
  • Nawaz A, Ullah S, Alnuwaiser MA, et al. Formulation and evaluation of chitosan-gelatin thermosensitive hydrogels containing 5FU-alginate nanoparticles for skin delivery. Gels. 2022;8(9):537. doi: 10.3390/gels8090537.
  • Kufleitner J, Wagner S, Worek F, et al. Adsorption of obidoxime onto human serum albumin nanoparticles: drug loading, particle size and drug release. J Microencapsul. 2010;27(6):506–513. doi: 10.3109/02652041003681406.
  • Valencia MS, Silva Júnior M, Xavier-Júnior FH, et al. Characterization of curcumin-loaded lecithin-chitosan bioactive nanoparticles. Carbohydr Polym Technol Appl. 2021;2:100119. doi: 10.1016/j.carpta.2021.100119.
  • Ren G, He Y, Liu C, et al. Encapsulation of curcumin in ZEIN–HTCC complexes: physicochemical characterization, in vitro sustained release behavior and encapsulation mechanism. LWT. 2022;155:112909. doi: 10.1016/j.lwt.2021.112909.
  • Sankalia MG, Mashru RC, Sankalia JM, et al. Reversed ­chitosan–alginate polyelectrolyte complex for stability ­improvement of alpha-amylase: optimization and physicochemical characterization. Eur J Pharm Biopharm. 2007;65(2):215–232. doi: 10.1016/j.ejpb.2006.07.014.
  • Jonassen H, Kjøniksen A-L, Hiorth M. Stability of chitosan nanoparticles cross-linked with tripolyphosphate. Biomacromolecules. 2012;13(11):3747–3756. doi: 10.1021/bm301207a.
  • Birch NP, Schiffman JDJL. Characterization of self-assembled polyelectrolyte complex nanoparticles formed from chitosan and pectin. Langmuir. 2014;30(12):3441–3447. doi: 10.1021/la500491c.
  • Sankhla A, Sharma R, Yadav RS, et al. Biosynthesis and characterization of cadmium sulfide nanoparticles – an emphasis of zeta potential behavior due to capping. Mater Chem. 2016;170:44–51.
  • Santo VE, Duarte ARC, Gomes ME, et al. Hybrid 3D structure of poly (d, l-lactic acid) loaded with chitosan/chondroitin sulfate nanoparticles to be used as carriers for biomacromolecules in tissue engineering. J Supercrit Fluids. 2010;54(3):320–327. doi: 10.1016/j.supflu.2010.05.021.
  • Omer AM, Ziora ZM, Tamer TM, et al. Formulation of quaternized aminated chitosan nanoparticles for efficient encapsulation and slow release of curcumin. Molecules. 2021;26(2):449. doi: 10.3390/molecules26020449.
  • Shah MKA, Azad AK, Nawaz A, et al. Formulation development, characterization and antifungal evaluation of chitosan NPs for topical delivery of voriconazole in vitro and ex vivo. Polymers. 2021;14(1):135. doi: 10.3390/polym14010135.
  • Sandri G, Bonferoni MC, Ferrari F, et al. The role of particle size in drug release and absorption. In: Merkus H, Meesters G, editors. Particulate products. Particle technology series. Springer, Cham; 2014. p. 323–341. doi: 10.1007/978-3-319-00714-4_11
  • Rajitha P, Gopinath D, Biswas R, et al. Chitosan nanoparticles in drug therapy of infectious and inflammatory diseases. Expert Opin Drug Deliv. 2016;13(8):1177–1194. doi: 10.1080/17425247.2016.1178232.
  • Malviya R, Tyagi A, Fuloria S, et al. Fabrication and characterization of chitosan–tamarind seed polysaccharide composite film for transdermal delivery of protein/peptide. Int J Nanomed. 2021;13(9):1531. doi: 10.3390/polym13091531.
  • Mardhiah Adib Z, Ghanbarzadeh S, Kouhsoltani M, et al. The effect of particle size on the deposition of solid lipid nanoparticles in different skin layers: a histological study. Adv Pharm Bull. 2016;6(1):31–36. doi: 10.15171/apb.2016.06.
  • Sharkawy A, Silva AM, Rodrigues F, et al. Pickering emulsions stabilized with chitosan/collagen peptides nanoparticles as green topical delivery vehicles for cannabidiol (CBD). Colloids Surf A. 2021;631:127677. doi: 10.1016/j.colsurfa.2021.127677.
  • Jantarat C, Sirathanarun P, Ratanapongsai S, et al. Curcumin-hydroxypropyl-β-cyclodextrin inclusion complex preparation methods: effect of common solvent evaporation, freeze drying, and pH shift on solubility and stability of curcumin. Trop J Pharm Res. 2014;13(8):1215–1223. doi: 10.4314/tjpr.v13i8.4.
  • Ganan M, Carrascosa AV, Martínez-Rodríguez AJ. Antimicrobial activity of chitosan against Campylobacter spp. and other microorganisms and its mechanism of action. J Food Prot. 2009;72(8):1735–1738. doi: 10.4315/0362-028x-72.8.1735.
  • Xing Y, Wang X, Guo X, et al. Comparison of antimicrobial activity of chitosan nanoparticles against bacteria and fungi. Coatings. 2021;11(7):769. doi: 10.3390/coatings11070769.
  • Quan Z, Luo C, Zhu B, et al. Synthesis and antimicrobial activities of chitosan/polypropylene carbonate-based nanoparticles. RSC Adv. 2021;11(17):10121–10129. doi: 10.1039/d0ra09257f.
  • Padmavathi AR, Abinaya B, Pandian SKJB. Phenol, 2,4-bis(1,1-dimethylethyl) of marine bacterial origin inhibits quorum sensing mediated biofilm formation in the uropathogen Serratia marcescens. Biofouling. 2014;30(9):1111–1122. doi: 10.1080/08927014.2014.972386.
  • Mohamad OA, Li L, Ma J-B, et al. Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus against Verticillium dahliae. Front Microbiol. 2018;9:924. doi: 10.3389/fmicb.2018.00924.
  • Sökmen M, Akram Khan M. The antioxidant activity of some curcuminoids and chalcones. Inflammopharmacology. 2016;24(2–3):81–86. doi: 10.1007/s10787-016-0264-5.
  • Rajalakshmi A, Krithiga N, Jayachitra A. Antioxidant activity of the chitosan extracted from shrimp exoskeleton. Middle East J Sci Res. 2013;16(10):1446–1451.
  • Xie W, Xu P, Liu QJB. Antioxidant activity of water-soluble chitosan derivatives. Bioorg Med Chem Lett. 2001;11(13):1699–1701. doi: 10.1016/s0960-894x(01)00285-2.
  • Tsuda T, Watanabe M, Ohshima K, et al. Antioxidative components isolated from the seed of tamarind (Tamarindus indica L.). J Agric Food Chem. 1994;42(12):2671–2674. doi: 10.1021/jf00048a004.
  • Sookying S, Duangjai A, Saokaew S, et al. Botanical aspects, phytochemicals, and toxicity of Tamarindus indica leaf and a systematic review of antioxidant capacities of T. indica leaf extracts. Front Nutr. 2022;9:977015. doi: 10.3389/fnut.2022.977015.
  • Chen L, Deng H, Cui H, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9(6):7204–7218. doi: 10.18632/oncotarget.23208.
  • Bao P, Kodra A, Tomic-Canic M, et al. The role of vascular endothelial growth factor in wound healing. J Surg Res. 2009;153(2):347–358. doi: 10.1016/j.jss.2008.04.023.
  • Abraham NG, Kappas A. Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev. 2008;60(1):79–127. doi: 10.1124/pr.107.07104.
  • Hussein RA, Salama AA, El Naggar ME, et al. Medicinal impact of microalgae collected from high rate algal ponds; phytochemical and pharmacological studies of microalgae and its application in medicated bandages. Biocatal Agric Biotechnol. 2019;20:101237. doi: 10.1016/j.bcab.2019.101237.
  • Abdel-Hakeem MA, Mongy S, Hassan B, et al. Curcumin loaded chitosan–protamine nanoparticles revealed antitumor activity via suppression of NF-κB, proinflammatory cytokines and bcl-2 gene expression in the breast cancer cells. J Pharm Sci. 2021;110(9):3298–3305. doi: 10.1016/j.xphs.2021.06.004.
  • Dunphy JE, Udupa K. Chemical and histochemical sequences in the normal healing of wounds. N Engl J Med. 1955;253(20):847–851. doi: 10.1056/NEJM195511172532002.
  • Haukipuro K. Synthesis of collagen types I and III in reincised wounds in humans. Br J Surg. 1991;78(6):708–712. doi: 10.1002/bjs.1800780624.
  • Al Bayaty F, Abdulla M, Abu Hassan M, et al. Wound healing potential by hyaluronate gel in streptozotocin-induced diabetic rats. Sci Res Essays. 2010;5(18):2756–2760.
  • Hussain Z, Thu HE, Katas H, et al. Hyaluronic acid-based biomaterials: a versatile and smart approach to tissue regeneration and treating traumatic, surgical, and chronic wounds. Polym Rev. 2017;57(4):594–630. doi: 10.1080/15583724.2017.1315433.
  • Lopes GC, Sanches ACC, Nakamura CV, et al. Influence of extracts of Stryphnodendron polyphyllum Mart. and Stryphnodendron obovatum Benth. on the cicatrisation of cutaneous wounds in rats. J Ethnopharmacol. 2005;99(2):265–272. doi: 10.1016/j.jep.2005.02.019.
  • Mohanty C, Das M, Sahoo SK. Sustained wound healing activity of curcumin loaded oleic acid based polymeric bandage in a rat model. Mol Pharm. 2012;9(10):2801–2811. doi: 10.1021/mp300075u.
  • Sumitra M, Manikandan P, Suguna L. Efficacy of Butea monosperma on dermal wound healing in rats. Int J Biochem Cell Biol. 2005;37(3):566–573. doi: 10.1016/j.biocel.2004.08.003.
  • Nimse SB, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015;5(35):27986–28006. doi: 10.1039/C4RA13315C.
  • de Zwart LL, Meerman JHN, Commandeur JNM, et al. Biomarkers of free radical damage: applications in ­experimental animals and in humans. Free Radic Biol Med. 1999;26(1–2):202–226. doi: 10.1016/s0891-5849(98)00196-8.
  • Sarawi WS, Alhusaini AM, Fadda LM, et al. Nano-curcumin prevents cardiac injury, oxidative stress and inflammation, and modulates TLR4/NF-κB and MAPK signaling in copper sulfate-intoxicated rats. Antioxidants. 2021;10(9):1414. doi: 10.3390/antiox10091414.
  • Shahbandeh M, Salehi MA, Soltanyzadeh M, et al. Evaluation of the antibacterial and wound healing properties of a burn ointment containing curcumin, honey, and potassium aluminium. arXiv preprint arXiv:11939; 2022.
  • Panchatcharam M, Miriyala S, Gayathri VS, et al. Curcumin improves wound healing by modulating collagen and decreasing reactive oxygen species. Mol Cell Biochem. 2006;290(1–2):87–96. doi: 10.1007/s11010-006-9170-2.
  • Yen Y-H, Pu C-M, Liu C-W, et al. Curcumin accelerates cutaneous wound healing via multiple biological actions: the involvement of TNF-α, MMP-9, α-SMA, and collagen. Int Wound J. 2018;15(4):605–617. doi: 10.1111/iwj.12904.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.