159
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Targeted treatment of atherosclerosis with protein–polysaccharide nanoemulsion co-loaded with photosensitiser and upconversion nanoparticles

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1111-1127 | Received 08 Aug 2023, Accepted 09 Nov 2023, Published online: 23 Nov 2023

References

  • Chen W, Schilperoort M, Cao Y, et al. Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nat Rev Cardiol. 2022;19(4):228–249. doi: 10.1038/s41569-021-00629-x.
  • Liu C, Jiang Z, Pan Z, et al. The function, regulation and mechanism of programmed cell death of macrophages in atherosclerosis. Front Cell Dev Biol. 2021;9:809516–809526. doi: 10.3389/fcell.2021.809516.
  • Hu R, Dai C, Dong C, et al. Living macrophage-delivered tetrapod PdH nanoenzyme for targeted atherosclerosis management by ROS scavenging, hydrogen anti-inflammation, and autophagy activation. ACS Nano. 2022;16(10):15959–15976. doi: 10.1021/acsnano.2c03422.
  • Jeon S, Kim TK, Jeong SJ, et al. Anti-inflammatory actions of soluble ninjurin-1 ameliorate atherosclerosis. Circulation. 2020;142(18):1736–1751. doi: 10.1161/CIRCULATIONAHA.120.046907.
  • Han XB, Li HX, Jiang YQ, et al. Upconversion nanoparticle-mediated photodynamic therapy induces autophagy and cholesterol efflux of macrophage-derived foam cells via ROS generation. Cell Death Dis. 2017;8(6):e2864–e2864. doi: 10.1038/cddis.2017.242.
  • Kou JY, Li Y, Zhong ZY, et al. Berberine-sonodynamic therapy induces autophagy and lipid unloading in macrophage. Cell Death Dis. 2017;8(1):e2558–e2558. doi: 10.1038/cddis.2016.354.
  • Dai T, He W, Tu S, et al. Black TiO(2) nanoprobe-mediated mild phototherapy reduces intracellular lipid levels in atherosclerotic foam cells via cholesterol regulation pathways instead of apoptosis. Bioact Mater. 2022;17:18–28.
  • Guo H, Wei D, Liu R, et al. A novel therapeutic strategy for atherosclerosis: autophagy-dependent cholesterol efflux. J Physiol Biochem. 2022;78(3):557–572. doi: 10.1007/s13105-021-00870-5.
  • Cao H, Jia Q, Yan L, et al. Quercetin suppresses the progression of atherosclerosis by regulating MST1-mediated autophagy in ox-LDL-induced RAW264.7 macrophage foam cells. Int J Mol Sci. 2019;20(23):6093–6109. doi: 10.3390/ijms20236093.
  • Houthoofd S, Vuylsteke M, Mordon S, et al. Photodynamic therapy for atherosclerosis. The potential of indocyanine green. Photodiagnosis Photodyn Ther. 2020;29:101568–101577. doi: 10.1016/j.pdpdt.2019.10.003.
  • Yoo SW, Oh G, Ahn JC, et al. Non-oncologic applications of nanomedicine-based phototherapy. Biomedicines. 2021;9(2):113–139. doi: 10.3390/biomedicines9020113.
  • Ahn JW, Kim JH, Park K. In vitro photodynamic effects of the inclusion nanocomplexes of glucan and chlorin e6 on atherogenic foam cells. Int J Mol Sci. 2020;22(1):177–188. doi: 10.3390/ijms22010177.
  • Song JW, Ahn JW, Lee MW, et al. Targeted theranostic photoactivation on atherosclerosis. J Nanobiotechnology. 2021;19(1):338–356. doi: 10.1186/s12951-021-01084-z.
  • Hak A, Ali MS, Sankaranarayanan SA, et al. Chlorin e6: a promising photosensitizer in photo-based cancer nanomedicine. ACS Appl Bio Mater. 2023;6(2):349–364. doi: 10.1021/acsabm.2c00891.
  • Liao S, Cai M, Zhu R, et al. Antitumor effect of photodynamic therapy/sonodynamic therapy/sono-photodynamic therapy of chlorin e6 and other applications. Mol Pharm. 2023;20(2):875–885. doi: 10.1021/acs.molpharmaceut.2c00824.
  • Yue C, Zhang C, Alfranca G, et al. Near-infrared light triggered ROS-activated theranostic platform based on Ce6-CPT-UCNPs for simultaneous fluorescence imaging and chemo-photodynamic combined therapy. Theranostics. 2016;6(4):456–469. doi: 10.7150/thno.14101.
  • Zhang T, Ying D, Qi M, et al. Anti-biofilm property of bioactive upconversion nanocomposites containing chlorin e6 against periodontal pathogens. Molecules. 2019;24(15):2692–2708. doi: 10.3390/molecules24152692.
  • Ding J, Jin Y, Zhu F, et al. Facile synthesis of NaYF4: Yb up-conversion nanoparticles modified with photosensitizer and targeting antibody for in vitro photodynamic therapy of hepatocellular carcinoma. J Healthc Eng. 2022;2022:4470510–4470512. doi: 10.1155/2022/4470510.
  • Zhu X, Wang H, Zheng L, et al. Upconversion nanoparticle-mediated photodynamic therapy induces THP-1 macrophage apoptosis via ROS bursts and activation of the mitochondrial caspase pathway. Int J Nanomed. 2015;10:3719–3736.
  • Hu J, Shi J, Gao Y, et al. 808 nm near-infrared light-excited UCNPs@mSiO(2)-Ce6-GPC3 nanocomposites for photodynamic therapy in liver cancer. Int J Nanomed. 2019;14:10009–10021. doi: 10.2147/IJN.S221496.
  • Wang BY, Liao ML, Hong GC, et al. Near-infrared-triggered photodynamic therapy toward breast cancer cells using dendrimer-functionalized upconversion nanoparticles. Nanomaterials (Basel). 2017;7(9):269–286. doi: 10.3390/nano7090269.
  • Ho TH, Yang CH, Jiang ZE, et al. NIR-triggered generation of reactive oxygen species and photodynamic therapy based on mesoporous silica-coated LiYF(4) upconverting nanoparticles. Int J Mol Sci. 2022;23(15):8757–8773. doi: 10.3390/ijms23158757.
  • Tian G, Ren W, Yan L, et al. Red-emitting upconverting nanoparticles for photodynamic therapy in cancer cells under near-infrared excitation. Small. 2013;9(11):1928–1928. doi: 10.1002/smll.201370065.
  • Kotulska AM, Pilch-Wrobel A, Lahtinen S, et al. Upconversion FRET quantitation: the role of donor photoexcitation mode and compositional architecture on the decay and intensity based responses. Light Sci Appl. 2022;11(1):256–269. doi: 10.1038/s41377-022-00946-x.
  • Bednarkiewicz A, Chan EM, Prorok K. Enhancing FRET biosensing beyond 10 nm with photon avalanche nanoparticles. Nanoscale Adv. 2020;2(10):4863–4872. doi: 10.1039/d0na00404a.
  • Moghassemi S, Dadashzadeh A, Azevedo RB, et al. Nanoemulsion applications in photodynamic therapy. J Control Release. 2022;351:164–173. doi: 10.1016/j.jconrel.2022.09.035.
  • Rajasekaran B, Singh A, Benjakul S. Combined effect of chitosan and bovine serum albumin/whey protein isolate on the characteristics and stability of shrimp oil-in-water emulsion. J Food Sci. 2022;87(7):2879–2893. doi: 10.1111/1750-3841.16226.
  • Wang J, Zhang B. Bovine serum albumin as a versatile platform for cancer imaging and therapy. Curr Med Chem. 2018;25(25):2938–2953. doi: 10.2174/0929867324666170314143335.
  • Nooshkam M, Varidi M. Maillard conjugate-based delivery systems for the encapsulation, protection, and controlled release of nutraceuticals and food bioactive ingredients: a review. Food Hydrocolloids. 2020;100:105389–105401. doi: 10.1016/j.foodhyd.2019.105389.
  • McClements DJ, Jafari SM. Improving emulsion formation, stability and performance using mixed emulsifiers: a review. Adv Colloid Interface Sci. 2018;251:55–79. doi: 10.1016/j.cis.2017.12.001.
  • Song J, Sun C, Gul K, et al. Prolamin-based complexes: structure design and food-related applications. Compr Rev Food Sci Food Saf. 2021;20(2):1120–1149. doi: 10.1111/1541-4337.12713.
  • Lim E-K, Jang E, Kim B, et al. Dextran-coated magnetic nanoclusters as highly sensitive contrast agents for magnetic resonance imaging of inflammatory macrophages. J Mater Chem. 2011;21(33):12473–12478. doi: 10.1039/c1jm10764j.
  • Xu G, Bao X, Yao P. Protamine and BSA-dextran complex emulsion improves oral bioavailability and anti-tumor efficacy of paclitaxel. Drug Deliv. 2020;27(1):1360–1368. doi: 10.1080/10717544.2020.1825543.
  • Deng H, Konopka CJ, Prabhu S, et al. Dextran-mimetic quantum dots for multimodal macrophage imaging in vivo, ex vivo, and in situ. ACS Nano. 2022;16(2):1999–2012. doi: 10.1021/acsnano.1c07010.
  • Chao Y, Karmali PP, Simberg D. Role of carbohydrate receptors in the macrophage uptake of dextran-coated iron oxide nanoparticles. Adv Exp Med Biol. 2012;733:115–123. doi: 10.1007/978-94-007-2555-3_11.
  • Fu JJ, Sun C, Xu XB, et al. Improving the functional properties of bovine serum albumin-glucose conjugates in natural deep eutectic solvents. Food Chem. 2020;328:127122–127129. doi: 10.1016/j.foodchem.2020.127122.
  • Kim S, Shin WS. Formation of a novel coating material containing lutein and zeaxanthin via a maillard reaction between bovine serum albumin and fucoidan. Food Chem. 2021;343:128437–128444. doi: 10.1016/j.foodchem.2020.128437.
  • Kutzli I, Weiss J, Gibis M. Glycation of plant proteins via maillard reaction: reaction chemistry, technofunctional properties, and potential food application. Foods. 2021;10(2):376. doi: 10.3390/foods10020376.
  • Yu-Tong D, Chun C, Yue-Ming J, et al. Glycosylation with bioactive polysaccharide obtained from rosa roxburghii tratt fruit to enhance the oxidative stability of whey protein isolate emulsion. Int J Biol Macromol. 2022;218:259–268. doi: 10.1016/j.ijbiomac.2022.07.078.
  • Li W, Zhao H, He Z, et al. Modification of soy protein hydrolysates by maillard reaction: effects of carbohydrate chain length on structural and interfacial properties. Colloids Surf B Biointerfaces. 2016;138:70–77. doi: 10.1016/j.colsurfb.2015.11.038.
  • Ozogul Y, Karsli GT, Durmuş M, et al. Recent developments in industrial applications of nanoemulsions. Adv Colloid Interface Sci. 2022;304:102685–102699. doi: 10.1016/j.cis.2022.102685.
  • Tekie FSM, Hajiramezanali M, Geramifar P, et al. Controlling evolution of protein corona: a prosperous approach to improve chitosan-based nanoparticle biodistribution and half-life. Sci Rep. 2020;10(1):9664–9677. doi: 10.1038/s41598-020-66572-y.
  • Sousa AA. Impact of soft protein interactions on the excretion, extent of receptor occupancy and tumor accumulation of ultrasmall metal nanoparticles: a compartmental model simulation. RSC Adv. 2019;9(46):26927–26941. doi: 10.1039/c9ra04718b.
  • Zhang S, Peng X, Yang S, et al. The regulation, function, and role of lipophagy, a form of selective autophagy, in metabolic disorders. Cell Death Dis. 2022;13(2):132–142. doi: 10.1038/s41419-022-04593-3.
  • Chen SY, Zhao LP, Chen ZX, et al. Self-delivery biomedicine for enhanced photodynamic therapy by feedback promotion of tumor autophagy. Acta Biomater. 2023;158:599–610. doi: 10.1016/j.actbio.2022.12.059.
  • Kim S, Lee W, Cho K. P62 links the autophagy pathway and the ubiquitin-proteasome system in endothelial cells during atherosclerosis. Int J Mol Sci. 2021;22(15):7791–7804. doi: 10.3390/ijms22157791.
  • Sano M, Maejima Y, Nakagama S, et al. Neutrophil extracellular traps-mediated beclin-1 suppression aggravates atherosclerosis by inhibiting macrophage autophagy. Front Cell Dev Biol. 2022;10:876147. doi: 10.3389/fcell.2022.876147.
  • Liu X, Tang Y, Cui Y, et al. Autophagy is associated with cell fate in the process of macrophage-derived foam cells formation and progress. J Biomed Sci. 2016;23(1):57–67. doi: 10.1186/s12929-016-0274-z.
  • Wang L, Jiang Y, Song X, et al. Pdcd4 deficiency enhances macrophage lipoautophagy and attenuates foam cell formation and atherosclerosis in mice. Cell Death Dis. 2016;7(1):e2055–e2055. doi: 10.1038/cddis.2015.416.
  • Moskal N, Visanji NP, Gorbenko O, et al. An AI-guided screen identifies probucol as an enhancer of mitophagy through modulation of lipid droplets. PLoS Biol. 2023;21(3):e3001977. doi: 10.1371/journal.pbio.3001977.
  • Wang P, Li M, Gao T, et al. Vascular electrical stimulation with wireless, battery-free, and fully implantable features reduces atherosclerotic plaque formation through sirt1-mediated autophagy. Small. 2023;19(40):e2300584. doi: 10.1002/smll.202300584.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.