302
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

microRNAs: critical targets for treating rheumatoid arthritis angiogenesis

, , , , , , & show all
Pages 1-20 | Received 07 Aug 2023, Accepted 09 Nov 2023, Published online: 23 Nov 2023

References

  • Leblond A, Allanore Y, Avouac J. Targeting synovial neoangiogenesis in rheumatoid arthritis. Autoimmun Rev. 2017;16(6):594–601. doi:10.1016/j.autrev.2017.04.005.
  • Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016;388(10055):2023–2038. doi:10.1016/S0140-6736(16)30173-8.
  • McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365(23):2205–2219. doi:10.1056/NEJMra1004965.
  • Feng ZT, Yang T, Hou XQ, et al. Sinomenine mitigates collagen-induced arthritis mice by inhibiting angiogenesis. Biomed Pharmacother. 2019;113:108759. doi:10.1016/j.biopha.2019.108759.
  • Zhai KF, Duan H, Khan GJ, et al. Salicin from Alangium chinense ameliorates rheumatoid arthritis by modulating the Nrf2–HO-1–ROS pathways. J Agric Food Chem. 2018;66(24):6073–6082. doi:10.1021/acs.jafc.8b02241.
  • Zhai KF, Duan H, Chen Y, et al. Apoptosis effects of imperatorin on synoviocytes in rheumatoid arthritis through mitochondrial/caspase-mediated pathways. Food Funct. 2018;9(4):2070–2079. doi:10.1039/c7fo01748k.
  • Ramjiawan RR, Griffioen AW, Duda DG. Anti-angiogenesis for cancer revisited: is there a role for combinations with immunotherapy? Angiogenesis. 2017;20(2):185–204. doi:10.1007/s10456-017-9552-y.
  • Elshabrawy HA, Chen Z, Volin MV, et al. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis. 2015;18(4):433–448. doi:10.1007/s10456-015-9477-2.
  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20. doi:10.1016/j.cell.2004.12.035.
  • Orso F, Quirico L, Dettori D, et al. Role of miRNAs in tumor and endothelial cell interactions during tumor progression. Semin Cancer Biol. 2020;60:214–224. doi:10.1016/j.semcancer.2019.07.024.
  • Soufi-Zomorrod M, Hajifathali A, Kouhkan F, et al. microRNAs modulating angiogenesis: miR-129-1 and miR-133 act as angio-miR in HUVECs. Tumour Biol. 2016;37(7):9527–9534. doi:10.1007/s13277-016-4845-0.
  • Leone P, Buonavoglia A, Fasano R, et al. Insights into the regulation of tumor angiogenesis by micro-RNAs. J Clin Med. 2019;8(12):2030.
  • Wang Y, Wang L, Chen C, et al. New insights into the regulatory role of microRNA in tumor angiogenesis and clinical implications. Mol Cancer. 2018;17(1):22. doi:10.1186/s12943-018-0766-4.
  • Gregory RI, Yan KP, Amuthan G, et al. The microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432(7014):235–240. doi:10.1038/nature03120.
  • Han J, Lee Y, Yeom KH, et al. The Drosha–DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18(24):3016–3027. doi:10.1101/gad.1262504.
  • Saliminejad K, Khorram KH, Soleymani FS, et al. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234(5):5451–5465. doi:10.1002/jcp.27486.
  • Gregory RI, Chendrimada TP, Cooch N, et al. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005;123(4):631–640. doi:10.1016/j.cell.2005.10.022.
  • Kobayashi H, Tomari Y. RISC assembly: coordination between small RNAs and argonaute proteins. Biochim Biophys Acta. 2016;1859(1):71–81. doi:10.1016/j.bbagrm.2015.08.007.
  • Matsuyama H, Suzuki HI. Systems and synthetic microRNA biology: from biogenesis to disease pathogenesis. Int J Mol Sci. 2019;21(1):132.
  • Kondo N, Kuroda T, Kobayashi D. Cytokine networks in the pathogenesis of rheumatoid arthritis. Int J Mol Sci. 2021;22(20):10922.
  • Lin YJ, Anzaghe M, Schülke S. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. Cells. 2020;9(4):880. doi:10.3390/cells9040880.
  • Jang S, Kwon EJ, Lee JJ. Rheumatoid arthritis: pathogenic roles of diverse immune cells. Int J Mol Sci. 2022;23(2):905.
  • Chen Z, Bozec A, Ramming A, et al. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat Rev Rheumatol. 2019;15(1):9–17. doi:10.1038/s41584-018-0109-2.
  • Tu J, Hong W, Zhang P, et al. Ontology and function of fibroblast-like and macrophage-like synoviocytes: how do they talk to each other and can they be targeted for rheumatoid arthritis therapy? Front Immunol. 2018;9:1467. doi:10.3389/fimmu.2018.01467.
  • Pap T, Meinecke I, Müller-Ladner U, et al. Are fibroblasts involved in joint destruction? Ann Rheum Dis. 2005;64(Suppl. 4):iv52–iv54. doi:10.1136/ard.2005.042424.
  • Nygaard G, Firestein GS. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nat Rev Rheumatol. 2020;16(6):316–333. doi:10.1038/s41584-020-0413-5.
  • Tsaltskan V, Firestein GS. Targeting fibroblast-like synoviocytes in rheumatoid arthritis. Curr Opin Pharmacol. 2022;67:102304. doi:10.1016/j.coph.2022.102304.
  • Masoumi M, Bashiri H, Khorramdelazad H, et al. Destructive roles of fibroblast-like synoviocytes in chronic inflammation and joint damage in rheumatoid arthritis. Inflammation. 2021;44(2):466–479. doi:10.1007/s10753-020-01371-1.
  • Mohr T, Haudek-Prinz V, Slany A, et al. Proteome profiling in IL-1β and VEGF-activated human umbilical vein endothelial cells delineates the interlink between inflammation and angiogenesis. PLOS One. 2017;12(6):e179065. doi:10.1371/journal.pone.0179065.
  • Cutolo M, Campitiello R, Gotelli E, et al. The role of M1/M2 macrophage polarization in rheumatoid arthritis synovitis. Front Immunol. 2022;13:867260. doi:10.3389/fimmu.2022.867260.
  • Elemam NM, Hannawi S, Maghazachi AA. Role of chemokines and chemokine receptors in rheumatoid arthritis. Immunotargets Ther. 2020;9:43–56. doi:10.2147/ITT.S243636.
  • Ross EA, Devitt A, Johnson JR. Macrophages: the good, the bad, and the gluttony. Front Immunol. 2021;12:708186. doi:10.3389/fimmu.2021.708186.
  • Szekanecz Z, Koch AE. Chemokines and angiogenesis. Curr Opin Rheumatol. 2001;13(3):202–208. doi:10.1097/00002281-200105000-00009.
  • Pickens SR, Volin MV, Mandelin AN, et al. IL-17 contributes to angiogenesis in rheumatoid arthritis. J Immunol. 2010;184(6):3233–3241. doi:10.4049/jimmunol.0903271.
  • George G, Shyni GL, Raghu KG. Current and novel therapeutic targets in the treatment of rheumatoid arthritis. Inflammopharmacology. 2020;28(6):1457–1476. doi:10.1007/s10787-020-00757-9.
  • Guo X, Chen G. Hypoxia-inducible factor is critical for pathogenesis and regulation of immune cell functions in rheumatoid arthritis. Front Immunol. 2020;11:1668. doi:10.3389/fimmu.2020.01668.
  • Gong Y, Yu Z, Wang Y, et al. Effect of moxibustion on HIF-1α and VEGF levels in patients with rheumatoid arthritis. Pain Res Manag. 2019;2019:4705247. doi:10.1155/2019/4705247.
  • Le QT, Fisher R, Oliner KS, et al. Prognostic and predictive significance of plasma HGF and IL-8 in a phase III trial of chemoradiation with or without tirapazamine in locoregionally advanced head and neck cancer. Clin Cancer Res. 2012;18(6):1798–1807. doi:10.1158/1078-0432.CCR-11-2094.
  • Hu F, Mu R, Zhu J, et al. Hypoxia and hypoxia-inducible factor-1α provoke Toll-like receptor signalling-induced inflammation in rheumatoid arthritis. Ann Rheum Dis. 2014;73(5):928–936. doi:10.1136/annrheumdis-2012-202444.
  • McGarry T, Hanlon MM, Marzaioli V, et al. Rheumatoid arthritis CD14(+) monocytes display metabolic and inflammatory dysfunction, a phenotype that precedes clinical manifestation of disease. Clin Transl Immunol. 2021;10(1):e1237.
  • Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 2020;21(5):268–283. doi:10.1038/s41580-020-0227-y.
  • Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 2013;496(7444):238–242. doi:10.1038/nature11986.
  • Li Y, Liu Y, Wang C, et al. Succinate induces synovial angiogenesis in rheumatoid arthritis through metabolic remodeling and HIF-1α/VEGF axis. Free Radic Biol Med. 2018;126:1–14. doi:10.1016/j.freeradbiomed.2018.07.009.
  • Haas R, Smith J, Rocher-Ros V, et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol. 2015;13(7):e1002202. doi:10.1371/journal.pbio.1002202.
  • Johnson MO, Wolf MM, Madden MZ, et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell. 2018;175(7):1780–1795.e19. doi:10.1016/j.cell.2018.10.001.
  • Asquith DL, Ballantine LE, Nijjar JS, et al. The liver X receptor pathway is highly upregulated in rheumatoid arthritis synovial macrophages and potentiates TLR-driven cytokine release. Ann Rheum Dis. 2013;72(12):2024–2031. doi:10.1136/annrheumdis-2012-202872.
  • Alles J, Fehlmann T, Fischer U, et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019;47(7):3353–3364. doi:10.1093/nar/gkz097.
  • Sun LL, Li WD, Lei FR, et al. The regulatory role of microRNAs in angiogenesis-related diseases. J Cell Mol Med. 2018;22(10):4568–4587. doi:10.1111/jcmm.13700.
  • Poliseno L, Tuccoli A, Mariani L, et al. microRNAs modulate the angiogenic properties of HUVECs. Blood. 2006;108(9):3068–3071. doi:10.1182/blood-2006-01-012369.
  • Kuehbacher A, Urbich C, Zeiher AM, et al. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res. 2007;101(1):59–68. doi:10.1161/CIRCRESAHA.107.153916.
  • Gao S, Gao H, Dai L, et al. miR-126 regulates angiogenesis in myocardial ischemia by targeting HIF-1α. Exp Cell Res. 2021;409(2):112925. doi:10.1016/j.yexcr.2021.112925.
  • Ebrahimi F, Gopalan V, Smith RA, et al. miR-126 in human cancers: clinical roles and current perspectives. Exp Mol Pathol. 2014;96(1):98–107. doi:10.1016/j.yexmp.2013.12.004.
  • Nicoli S, Knyphausen CP, Zhu LJ, et al. miR-221 is required for endothelial tip cell behaviors during vascular development. Dev Cell. 2012;22(2):418–429. doi:10.1016/j.devcel.2012.01.008.
  • Chang TK, Zhong YH, Liu SC, et al. Apelin promotes endothelial progenitor cell angiogenesis in rheumatoid arthritis disease via the miR-525-5p/angiopoietin-1 pathway. Front Immunol. 2021;12:737990. doi:10.3389/fimmu.2021.737990.
  • Chen Y, Dang J, Lin X, et al. RA fibroblast-like synoviocytes derived extracellular vesicles promote angiogenesis by miRNA-1972 targeting p53/mTOR signaling in vascular endotheliocyte. Front Immunol. 2022;13:793855. doi:10.3389/fimmu.2022.793855.
  • Chen CY, Su CM, Hsu CJ, et al. Ccn1 promotes VEGF production in osteoblasts and induces endothelial progenitor cell angiogenesis by inhibiting miR-126 expression in rheumatoid arthritis. J Bone Miner Res. 2017;32(1):34–45. doi:10.1002/jbmr.2926.
  • Chen Z, Wang H, Xia Y, et al. Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF. J Immunol. 2018;201(8):2472–2482. doi:10.4049/jimmunol.1800304.
  • Huang CC, Law YY, Liu SC, et al. Adiponectin promotes VEGF expression in rheumatoid arthritis synovial fibroblasts and induces endothelial progenitor cell angiogenesis by inhibiting miR-106a-5p. Cells. 2021;10(10):2627. doi:10.3390/cells10102627.
  • Huang CC, Tseng TT, Liu SC, et al. S1P increases VEGF production in osteoblasts and facilitates endothelial progenitor cell angiogenesis by inhibiting miR-16-5p expression via the c-Src/FAK signaling pathway in rheumatoid arthritis. Cells. 2021;10(8):2168. doi:10.3390/cells10082168.
  • Li TM, Liu SC, Huang YH, et al. YKL-40-induced inhibition of miR-590-3p promotes interleukin-18 expression and angiogenesis of endothelial progenitor cells. Int J Mol Sci. 2017;18(5):920.
  • Su CM, Hsu CJ, Tsai CH, et al. Resistin promotes angiogenesis in endothelial progenitor cells through inhibition of microRNA206: potential implications for rheumatoid arthritis. Stem Cells. 2015;33(7):2243–2255. doi:10.1002/stem.2024.
  • Zhang J, Ma Y, Zhang Y, et al. Angiogenesis is inhibited by arsenic trioxide through downregulation of the circHIPK3/miR-149-5p/FOXO1/VEGF functional module in rheumatoid arthritis. Front Pharmacol. 2021;12:751667. doi:10.3389/fphar.2021.751667.
  • Zhang J, Zhang Y, Ma Y, et al. Therapeutic potential of exosomal circRNA derived from synovial mesenchymal cells via targeting circEDIL3/miR-485-3p/PIAS3/STAT3/VEGF functional module in rheumatoid arthritis. Int J Nanomedicine. 2021;16:7977–7994.
  • Chen M, Li MH, Zhang N, et al. Pro-angiogenic effect of exosomal microRNA-103a in mice with rheumatoid arthritis via the downregulation of hepatocyte nuclear factor 4 alpha and activation of the JAK/STAT3 signaling pathway. J Biol Regul Homeost Agents. 2021;35(2):629–640.
  • Zisman D, Safieh M, Simanovich E, et al. Tocilizumab (TCZ) decreases angiogenesis in rheumatoid arthritis through its regulatory effect on miR-146a-5p and EMMPRIN/CD147. Front Immunol. 2021;12:739592. doi:10.3389/fimmu.2021.739592.
  • Sun W, Ma J, Zhao H, et al. Resolvin D1 suppresses pannus formation via decreasing connective tissue growth factor caused by upregulation of miRNA-146a-5p in rheumatoid arthritis. Arthritis Res Ther. 2020;22(1):61. doi:10.1186/s13075-020-2133-2.
  • Yang Z, Chen J, Xie H, et al. Androgen receptor suppresses prostate cancer metastasis but promotes bladder cancer metastasis via differentially altering miRNA525-5p/SLPI-mediated vasculogenic mimicry formation. Cancer Lett. 2020;473:118–129. doi:10.1016/j.canlet.2019.12.018.
  • Xie P, Han Q, Liu D, et al. miR-525-5p modulates proliferation and epithelial–mesenchymal transition of glioma by targeting Stat-1. Onco Targets Ther. 2020;13:9957–9966. doi:10.2147/OTT.S257951.
  • Chen M, Liu LX. miR-525-5p repressed metastasis and anoikis resistance in cervical cancer via blocking UBE2C/ZEB1/2 signal axis. Dig Dis Sci. 2020;65(8):2442–2451. doi:10.1007/s10620-019-05916-9.
  • Zhang B, Jin Z, Zhang H. LINC01207 promotes the progression of non-small cell lung cancer via regulating ARHGAP11A by sponging miR-525-5p. Cancer Biomark. 2022;33(3):401–414. doi:10.3233/CBM-203197.
  • Lip SV, Boekschoten MV, Hooiveld GJ, et al. Early-onset preeclampsia, plasma microRNAs, and endothelial cell function. Am J Obstet Gynecol. 2020;222(5):497.e1–497.e12. doi:10.1016/j.ajog.2019.11.1286.
  • Chistiakov DA, Orekhov AN, Bobryshev YV. The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. J Mol Cell Cardiol. 2016;97:47–55. doi:10.1016/j.yjmcc.2016.05.007.
  • Gao J, Kong R, Zhou X, et al. miRNA-126 expression inhibits IL-23R mediated TNF-α or IFN-γ production in fibroblast-like synoviocytes in a mice model of collagen-induced rheumatoid arthritis. Apoptosis. 2019;24(3–4):382–615. doi:10.1007/s10495-018-1474-7.
  • Gao J, Zhou XL, Kong RN, et al. microRNA-126 targeting PIK3R2 promotes rheumatoid arthritis synovial fibroblasts proliferation and resistance to apoptosis by regulating PI3K/AKT pathway. Exp Mol Pathol. 2016;100(1):192–198. doi:10.1016/j.yexmp.2015.12.015.
  • Qu Y, Wu J, Deng JX, et al. microRNA-126 affects rheumatoid arthritis synovial fibroblast proliferation and apoptosis by targeting PIK3R2 and regulating PI3K–AKT signal pathway. Oncotarget. 2016;7(45):74217–74226. doi:10.18632/oncotarget.12487.
  • Qiu M, Mo L, Li J, et al. Effects of miR-150-5p on the growth and socs1 expression of rheumatoid arthritis synovial fibroblasts. Clin Rheumatol. 2020;39(3):909–917. doi:10.1007/s10067-019-04894-7.
  • Zeng Y, Wei L, Lali MS, et al. miR-150-5p mediates extravillous trophoblast cell migration and angiogenesis functions by regulating VEGF and MMP9. Placenta. 2020;93:94–100. doi:10.1016/j.placenta.2020.02.019.
  • Mazzeo A, Lopatina T, Gai C, et al. Functional analysis of miR-21-3p, miR-30b-5p and miR-150-5p shuttled by extracellular vesicles from diabetic subjects reveals their association with diabetic retinopathy. Exp Eye Res. 2019;184:56–63. doi:10.1016/j.exer.2019.04.015.
  • Vimalraj S, Subramanian R, Dhanasekaran A. LncRNA MALAT1 promotes tumor angiogenesis by regulating microRNA-150-5p/VEGFA signaling in osteosarcoma: in-vitro and in-vivo analyses. Front Oncol. 2021;11:742789. doi:10.3389/fonc.2021.742789.
  • Chen X, Xu X, Pan B, et al. miR-150-5p suppresses tumor progression by targeting VEGFA in colorectal cancer. Aging. 2018;10(11):3421–3437. doi:10.18632/aging.101656.
  • Wang YH, Kuo SJ, Liu SC, et al. Apelin affects the progression of osteoarthritis by regulating VEGF-dependent angiogenesis and miR-150-5p expression in human synovial fibroblasts. Cells. 2020;9(3):594. doi:10.3390/cells9030594.
  • Zeng H, He D, Xie H, et al. H19 regulates angiogenic capacity of extravillous trophoblasts by H19/miR-106a-5p/VEGFA axis. Arch Gynecol Obstet. 2020;301(3):671–679. doi:10.1007/s00404-020-05469-7.
  • Liang ZH, Pan NF, Lin SS, et al. Exosomes from mmu_circ_0001052-modified adipose-derived stem cells promote angiogenesis of DFU via miR-106a-5p and FGF4/p38MAPK pathway. Stem Cell Res Ther. 2022;13(1):336. doi:10.1186/s13287-022-03015-7.
  • Maisto R, Trotta MC, Petrillo F, et al. Resolvin D1 modulates the intracellular VEGF-related miRNAs of retinal photoreceptors challenged with high glucose. Front Pharmacol. 2020;11:235. doi:10.3389/fphar.2020.00235.
  • Li CW, Zheng J, Deng GQ, et al. Exosomal miR-106a-5p accelerates the progression of nasopharyngeal carcinoma through FBXW7-mediated TRIM24 degradation. Cancer Sci. 2022;113(5):1652–1668. doi:10.1111/cas.15337.
  • Zheng Y, Zhu K, Wang G. miR-106a-5p carried by tumor-derived extracellular vesicles promotes the invasion and metastasis of ovarian cancer by targeting KLF6. Clin Exp Metastasis. 2022;39(4):603–621. doi:10.1007/s10585-022-10165-8.
  • Liu J, Huang Y, Wang H, et al. miR-106a-5p promotes 5-FU resistance and the metastasis of colorectal cancer by targeting TGFβR2. Int J Clin Exp Pathol. 2018;11(12):5622–5634.
  • Pan YJ, Wei LL, Wu XJ, et al. miR-106a-5p inhibits the cell migration and invasion of renal cell carcinoma through targeting PAK5. Cell Death Dis. 2017;8(10):e3155. doi:10.1038/cddis.2017.561.
  • Zhou Y, Zhang Y, Li Y, et al. microRNA-106a-5p promotes the proliferation, autophagy and migration of lung adenocarcinoma cells by targeting LKB1/AMPK. Exp Ther Med. 2021;22(6):1422. doi:10.3892/etm.2021.10857.
  • Dunaeva M, Blom J, Thurlings R, et al. Circulating serum miR-223-3p and miR-16-5p as possible biomarkers of early rheumatoid arthritis. Clin Exp Immunol. 2018;193(3):376–385. doi:10.1111/cei.13156.
  • Castro-Villegas C, Pérez-Sánchez C, Escudero A, et al. Circulating miRNAs as potential biomarkers of therapy effectiveness in rheumatoid arthritis patients treated with anti-TNFα. Arthritis Res Ther. 2015;17(1):49. doi:10.1186/s13075-015-0555-z.
  • Chen SS, Tang CH, Chie MJ, et al. Resistin facilitates VEGF-A-dependent angiogenesis by inhibiting miR-16-5p in human chondrosarcoma cells. Cell Death Dis. 2019;10(1):31. doi:10.1038/s41419-018-1241-2.
  • Krock BL, Skuli N, Simon MC. Hypoxia-induced angiogenesis: good and evil. Genes Cancer. 2011;2(12):1117–1133. doi:10.1177/1947601911423654.
  • Qu Y, Liu H, Lv X, et al. microRNA-16-5p overexpression suppresses proliferation and invasion as well as triggers apoptosis by targeting VEGFA expression in breast carcinoma. Oncotarget. 2017;8(42):72400–72410. doi:10.18632/oncotarget.20398.
  • Wang X, Shang Y, Dai S, et al. microRNA-16-5p aggravates myocardial infarction injury by targeting the expression of insulin receptor substrates 1 and mediating myocardial apoptosis and angiogenesis. Curr Neurovasc Res. 2020;17(1):11–17. doi:10.2174/1567202617666191223142743.
  • Sarzi-Puttini P, Salaffi F, Di Franco M, et al. Pain in rheumatoid arthritis: a critical review. Reumatismo. 2014;66(1):18–27. doi:10.4081/reumatismo.2014.760.
  • Park CC, Morel JC, Amin MA, et al. Evidence of IL-18 as a novel angiogenic mediator. J Immunol. 2001;167(3):1644–1653. doi:10.4049/jimmunol.167.3.1644.
  • Volin MV, Koch AE. Interleukin-18: a mediator of inflammation and angiogenesis in rheumatoid arthritis. J Interferon Cytokine Res. 2011;31(10):745–751. doi:10.1089/jir.2011.0050.
  • Ruth JH, Park CC, Amin MA, et al. Interleukin-18 as an in vivo mediator of monocyte recruitment in rodent models of rheumatoid arthritis. Arthritis Res Ther. 2010;12(3):R118. doi:10.1186/ar3055.
  • Dai SM, Matsuno H, Nakamura H, et al. Interleukin-18 enhances monocyte tumor necrosis factor alpha and interleukin-1beta production induced by direct contact with T lymphocytes: implications in rheumatoid arthritis. Arthritis Rheum. 2004;50(2):432–443. doi:10.1002/art.20064.
  • Yang K, Wang X, Sun Y, et al. miR-590-3p affects the function of adipose-derived stem cells (ADSCs) on the survival of skin flaps by targeting VEGFA. Regen Ther. 2022;21:322–330. doi:10.1016/j.reth.2022.07.010.
  • You LN, Tai QW, Xu L, et al. Exosomal LINC00161 promotes angiogenesis and metastasis via regulating miR-590-3p/ROCK axis in hepatocellular carcinoma. Cancer Gene Ther. 2021;28(6):719–736. doi:10.1038/s41417-020-00269-2.
  • Bao MH, Li GY, Huang XS, et al. Long noncoding RNA LINC00657 acting as a miR-590-3p sponge to facilitate low concentration oxidized low-density lipoprotein-induced angiogenesis. Mol Pharmacol. 2018;93(4):368–375. doi:10.1124/mol.117.110650.
  • Mori S, Tran V, Nishikawa K, et al. A dominant-negative FGF1 Mutant (the R50E Mutant) suppresses tumorigenesis and angiogenesis. PLOS One. 2013;8(2):e57927. doi:10.1371/journal.pone.0057927.
  • Ge X, Gong L. miR-590-3p suppresses hepatocellular carcinoma growth by targeting TEAD1. Tumour Biol. 2017;39(3):1010428317695947. doi:10.1177/1010428317695947.
  • Wang WT, Qi Q, Zhao P, et al. miR-590-3p is a novel microRNA which suppresses osteosarcoma progression by targeting SOX9. Biomed Pharmacother. 2018;107:1763–1769. doi:10.1016/j.biopha.2018.06.124.
  • Salem M, O'Brien JA, Bernaudo S, et al. miR-590-3p promotes ovarian cancer growth and metastasis via a novel FOXA2-versican pathway. Cancer Res. 2018;78(15):4175–4190. doi:10.1158/0008-5472.CAN-17-3014.
  • Wan Z, Li X, Luo X, et al. The miR-590-3p/CFHR3/STAT3 signaling pathway promotes cell proliferation and metastasis in hepatocellular carcinoma. Aging. 2022;14(14):5783–5799. doi:10.18632/aging.204178.
  • Salem M, Shan Y, Bernaudo S, et al. miR-590-3p targets cyclin G2 and FOXO3 to promote ovarian cancer cell proliferation, invasion, and spheroid formation. Int J Mol Sci. 2019;20(8):1810.
  • Liang Z, Bian X, Shim H. Downregulation of microRNA-206 promotes invasion and angiogenesis of triple negative breast cancer. Biochem Biophys Res Commun. 2016;477(3):461–466. doi:10.1016/j.bbrc.2016.06.076.
  • Zheng X, Ma YF, Zhang XR, et al. Circ_0056618 promoted cell proliferation, migration and angiogenesis through sponging with miR-206 and upregulating CXCR4 and VEGF-A in colorectal cancer. Eur Rev Med Pharmacol Sci. 2020;24(8):4190–4202.
  • Xu Z, Zhu C, Chen C, et al. CCL19 suppresses angiogenesis through promoting miR-206 and inhibiting Met/ERK/Elk-1/HIF-1α/VEGF-A pathway in colorectal cancer. Cell Death Dis. 2018;9(10):974. doi:10.1038/s41419-018-1010-2.
  • Xue D, Yang Y, Liu Y, et al. microRNA-206 attenuates the growth and angiogenesis in non-small cell lung cancer cells by blocking the 14-3-3ζ/STAT3/HIF-1α/VEGF signaling. Oncotarget. 2016;7(48):79805–79813. doi:10.18632/oncotarget.12972.
  • Chen QY, Jiao DM, Wu YQ, et al. miR-206 inhibits HGF-induced epithelial–mesenchymal transition and angiogenesis in non-small cell lung cancer via c-MET/PI3K/AKT/mTOR pathway. Oncotarget. 2016;7(14):18247–18261. doi:10.18632/oncotarget.7570.
  • Wang S, Ren L, Shen G, et al. The knockdown of malat1 inhibits the proliferation, invasion and migration of hemangioma endothelial cells by regulating miR-206/VEGFA axis. Mol Cell Probes. 2020;51:101540. doi:10.1016/j.mcp.2020.101540.
  • Zhang C, Luo Y, Cao J, et al. Exosomal lncRNA FAM225A accelerates esophageal squamous cell carcinoma progression and angiogenesis via sponging miR-206 to upregulate NETO2 and FOXP1 expression. Cancer Med. 2020;9(22):8600–8611. doi:10.1002/cam4.3463.
  • Law YY, Lee WF, Hsu CJ, et al. miR-let-7c-5p and miR-149-5p inhibit proinflammatory cytokine production in osteoarthritis and rheumatoid arthritis synovial fibroblasts. Aging. 2021;13(13):17227–17236. doi:10.18632/aging.203201.
  • Wu R, Tang S, Wang Q, et al. Hsa_circ_0003602 contributes to the progression of colorectal cancer by mediating the miR-149-5p/SLC38A1 axis. Gut Liver. 2023;17(2):267–279. doi:10.5009/gnl210542.
  • Liu R, Wang X, Yan Q. The regulatory network of lncRNA DLX6-AS1/miR-149-5p/ERP44 is possibly related to the progression of preeclampsia. Placenta. 2020;93:34–42. doi:10.1016/j.placenta.2020.02.001.
  • Shao Y, Li F, Liu H. Circ-DONSON facilitates the malignant progression of gastric cancer depending on the regulation of miR-149-5p/LDHA axis. Biochem Genet. 2022;60(2):640–655. doi:10.1007/s10528-021-10120-4.
  • Hu C, Bai X, Liu C, et al. Long noncoding RNA XIST participates hypoxia-induced angiogenesis in human brain microvascular endothelial cells through regulating miR-485/SOX7 axis. Am J Transl Res. 2019;11(10):6487–6497.
  • Chen D, Fan J, Li X, et al. Downregulation of miR-485-3p promotes proliferation, migration and invasion in prostate cancer through activation of TGF-β signaling. Histol Histopathol. 2022;37(5):423–430.
  • Wang Q, Liu MJ, Bu J, et al. miR-485-3p regulated by malat1 inhibits osteosarcoma glycolysis and metastasis by directly suppressing c-MET and AKT3/mTOR signalling. Life Sci. 2021;268:118925. doi:10.1016/j.lfs.2020.118925.
  • Lou C, Xiao M, Cheng S, et al. miR-485-3p and miR-485-5p suppress breast cancer cell metastasis by inhibiting PGC-1α expression. Cell Death Dis. 2016;7(3):e2159. doi:10.1038/cddis.2016.27.
  • Bagheri-Hosseinabadi Z, Mirzaei MR, Hajizadeh MR, et al. Plasma microRNAs (miR-146a, miR-103a, and miR-155) as potential biomarkers for rheumatoid arthritis (RA) and disease activity in Iranian patients. Mediterr J Rheumatol. 2021;32(4):324–330. doi:10.31138/mjr.32.4.324.
  • Renman E, Brink M, Ärlestig L, et al. Dysregulated microRNA expression in rheumatoid arthritis families—a comparison between rheumatoid arthritis patients, their first-degree relatives, and healthy controls. Clin Rheumatol. 2021;40(6):2387–2394. doi:10.1007/s10067-020-05502-9.
  • Sun Z, Zhang Q, Yuan W, et al. miR-103a-3p promotes tumour glycolysis in colorectal cancer via hippo/YAP1/HIF1A axis. J Exp Clin Cancer Res. 2020;39(1):250. doi:10.1186/s13046-020-01705-9.
  • Zhang P, Zhao Q, Gong K, et al. Downregulation of miR-103a-3p contributes to endothelial progenitor cell dysfunction in deep vein thrombosis through PTEN targeting. Ann Vasc Surg. 2020;64:339–346. doi:10.1016/j.avsg.2019.10.048.
  • Hsu YL, Hung JY, Chang WA, et al. Hypoxic lung-cancer-derived extracellular vesicle microRNA-103a increases the oncogenic effects of macrophages by targeting PTEN. Mol Ther. 2018;26(2):568–581. doi:10.1016/j.ymthe.2017.11.016.
  • Zhong XQ, Yan Q, Chen ZG, et al. Umbilical cord blood-derived exosomes from very preterm infants with bronchopulmonary dysplasia impaired endothelial angiogenesis: roles of exosomal microRNAs. Front Cell Dev Biol. 2021;9:637248. doi:10.3389/fcell.2021.637248.
  • Meng S, Cao J, Zhang X, et al. Downregulation of microRNA-130a contributes to endothelial progenitor cell dysfunction in diabetic patients via its target Runx3. PLOS One. 2013;8(7):e68611. doi:10.1371/journal.pone.0068611.
  • Liu Y, Han Y, Qu H, et al. Correlation of microRNA expression profile with clinical response to tumor necrosis factor inhibitor in treating rheumatoid arthritis patients: a prospective cohort study. J Clin Lab Anal. 2019;33(7):e22953.
  • Chen X, Xie L, Jiang Y, et al. LCK, FOXC1 and hsa-miR-146a-5p as potential immune effector molecules associated with rheumatoid arthritis. Biomarkers. 2023;28(1):130–138. doi:10.1080/1354750X.2022.2150315.
  • Safari F, Damavand E, Rostamian A, et al. Plasma levels of microRNA-146a-5p, microRNA-24-3p, and microRNA125a-5p as potential diagnostic biomarkers for rheumatoid arthritis. Iran J Allergy Asthma Immunol. 2021;20(3):326–337.
  • Ormseth MJ, Solus JF, Vickers KC, et al. Utility of select plasma microRNA for disease and cardiovascular risk assessment in patients with rheumatoid arthritis. J Rheumatol. 2015;42(10):1746–1751. doi:10.3899/jrheum.150232.
  • Anaparti V, Smolik I, Meng X, et al. Whole blood microRNA expression pattern differentiates patients with rheumatoid arthritis, their seropositive first-degree relatives, and healthy unrelated control subjects. Arthritis Res Ther. 2017;19(1):249. doi:10.1186/s13075-017-1459-x.
  • Singh A, Patro PS, Aggarwal A. microRNA-132, miR-146a, and miR-155 as potential biomarkers of methotrexate response in patients with rheumatoid arthritis. Clin Rheumatol. 2019;38(3):877–884. doi:10.1007/s10067-018-4380-z.
  • Nam JW, Rissland OS, Koppstein D, et al. Global analyses of the effect of different cellular contexts on microRNA targeting. Mol Cell. 2014;53(6):1031–1043. doi:10.1016/j.molcel.2014.02.013.
  • O'Brien J, Hayder H, Zayed Y, et al. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018;9:402. doi:10.3389/fendo.2018.00402.
  • Zisoulis DG, Kai ZS, Chang RK, et al. Autoregulation of microRNA biogenesis by let-7 and argonaute. Nature. 2012;486(7404):541–544. doi:10.1038/nature11134.
  • Tang R, Li L, Zhu D, et al. Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res. 2012;22(3):504–515. doi:10.1038/cr.2011.137.
  • Forrest AR, Kanamori-Katayama M, Tomaru Y, et al. Induction of microRNAs, miR-155, miR-222, miR-424 and miR-503, promotes monocytic differentiation through combinatorial regulation. Leukemia. 2010;24(2):460–466. doi:10.1038/leu.2009.246.
  • Wang D, Sun X, Wei Y, et al. Nuclear miR-122 directly regulates the biogenesis of cell survival oncomiR miR-21 at the posttranscriptional level. Nucleic Acids Res. 2018;46(4):2012–2029. doi:10.1093/nar/gkx1254.
  • van Rooij E, Quiat D, Johnson BA, et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell. 2009;17(5):662–673. doi:10.1016/j.devcel.2009.10.013.
  • Jia L, Zheng Y, Lyu M, et al. miR-29b upregulates miR-195 by targeting DNMT3B in tongue squamous cell carcinoma. Sci Bull. 2016;61(3):212–219. doi:10.1007/s11434-016-1001-6.
  • Yu Y, Nangia-Makker P, Farhana L, et al. miR-21 and miR-145 cooperation in regulation of colon cancer stem cells. Mol Cancer. 2015;14:98. doi:10.1186/s12943-015-0372-7.
  • Wang Y, Bao W, Liu Y, et al. miR-98-5p contributes to cisplatin resistance in epithelial ovarian cancer by suppressing miR-152 biogenesis via targeting Dicer1. Cell Death Dis. 2018;9(5):447. doi:10.1038/s41419-018-0390-7.
  • Leonov G, Shah K, Yee D, et al. Suppression of AGO2 by miR-132 as a determinant of miRNA-mediated silencing in human primary endothelial cells. Int J Biochem Cell Biol. 2015;69:75–84. doi:10.1016/j.biocel.2015.10.006.
  • Liu ZZ, Tian YF, Wu H, et al. lncRNA H19 promotes glioma angiogenesis through miR-138/HIF-1α/VEGF axis. Neoplasma. 2020;67(1):111–118. doi:10.4149/neo_2019_190121N61.
  • Lin CJ, Lan YM, Ou MQ, et al. Expression of miR-217 and HIF-1α/VEGF pathway in patients with diabetic foot ulcer and its effect on angiogenesis of diabetic foot ulcer rats. J Endocrinol Invest. 2019;42(11):1307–1317. doi:10.1007/s40618-019-01053-2.
  • Li Y, Yan C, Fan J, et al. miR-221-3p targets HIF-1α to inhibit angiogenesis in heart failure. Lab Invest. 2021;101(1):104–115. doi:10.1038/s41374-020-0450-3.
  • Han N, Xu H, Yu N, et al. miR-203a-3p inhibits retinal angiogenesis and alleviates proliferative diabetic retinopathy in oxygen-induced retinopathy (OIR) rat model via targeting VEGFA and HIF-1α. Clin Exp Pharmacol Physiol. 2020;47(1):85–94. doi:10.1111/1440-1681.13163.
  • Gou L, Xue C, Tang X, et al. Inhibition of exo-miR-19a-3p derived from cardiomyocytes promotes angiogenesis and improves heart function in mice with myocardial infarction via targeting HIF-1α. Aging. 2020;12(23):23609–23618. doi:10.18632/aging.103563.
  • Zhong J, Huang R, Su Z, et al. Downregulation of miR-199a-5p promotes prostate adeno-carcinoma progression through loss of its inhibition of HIF-1α. Oncotarget. 2017;8(48):83523–83538. doi:10.18632/oncotarget.18315.
  • Wu Z, Cai X, Huang C, et al. miR-497 suppresses angiogenesis in breast carcinoma by targeting HIF-1α. Oncol Rep. 2016;35(3):1696–1702. doi:10.3892/or.2015.4529.
  • Guo Y, Du F, Tan YL, et al. VEGF-mediated angiogenesis in retinopathy of prematurity is co-regulated by miR-17-5p and miR-20a-5p. Biochem Cell Biol. 2021;99(4):414–423. doi:10.1139/bcb-2020-0357.
  • Yang Y, Liu Y, Li Y, et al. microRNA-15b targets VEGF and inhibits angiogenesis in proliferative diabetic retinopathy. J Clin Endocrinol Metab. 2020;105(11):3404–3415. doi:10.1210/clinem/dgaa538.
  • Lu Y, Qin T, Li J, et al. microRNA-140-5p inhibits invasion and angiogenesis through targeting VEGF-A in breast cancer. Cancer Gene Ther. 2017;24(9):386–392. doi:10.1038/cgt.2017.30.
  • Zhang JR, Zhu RH, Han XP. miR-140-5p inhibits larynx carcinoma invasion and angiogenesis by targeting VEGF-A. Eur Rev Med Pharmacol Sci. 2018;22(18):5994–6001.
  • Liu H, Chen Y, Li Y, et al. Mir‑195 suppresses metastasis and angiogenesis of squamous cell lung cancer by inhibiting the expression of VEGF. Mol Med Rep. 2019;20(3):2625–2632.
  • Hou P, Li H, Yong H, et al. Pinx1 represses renal cancer angiogenesis via the miR-125a-3p/VEGF signaling pathway. Angiogenesis. 2019;22(4):507–519. doi:10.1007/s10456-019-09675-z.
  • Wei L, Sun C, Zhang Y, et al. miR-503-5p inhibits colon cancer tumorigenesis, angiogenesis, and lymphangiogenesis by directly downregulating VEGF-A. Gene Ther. 2022;29(1–2):28–40. doi:10.1038/s41434-020-0167-3.
  • Wu X, Lei J, Zhou B, et al. miR-628-5p inhibits cervical carcinoma proliferation and promotes apoptosis by targeting VEGF. Am J Med Sci. 2021;361(4):499–508. doi:10.1016/j.amjms.2020.11.031.
  • Zhao LN, Wang P, Liu YH, et al. miR-383 inhibits proliferation, migration and angiogenesis of glioma-exposed endothelial cells in vitro via VEGF-mediated FAK and Src signaling pathways. Cell Signal. 2017;30:142–153. doi:10.1016/j.cellsig.2016.09.007.
  • Zhao Y, Zhu CD, Yan B, et al. miRNA-directed regulation of VEGF in tilapia under hypoxia condition. Biochem Biophys Res Commun. 2014;454(1):183–188. doi:10.1016/j.bbrc.2014.10.068.
  • Zhou X, Chen J, Xiao Q, et al. microRNA-638 inhibits cell growth and tubule formation by suppressing VEGFA expression in human Ewing sarcoma cells. Biosci Rep. 2018;38(1):BSR20171017.
  • Cheng J, Chen Y, Zhao P, et al. Downregulation of miRNA-638 promotes angiogenesis and growth of hepatocellular carcinoma by targeting VEGF. Oncotarget. 2016;7(21):30702–30711. doi:10.18632/oncotarget.8930.
  • Hao Y, Yang J, Yin S, et al. The synergistic regulation of VEGF-mediated angiogenesis through miR-190 and target genes. RNA. 2014;20(8):1328–1336. doi:10.1261/rna.044651.114.
  • Chang SH, Lu YC, Li X, et al. Antagonistic function of the RNA-binding protein HuR and miR-200b in post-transcriptional regulation of vascular endothelial growth factor-A expression and angiogenesis. J Biol Chem. 2013;288(7):4908–4921. doi:10.1074/jbc.M112.423871.
  • Chan YC, Roy S, Khanna S, et al. Downregulation of endothelial microRNA-200b supports cutaneous wound angiogenesis by desilencing GATA binding protein 2 and vascular endothelial growth factor receptor 2. Arterioscler Thromb Vasc Biol. 2012;32(6):1372–1382. doi:10.1161/ATVBAHA.112.248583.
  • Yu S, Hong Q, Wang Y, et al. High concentrations of uric acid inhibit angiogenesis via regulation of the Krüppel-like factor 2-vascular endothelial growth factor-A axis by miR-92a. Circ J. 2015;79(11):2487–2498. doi:10.1253/circj.CJ-15-0283.
  • Jo HN, Kang H, Lee A, et al. Endothelial miR-26a regulates VEGF-Nogo-B receptor-mediated angiogenesis. BMB Rep. 2017;50(7):384–389. doi:10.5483/bmbrep.2017.50.7.085.
  • Shi ZM, Wang J, Yan Z, et al. miR-128 inhibits tumor growth and angiogenesis by targeting p70S6K1. PLOS One. 2012;7(3):e32709. doi:10.1371/journal.pone.0032709.
  • Ghosh A, Dasgupta D, Ghosh A, et al. miRNA199a-3p suppresses tumor growth, migration, invasion and angiogenesis in hepatocellular carcinoma by targeting VEGFA, VEGFR1, VEGFR2, HGF AND MMP2. Cell Death Dis. 2017;8(3):e2706. doi:10.1038/cddis.2017.123.
  • Tu Y, Liu L, Zhao D, et al. Overexpression of miRNA-497 inhibits tumor angiogenesis by targeting VEGFR2. Sci Rep. 2015;5:13827. doi:10.1038/srep13827.
  • Krebs M, Solimando AG, Kalogirou C, et al. miR-221-3p regulates VEGFR2 expression in high-risk prostate cancer and represents an escape mechanism from sunitinib in vitro. J Clin Med. 2020;9(3):670.
  • Feng J, Huang T, Huang Q, et al. Pro‑angiogenic microRNA‑296 upregulates vascular endothelial growth factor and downregulates Notch1 following cerebral ischemic injury. Mol Med Rep. 2015;12(6):8141–8147. doi:10.3892/mmr.2015.4436.
  • Liang H, Ge F, Xu Y, et al. miR-153 inhibits the migration and the tube formation of endothelial cells by blocking the paracrine of angiopoietin 1 in breast cancer cells. Angiogenesis. 2018;21(4):849–860. doi:10.1007/s10456-018-9630-9.
  • Behera J, Kumar A, Voor MJ, et al. Exosomal lncRNA-H19 promotes osteogenesis and angiogenesis through mediating Angpt1/Tie2-NO signaling in CBS-heterozygous mice. Theranostics. 2021;11(16):7715–7734. doi:10.7150/thno.58410.
  • Liu Z, Guo N, Zhang XJ. Long noncoding TUG1 promotes angiogenesis of HUVECs in PE via regulating the miR-29a-3p/VEGFA and Ang2/Tie2 pathways. Microvasc Res. 2022;139:104231. doi:10.1016/j.mvr.2021.104231.
  • Tang S, Wang D, Zhang Q, et al. miR-218 suppresses gastric cancer cell proliferation and invasion via regulation of angiopoietin-2. Exp Ther Med. 2016;12(6):3837–3842. doi:10.3892/etm.2016.3893.
  • Besnier M, Shantikumar S, Anwar M, et al. miR-15a/-16 inhibit angiogenesis by targeting the Tie2 coding sequence: therapeutic potential of a miR-15a/16 decoy system in limb ischemia. Mol Ther Nucleic Acids. 2019;17:49–62. doi:10.1016/j.omtn.2019.05.002.
  • Yang C, Lv K, Chen B, et al. miR144-3p inhibits PMVECs excessive proliferation in angiogenesis of hepatopulmonary syndrome via Tie2. Exp Cell Res. 2018;365(1):24–32. doi:10.1016/j.yexcr.2018.02.009.
  • Yang L, Yue W, Zhang H, et al. Dual targeting of angipoietin-1 and von Willebrand factor by microRNA-671-5p attenuates liver angiogenesis and fibrosis. Hepatol Commun. 2022;6(6):1425–1442. doi:10.1002/hep4.1888.
  • Lu Z, Zhang W, Gao S, et al. miR-506 suppresses liver cancer angiogenesis through targeting sphingosine kinase 1 (SPHK1) mRNA. Biochem Biophys Res Commun. 2015;468(1–2):8–13. doi:10.1016/j.bbrc.2015.11.008.
  • Liu Y, Yang Q, Fu H, et al. Müller glia-derived exosomal miR-9-3p promotes angiogenesis by restricting sphingosine-1-phosphate receptor S1P(1) in diabetic retinopathy. Mol Ther Nucleic Acids. 2022;27:491–504. doi:10.1016/j.omtn.2021.12.019.
  • Xue LX, Shu LY, Wang HM, et al. miR-181b promotes angiogenesis and neurological function recovery after ischemic stroke. Neural Regen Res. 2023;18(9):1983–1989.
  • Fernandes H, Zonnari A, Abreu R, et al. Extracellular vesicles enriched with an endothelial cell pro-survival microRNA affects skin tissue regeneration. Mol Ther Nucleic Acids. 2022;28:307–327. doi:10.1016/j.omtn.2022.03.018.
  • Zhang P, Yang X, Wang L, et al. Overexpressing miR‑335 inhibits DU145 cell proliferation by targeting early growth response 3 in prostate cancer. Int J Oncol. 2019;54(6):1981–1994. doi:10.3892/ijo.2019.4778.
  • Hua S, Dias TH. Hypoxia-inducible factor (HIF) as a target for novel therapies in rheumatoid arthritis. Front Pharmacol. 2016;7:184. doi:10.3389/fphar.2016.00184.
  • Park SY, Lee SW, Kim HY, et al. Hmgb1 induces angiogenesis in rheumatoid arthritis via HIF-1α activation. Eur J Immunol. 2015;45(4):1216–1227. doi:10.1002/eji.201444908.
  • Westra J, Molema G, Kallenberg CG. Hypoxia-inducible factor-1 as regulator of angiogenesis in rheumatoid arthritis – therapeutic implications. Curr Med Chem. 2010;17(3):254–263. doi:10.2174/092986710790149783.
  • Veale DJ, Orr C, Fearon U. Cellular and molecular perspectives in rheumatoid arthritis. Semin Immunopathol. 2017;39(4):343–354. doi:10.1007/s00281-017-0633-1.
  • Teichert-Kuliszewska K, Maisonpierre PC, Jones N, et al. Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2. Cardiovasc Res. 2001;49(3):659–670. doi:10.1016/s0008-6363(00)00231-5.
  • Kim I, Kim JH, Moon SO, et al. Angiopoietin-2 at high concentration can enhance endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Oncogene. 2000;19(39):4549–4552. doi:10.1038/sj.onc.1203800.
  • Sun M, Deng R, Wang Y, et al. Sphingosine kinase 1/sphingosine 1-phosphate/sphingosine 1-phosphate receptor 1 pathway: a novel target of geniposide to inhibit angiogenesis. Life Sci. 2020;256:117988. doi:10.1016/j.lfs.2020.117988.
  • Bu Y, Wu H, Deng R, et al. The anti-angiogenesis mechanism of geniposide on rheumatoid arthritis is related to the regulation of PTEN. Inflammopharmacology. 2022;30(3):1047–1062. doi:10.1007/s10787-022-00975-3.
  • Choi C, Jeong W, Ghang B, et al. Cyr61 synthesis is induced by interleukin-6 and promotes migration and invasion of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Res Ther. 2020;22(1):275. doi:10.1186/s13075-020-02369-8.
  • Mollaei H, Safaralizadeh R, Rostami Z. microRNA replacement therapy in cancer. J Cell Physiol. 2019;234(8):12369–12384. doi:10.1002/jcp.28058.
  • Tiwari A, Mukherjee B, Dixit M. microRNA key to angiogenesis regulation: miRNA biology and therapy. Curr Cancer Drug Targets. 2018;18(3):266–277. doi:10.2174/1568009617666170630142725.
  • Ganju A, Khan S, Hafeez BB, et al. miRNA nanotherapeutics for cancer. Drug Discov Today. 2017;22(2):424–432. doi:10.1016/j.drudis.2016.10.014.
  • Lee S, Paoletti C, Campisi M, et al. microRNA delivery through nanoparticles. J Control Release. 2019;313:80–95. doi:10.1016/j.jconrel.2019.10.007.
  • Yan Y, Liu XY, Lu A, et al. Non-viral vectors for RNA delivery. J Control Release. 2022;342:241–279. doi:10.1016/j.jconrel.2022.01.008.
  • Seok H, Lee H, Jang ES, et al. Evaluation and control of miRNA-like off-target repression for RNA interference. Cell Mol Life Sci. 2018;75(5):797–814. doi:10.1007/s00018-017-2656-0.
  • Medley JC, Panzade G, Zinovyeva AY. microRNA strand selection: unwinding the rules. Wiley Interdiscip Rev RNA. 2021;12(3):e1627.
  • Wu SY, Yang X, Gharpure KM, et al. 2′-OMe-phosphorodithioate-modified siRNAs show increased loading into the RISC complex and enhanced anti-tumour activity. Nat Commun. 2014;5:3459. doi:10.1038/ncomms4459.
  • Mook OR, Baas F, de Wissel MB, et al. Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo. Mol Cancer Ther. 2007;6(3):833–843. doi:10.1158/1535-7163.MCT-06-0195.
  • Keskin S, Brouwers CC, Sogorb-Gonzalez M, et al. AAV5-miHTT lowers Huntingtin mRNA and protein without off-target effects in patient-derived neuronal cultures and astrocytes. Mol Ther Methods Clin Dev. 2019;15:275–284. doi:10.1016/j.omtm.2019.09.010.
  • Zafar A, Wang W, Liu G, et al. Molecular targeting therapies for neuroblastoma: progress and challenges. Med Res Rev. 2021;41(2):961–1021. doi:10.1002/med.21750.
  • Challagundla KB, Wise PM, Neviani P, et al. Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. J Natl Cancer Inst. 2015;107(7):djv135.
  • Berindan-Neagoe I, Calin GA. Molecular pathways: microRNAs, cancer cells, and microenvironment. Clin Cancer Res. 2014;20(24):6247–6253. doi:10.1158/1078-0432.CCR-13-2500.
  • Thone MN, Kwon YJ. Extracellular blebs: artificially-induced extracellular vesicles for facile production and clinical translation. Methods. 2020;177:135–145. doi:10.1016/j.ymeth.2019.11.007.
  • Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther. 2021;6(1):291.
  • Lee Y, Urban JH, Xu L, et al. 2′Fluoro modification differentially modulates the ability of RNAs to activate pattern recognition receptors. Nucleic Acid Ther. 2016;26(3):173–182. doi:10.1089/nat.2015.0575.
  • Hamm S, Latz E, Hangel D, et al. Alternating 2′-O-ribose methylation is a universal approach for generating non-stimulatory siRNA by acting as TLR7 antagonist. Immunobiology. 2010;215(7):559–569. doi:10.1016/j.imbio.2009.09.003.
  • Artegiani B, Clevers H. Use and application of 3D-organoid technology. Hum Mol Genet. 2018;27(R2):R99–R107. doi:10.1093/hmg/ddy187.
  • Aparicio S, Hidalgo M, Kung AL. Examining the utility of patient-derived xenograft mouse models. Nat Rev Cancer. 2015;15(5):311–316. doi:10.1038/nrc3944.
  • Cheng P, Wang J. The potential of circulating microRNA-125a and microRNA-125b as markers for inflammation and clinical response to infliximab in rheumatoid arthritis patients. J Clin Lab Anal. 2020;34(8):e23329.
  • Hong H, Yang H, Xia Y. Circulating miR-10a as predictor of therapy response in rheumatoid arthritis patients treated with methotrexate. Curr Pharm Biotechnol. 2018;19(1):79–86. doi:10.2174/1389201019666180417155140.
  • Li N, Chen Z, Feng W, et al. Triptolide improves chondrocyte proliferation and secretion via down-regulation of miR-221 in synovial cell exosomes. Phytomedicine. 2022;107:154479. doi:10.1016/j.phymed.2022.154479.
  • Hao F, Lee RJ, Zhong L, et al. Hybrid micelles containing methotrexate-conjugated polymer and co-loaded with microRNA-124 for rheumatoid arthritis therapy. Theranostics. 2019;9(18):5282–5297. doi:10.7150/thno.32268.
  • Wang M, Mei L, Liu Z, et al. The mechanism of Chinese herbal formula HQT in the treatment of rheumatoid arthritis is related to its regulation of lncRNA uc.477 and miR-19b. J Leukoc Biol. 2020;108(2):519–529. doi:10.1002/JLB.3MA0620-441RRRR.
  • Xiao J, Cai X, Zhou W, et al. Curcumin relieved the rheumatoid arthritis progression via modulating the linc00052/miR-126-5p/PIAS2 axis. Bioengineered. 2022;13(4):10973–10983. doi:10.1080/21655979.2022.2066760.
  • Zhao X, Yi Y, Jiang C, et al. Gancao Fuzi decoction regulates the Th17/Treg cell imbalance in rheumatoid arthritis by targeting Foxp3 via miR-34a. J Ethnopharmacol. 2023;301:115837. doi:10.1016/j.jep.2022.115837.
  • Meng D, Li J, Li H, et al. Salvianolic acid B remits LPS-induced injury by up-regulating miR-142-3p in MH7A cells. Biomed Pharmacother. 2019;115:108876. doi:10.1016/j.biopha.2019.108876.
  • Wu ZM, Luo J, Shi XD, et al. Icariin alleviates rheumatoid arthritis via regulating miR-223-3p/NLRP3 signalling axis. Autoimmunity. 2020;53(8):450–458. doi:10.1080/08916934.2020.1836488.
  • Zhao C, Li XY, Li ZY, et al. Moxibustion regulates T-regulatory/T-helper 17 cell balance by modulating the microRNA-221/suppressor of cytokine signaling 3 axis in a mouse model of rheumatoid arthritis. J Integr Med. 2022;20(5):453–462. doi:10.1016/j.joim.2022.06.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.