53
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Red blood membrane camouflaging Bismuth nanoflowers designed for radio-photothermal therapy in lung cancer

, , , , , , & show all
Pages 544-556 | Received 03 Feb 2023, Accepted 05 Mar 2024, Published online: 21 Mar 2024

References

  • Bade BC, Dela Cruz CS. Lung cancer 2020: epidemiology, etiology, and prevention. Clin Chest Med. 2020;41(1):1–24. doi: 10.1016/j.ccm.2019.10.001.
  • Nasim F, Sabath BF, Eapen GA. Lung cancer. Med Clin North Am. 2019;103(3):463–473. doi: 10.1016/j.mcna.2018.12.006.
  • Osmani L, Askin F, Gabrielson E, et al. Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): moving from targeted therapy to immunotherapy. Semin Cancer Biol. 2018;52(Pt 1):103–109. doi: 10.1016/j.semcancer.2017.11.019.
  • Wu F, Wang L, Zhou C. Lung cancer in China: current and prospect. Curr Opin Oncol. 2021;33(1):40–46. doi: 10.1097/CCO.0000000000000703.
  • Dong Y, Zhu D, Che G[, et al. Clinical effect of day surgery in patients with lung caner by optimize operating process. Zhongguo Fei Ai Za Zhi. 2020;23(2):77–83.
  • Gong L, Zhang Y, Liu C, et al. Application of radiosensitizers in cancer radiotherapy. Int J Nanomedicine. 2021;16:1083–1102. doi: 10.2147/IJN.S290438.
  • Chen P, Li J, Jiang HG, et al. Curcumin reverses cisplatin resistance in cisplatin-resistant lung cancer cells by inhibiting FA/BRCA pathway. Tumour Biol. 2015;36(5):3591–3599. doi: 10.1007/s13277-014-2996-4.
  • Knights O, Freear S, McLaughlan JR. Improving plasmonic photothermal therapy of lung cancer cells with anti-EGFR targeted gold nanorods. Nanomaterials. 2020;10(7):1307. doi: 10.3390/nano10071307.
  • Ruiz-Cordero R, Devine WP. Targeted therapy and checkpoint immunotherapy in lung cancer. Surg Pathol Clin. 2020;13(1):17–33. doi: 10.1016/j.path.2019.11.002.
  • Schaue D, McBride WH. Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol. 2015;12(9):527–540. doi: 10.1038/nrclinonc.2015.120.
  • Chinnaiyan P, Allen GW, Harari PM. Radiation and new molecular agents, part II: targeting HDAC, HSP90, IGF-1R, PI3K, and Ras. Semin Radiat Oncol. 2006;16(1):59–64. doi: 10.1016/j.semradonc.2005.08.008.
  • Núñez C, Estévez SV, Del Pilar Chantada M. Inorganic nanoparticles in diagnosis and treatment of breast cancer. J Biol Inorg Chem. 2018;23(3):331–345. doi: 10.1007/s00775-018-1542-z.
  • Wang J, Wu X, Shen P, et al. Applications of inorganic nanomaterials in photothermal therapy based on combinational cancer treatment. Int J Nanomedicine. 2020;15:1903–1914. doi: 10.2147/IJN.S239751.
  • Martinelli C, Pucci C, Ciofani G. Nanostructured carriers as innovative tools for cancer diagnosis and therapy. APL Bioeng. 2019;3(1):011502. doi: 10.1063/1.5079943.
  • Griffith DM, Li H, Werrett MV, et al. Medicinal chemistry and biomedical applications of bismuth-based compounds and nanoparticles. Chem Soc Rev. 2021;50(21):12037–12069. doi: 10.1039/d0cs00031k.
  • Bartoli M, Jagdale P, Tagliaferro A. A short review on biomedical applications of nanostructured bismuth oxide and related nanomaterials. Materials. 2020;13(22):13. doi: 10.3390/ma13225234.
  • Deng J, Xu S, Hu W, et al. Tumor targeted, stealthy and degradable bismuth nanoparticles for enhanced X-ray radiation therapy of breast cancer. Biomaterials. 2018;154:24–33. doi: 10.1016/j.biomaterials.2017.10.048.
  • Brown AL, Naha PC, Benavides-Montes V, et al. Synthesis, X-ray opacity, and biological compatibility of Ultra-High payload elemental bismuth nanoparticle X-ray contrast agents. Chem Mater. 2014;26(7):2266–2274. doi: 10.1021/cm500077z.
  • Chen T, Cen D, Ren Z, et al. Bismuth embedded silica nanoparticles loaded with autophagy suppressant to promote photothermal therapy. Biomaterials. 2019;221:119419. doi: 10.1016/j.biomaterials.2019.119419.
  • Ashton JR, Castle KD, Qi Y, et al. Dual-energy CT imaging of tumor liposome delivery after gold nanoparticle-augmented radiation therapy. Theranostics. 2018;8(7):1782–1797. doi: 10.7150/thno.22621.
  • Yu N, Wang Z, Zhang J, et al. Thiol-capped Bi nanoparticles as stable and all-in-one type theranostic nanoagents for tumor imaging and thermoradiotherapy. Biomaterials. 2018;161:279–291. doi: 10.1016/j.biomaterials.2018.01.047.
  • Zhang J, Liu Y, Wang X, et al. Nanozyme-Incorporated biodegradable bismuth mesoporous radiosensitizer for tumor microenvironment-modulated hypoxic tumor thermoradiotherapy. ACS Appl Mater Interfaces. 2020;12(52):57768–57781. doi: 10.1021/acsami.0c18853.
  • Talik Sisin NN, Abdul Razak K, Zainal Abidin S, et al. Synergetic influence of bismuth oxide nanoparticles, cisplatin and Baicalein-rich fraction on reactive oxygen species generation and radiosensitization effects for clinical radiotherapy beams. Int J Nanomedicine. 2020;15:7805–7823. doi: 10.2147/IJN.S269214.
  • Liu H, Cheng R, Dong X, et al. BiO(2-x) nanosheets as radiosensitizers with catalase-like activity for hypoxia alleviation and enhancement of the radiotherapy of tumors. Inorg Chem. 2020;59(6):3482–3493. doi: 10.1021/acs.inorgchem.9b03280.
  • Shahbazi-Gahrouei D, Choghazardi Y, Kazemzadeh A, et al. A review of bismuth-based nanoparticles and their applications in radiosensitising and dose enhancement for cancer radiation therapy. IET Nanobiotechnol. 2023;17(4):302–311. doi: 10.1049/nbt2.12134.
  • Oroojalian F, Beygi M, Baradaran B, et al. Immune cell membrane-coated biomimetic nanoparticles for targeted cancer therapy. Small. 2021;17(12):e2006484. doi: 10.1002/smll.202006484.
  • Spanjers JM, Städler B. Cell membrane coated particles. Adv Biosyst. 2020;4(11):e2000174. doi: 10.1002/adbi.202000174.
  • Jiang Q, Liu Y, Guo R, et al. Erythrocyte-cancer hybrid membrane-camouflaged melanin nanoparticles for enhancing photothermal therapy efficacy in tumors. Biomaterials. 2019;192:292–308. doi: 10.1016/j.biomaterials.2018.11.021.
  • Xiong J, Wu M, Chen J, et al. Cancer-erythrocyte hybrid membrane-camouflaged magnetic nanoparticles with enhanced photothermal-Immunotherapy for ovarian cancer. ACS Nano. 2021;15(12):19756–19770. doi: 10.1021/acsnano.1c07180.
  • Rezaei S, de Araújo Júnior RF, da Silva ILG, et al. Erythrocyte-cancer hybrid membrane-coated reduction-sensitive nanoparticles for enhancing chemotherapy efficacy in breast cancer. Biomater Adv. 2023;151:213456. doi: 10.1016/j.bioadv.2023.213456.
  • Huang X, Wu B, Li J, et al. Anti-tumour effects of red blood cell membrane-camouflaged black phosphorous quantum dots combined with chemotherapy and anti-inflammatory therapy. Artif Cells Nanomed Biotechnol. 2019;47(1):968–979. doi: 10.1080/21691401.2019.1584110.
  • Liu Y, Liu Y, Bu W, et al. Radiation-/hypoxia-induced solid tumor metastasis and regrowth inhibited by hypoxia-specific upconversion nanoradiosensitizer. Biomaterials. 2015;49:1–8. doi: 10.1016/j.biomaterials.2015.01.028.
  • Abidin SZ, Zulkifli ZA, Razak KA, et al. In PEG coated bismuth oxide nanorods induced radiosensitization on MCF-7 breast cancer cells under irradiation of megavoltage radiotherapy beams. Conference on Biomedical and Advanced Materials (Bio-CAM), Malaysia, 2019 Nov 28–29; Malaysia, 2017; pp 1640–1645.
  • Baffou G, Quidant R, García de Abajo FJ. Nanoscale control of optical heating in complex plasmonic systems. ACS Nano. 2010;4(2):709–716. doi: 10.1021/nn901144d.
  • Hernandez-Delgadillo R, Velasco-Arias D, Martinez-Sanmiguel JJ, et al. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation. Int J Nanomedicine. 2013;8:1645–1652. doi: 10.2147/IJN.S38708.
  • Zhai Y, Su J, Ran W, et al. Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy. Theranostics. 2017;7(10):2575–2592. doi: 10.7150/thno.20118.
  • Xia Q, Zhang Y, Li Z, et al. Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharm Sin B. 2019;9(4):675–689. doi: 10.1016/j.apsb.2019.01.011.
  • Wang X, Shen X, Li J, et al. Biomineralization of DNA nanoframeworks for intracellular delivery, on-Demand diagnosis, and synergistic cancer treatments. Anal Chem. 2022;94(48):16803–16812. doi: 10.1021/acs.analchem.2c03726.
  • Kielkopf CL, Bauer W, Urbatsch IL. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins. Cold Spring Harb Protoc. 2021;2021(12) doi: 10.1101/pdb.prot102228.
  • Wu CY, Young D, Martel J, et al. A story told by a single nanoparticle in the body fluid: demonstration of dissolution-reprecipitation of nanocrystals in a biological system. Nanomedicine. 2015;10(17):2659–2676. doi: 10.2217/nnm.15.88.
  • Jain AK, Thareja S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif Cells Nanomed Biotechnol. 2019;47(1):524–539. doi: 10.1080/21691401.2018.1561457.
  • Hu CM, Fang RH, Luk BT, et al. Marker-of-self’ functionalization of nanoscale particles through a top-down cellular membrane coating approach. Nanoscale. 2013;5(7):2664–2668. doi: 10.1039/c3nr00015j.
  • Paredes F, Williams HC, San Martin A. Metabolic adaptation in hypoxia and cancer. Cancer Lett. 2021;502:133–142. doi: 10.1016/j.canlet.2020.12.020.
  • Han C, Wang Z, Chen S, et al. Berbamine suppresses the progression of bladder cancer by modulating the ROS/NF-κB axis. Oxid Med Cell Longev. 2021;2021:8851763. doi: 10.1155/2021/8851763.
  • Alyani Nezhad Z, Geraily G, Hataminia F, et al. Bismuth oxide nanoparticles as agents of radiation dose enhancement in intraoperative radiotherapy. Med Phys. 2021;48(3):1417–1426. doi: 10.1002/mp.14697.
  • Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–951. doi: 10.1038/nbt.3330.
  • Oldenborg PA, Zheleznyak A, Fang YF, et al. Role of CD47 as a marker of self on red blood cells. Science. 2000;288(5473):2051–2054. doi: 10.1126/science.288.5473.2051.
  • Kroll AV, Fang RH, Zhang L. Biointerfacing and applications of cell membrane-coated nanoparticles. Bioconjug Chem. 2017;28(1):23–32. doi: 10.1021/acs.bioconjchem.6b00569.
  • Lan G, Ni K, Veroneau SS, et al. Nanoscale metal-organic layers for radiotherapy-radiodynamic therapy. J Am Chem Soc. 2018;140(49):16971–16975. doi: 10.1021/jacs.8b11593.
  • Xiang H, Wu Y, Zhu X, et al. Highly stable silica-coated bismuth nanoparticles deliver tumor microenvironment-responsive prodrugs to enhance tumor-specific photoradiotherapy. J Am Chem Soc. 2021;143(30):11449–11461. doi: 10.1021/jacs.1c03303.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.