88
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

The potential application of complement inhibitors-loaded nanosystem for autoimmune diseases via regulation immune balance

, , , , , & show all
Pages 485-498 | Received 20 Dec 2023, Accepted 14 Mar 2024, Published online: 21 Mar 2024

References

  • Deng Q, Luo Y, Chang C, et al. The emerging epigenetic role of CD8 + T cells in autoimmune diseases: a systematic review. Front Immunol. 2019;10:856. doi:10.3389/fimmu.2019.00856.
  • Smatti MK, Cyprian FS, Nasrallah GK, et al. Viruses and autoimmunity: a review on the potential interaction and molecular mechanisms. Viruses. 2019;11(8):762. doi:10.3390/v11080762.
  • Cooper GS, Bynum ML, Somers EC. Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases. J Autoimmun. 2009;33(3–4):197–207. doi:10.1016/j.jaut.2009.09.008.
  • Gilhus NE, Skeie GO, Romi F, et al. Myasthenia gravis - autoantibody characteristics and their implications for therapy. Nat Rev Neurol. 2016;12(5):259–268. doi:10.1038/nrneurol.2016.44.
  • Barnett C, Tabasinejad R, Bril V. Current pharmacotherapeutic options for myasthenia gravis. Expert Opin Pharmacother. 2019;20(18):2295–2303. doi:10.1080/14656566.2019.1682548.
  • Lazaridis K, Tzartos SJ. Autoantibody specificities in myasthenia gravis; implications for improved diagnostics and therapeutics. Front Immunol. 2020;11:212. doi:10.3389/fimmu.2020.00212.
  • Kinney JW, Bemiller SM, Murtishaw AS, et al. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (N Y). 2018;4(1):575–590. doi:10.1016/j.trci.2018.06.014.
  • Miwa T, Song WC. Membrane complement regulatory proteins: insight from animal studies and relevance to human diseases. Int Immunopharmacol. 2001;1(3):445–459. doi:10.1016/s1567-5769(00)00043-6.
  • Guo Z, Chen J, Zeng Y, et al. Complement inhibition alleviates cholestatic liver injury through mediating macrophage infiltration and function in mice. Front Immunol. 2021;12:785287. doi:10.3389/fimmu.2021.785287.
  • Toomey CB, Cauvi DM, Pollard KM. The role of decay accelerating factor in environmentally induced and idiopathic systemic autoimmune disease. Autoimmune Dis. 2014;2014:452853. doi:10.1155/2014/452853.
  • LaFon DC, Thiel S, Kim YI, et al. Classical and lectin complement pathways and markers of inflammation for investigation of susceptibility to infections among healthy older adults. Immun Ageing. 2020;17(1):18. doi:10.1186/s12979-020-00189-7.
  • Fujita T. Evolution of the lectin–complement pathway and its role in innate immunity. Nat Rev Immunol. 2002;2(5):346–353. doi:10.1038/nri800.
  • Thurman JM, Holers VM. The Central role of the alternative complement pathway in human disease. J Immunol. 2006;176(3):1305–1310. doi:10.4049/jimmunol.176.3.1305.
  • Carroll MC. The role of complement and complement receptors in induction and regulation of immunity. Annu Rev Immunol. 1998;16(1):545–568. doi:10.1146/annurev.immunol.16.1.545.
  • Zelek WM, Morgan BP. Targeting complement in neurodegeneration: challenges, risks, and strategies. Trends Pharmacol Sci. 2022;43(8):615–628. doi:10.1016/j.tips.2022.02.006.
  • Klos A, Tenner AJ, Johswich KO, et al. The role of the anaphylatoxins in health and disease. Mol Immunol. 2009;46(14):2753–2766. doi:10.1016/j.molimm.2009.04.027.
  • Hajishengallis G, Lambris JD. More than complementing tolls: complement-Toll-like receptor synergy and crosstalk in innate immunity and inflammation. Immunol Rev. 2016;274(1):233–244. doi:10.1111/imr.12467.
  • Rambaldi A, Gritti G, Micò MC, et al. Endothelial injury and thrombotic microangiopathy in COVID-19: treatment with the lectin-pathway inhibitor narsoplimab. Immunobiology. 2020;225(6):152001. doi:10.1016/j.imbio.2020.152001.
  • Brain D, Plant-Hately A, Heaton B, et al. Drug delivery systems as immunomodulators for therapy of infectious disease: relevance to COVID-19. Adv Drug Deliv Rev. 2021;178:113848. doi:10.1016/j.addr.2021.113848.
  • Java A, Apicelli AJ, Liszewski MK, et al. The complement system in COVID-19: friend and foe? JCI Insight. 2020;5(15):e140711. doi:10.1172/jci.insight.140711.
  • Ghosh P, Sahoo R, Vaidya A, et al. Role of complement and complement regulatory proteins in the complications of diabetes. Endocr Rev. 2015;36(3):272–288. doi:10.1210/er.2014-1099.
  • Morgan BP, Harris CL. Complement, a target for therapy in inflammatory and degenerative diseases. Nat Rev Drug Discov. 2015;14(12):857–877. doi:10.1038/nrd4657.
  • Tao S, Yu H, You T, et al. Dual-targeted metal-organic framework based nanoplatform for the treatment of rheumatoid arthritis by restoring the macrophage niche. ACS Nano. 2023;17(14):13917–13937. doi:10.1021/acsnano.3c03828.
  • Hashemzadeh N, Dolatkhah M, Adibkia K, et al. Recent advances in breast cancer immunotherapy: the promising impact of nanomedicines. Life Sci. 2021; 271:119110. doi:10.1016/j.lfs.2021.119110.
  • Su Y, Huang Y, Kou Q, et al. Study on the role of an erythrocyte membrane-Coated nanotheranostic system in targeted immune regulation of Alzheimer’s disease. Adv Sci (Weinh). 2023;10(18):e2301361. doi:10.1002/advs.202301361.
  • Li PY, Bearoff F, Zhu P, et al. PEGylation enables subcutaneously administered nanoparticles to induce antigen-specific immune tolerance. J Control Release. 2021;331:164–175. doi:10.1016/j.jconrel.2021.01.013.
  • Thurman JM, Yapa R. Complement therapeutics in autoimmune disease. Front Immunol. 2019;10:672. doi:10.3389/fimmu.2019.00672.
  • Nowak RJ, Muppidi S, Beydoun SR, et al. Concomitant immunosuppressive therapy use in eculizumab-treated adults with generalized myasthenia gravis during the REGAIN open-label extension study. Front Neurol. 2020;11:556104. doi:10.3389/fneur.2020.556104.
  • Howard JFJr, Utsugisawa K, Benatar M, et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurol. 2017;16(12):976–986. doi:10.1016/S1474-4422(17)30369-1.
  • Pittock SJ, Lennon VA, McKeon A, et al. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study. Lancet Neurol. 2013;12(6):554–562. doi:10.1016/S1474-4422(13)70076-0.
  • Saez-Calveras N, Brewster AL, Stuve O. The validity of animal models to explore the pathogenic role of the complement system in multiple sclerosis: a review. Front Mol Neurosci. 2022;15:1017484. doi:10.3389/fnmol.2022.1017484.
  • Szlendak U, Budziszewska B, Spychalska J, et al. Paroxysmal nocturnal hemoglobinuria: advances in the understanding of pathophysiology, diagnosis, and treatment. Pol Arch Intern Med. 2022;132(6):16271. doi:10.20452/pamw.16271.
  • Gorman DM, Lee J, Payne CD, et al. Chemical synthesis and characterisation of the complement C5 inhibitory peptide zilucoplan. Amino Acids. 2021;53(1):143–147. doi:10.1007/s00726-020-02921-5.
  • Gerber GF, Brodsky RA. Pegcetacoplan for paroxysmal nocturnal hemoglobinuria. Blood. 2022;139(23):3361–3365. doi:10.1182/blood.2021014868.
  • Bortolotti M, Barcellini W, Fattizzo B. Molecular pharmacology in complement-mediated hemolytic disorders. Eur J Haematol. 2023;111(3):326–336. doi:10.1111/ejh.14026.
  • Pandrowala A, Ganatra P, Krishnan VP, et al. Narsoplimab for severe transplant-associated thrombotic microangiopathy. Thromb J. 2023;21(1):26. doi:10.1186/s12959-023-00464-9.
  • Ricklin D, Mastellos DC, Reis ES, et al. The renaissance of complement therapeutics. Nat Rev Nephrol. 2018;14(1):26–47. doi:10.1038/nrneph.2017.156.
  • Lafayette RA, Rovin BH, Reich HN, et al. Safety, tolerability and efficacy of narsoplimab, a novel MASP-2 inhibitor for the treatment of IgA nephropathy. Kidney Int Rep. 2020;5(11):2032–2041. doi:10.1016/j.ekir.2020.08.003.
  • Kulasekararaj AG, Risitano AM, Maciejewski JP, et al. Phase 2 study of danicopan in patients with paroxysmal nocturnal hemoglobinuria with an inadequate response to eculizumab. Blood. 2021;138(20):1928–1938. doi:10.1182/blood.2021011388.
  • Mayilyan KR. Complement genetics, deficiencies, and disease associations. Protein Cell. 2012;3(7):487–496. doi:10.1007/s13238-012-2924-6.
  • Garred P, Tenner AJ, Mollnes TE. Therapeutic targeting of the complement system: from rare diseases to pandemics. Pharmacol Rev. 2021;73(2):792–827. doi:10.1124/pharmrev.120.000072.
  • Gasque P. Complement: a unique innate immune sensor for danger signals. Mol Immunol. 2004;41(11):1089–1098. doi:10.1016/j.molimm.2004.06.011.
  • Dörner T, Furie R. Novel paradigms in systemic lupus erythematosus. Lancet. 2019;393(10188):2344–2358. doi:10.1016/S0140-6736(19)30546-X.
  • Hashimoto M, Hirota K, Yoshitomi H, et al. Complement drives Th17 cell differentiation and triggers autoimmune arthritis. J Exp Med. 2010;207(6):1135–1143. doi:10.1084/jem.20092301.
  • West EE, Kolev M, Kemper C. Complement and the regulation of T cell responses. Annu Rev Immunol. 2018; 36(1):309–338. doi:10.1146/annurev-immunol-042617-053245.
  • Liszewski MK, Post TW, Atkinson JP. Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster. Annu Rev Immunol. 1991;9(1):431–455. doi:10.1146/annurev.iy.09.040191.002243.
  • Astier AL. T-cell regulation by CD46 and its relevance in multiple sclerosis. Immunology. 2008;124(2):149–154. doi:10.1111/j.1365-2567.2008.02821.x.
  • Arbore G, West EE, Spolski R, et al. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4+ T cells. Science. 2016;352(6292):aad1210. doi:10.1126/science.aad1210.
  • van der Touw W, Cravedi P, Kwan WH, et al. Cutting edge: receptors for C3a and C5a modulate stability of alloantigen-reactive induced regulatory T cells. J Immunol. 2013;190(12):5921–5925. doi:10.4049/jimmunol.1300847.
  • Cardone J, Le Friec G, Vantourout P, et al. Complement regulator CD46 temporally regulates cytokine production by conventional and unconventional T cells. Nat Immunol. 2010;11(9):862–871. doi:10.1038/ni.1917.
  • Kawamoto S, Yalcindag A, Laouini D, et al. The anaphylatoxin C3a downregulates the Th2 response to epicutaneously introduced antigen. J Clin Invest. 2004;114(3):399–407. doi:10.1172/JCI19082.
  • Drouin SM, Sinha M, Sfyroera G, et al. A protective role for the fifth complement component (c5) in allergic airway disease. Am J Respir Crit Care Med. 2006;173(8):852–857. doi:10.1164/rccm.200503-334OC.
  • Strainic MG, Shevach EM, An F, et al. Absence of signaling into CD4+ cells via C3aR and C5aR enables autoinductive TGF-β1 signaling and induction of Foxp3+ regulatory T cells. Nat Immunol. 2013;14(2):162–171. doi:10.1038/ni.2499.
  • Sohn JH, Bora PS, Suk HJ, et al. Tolerance is dependent on complement C3 fragment iC3b binding to antigen-presenting cells. Nat Med. 2003;9(2):206–212. doi:10.1038/nm814.
  • Aghanejad A, Bonab SF, Sepehri M, et al. A review on targeting tumor microenvironment: the main paradigm shift in the mAb-based immunotherapy of solid tumors. Int J Biol Macromol. 2022;207:592–610. doi:10.1016/j.ijbiomac.2022.03.057.
  • Mogilenko DA, Danko K, Larionova EE, et al. Differentiation of human macrophages with anaphylatoxin C3a impairs alternative M2 polarization and decreases lipopolysaccharide-induced cytokine secretion. Immunol Cell Biol. 2022;100(3):186–204. doi:10.1111/imcb.12534.
  • Phieler J, Chung KJ, Chatzigeorgiou A, et al. The complement anaphylatoxin C5a receptor contributes to obese adipose tissue inflammation and insulin resistance. J Immunol. 2013;191(8):4367–4374. doi:10.4049/jimmunol.1300038.
  • Bisht K, Canesin G, Cheytan T, et al. Deletion of biliverdin reductase a in myeloid cells promotes chemokine expression and chemotaxis in part via a complement C5a–C5aR1 pathway. J Immunol. 2019;202(10):2982–2990. doi:10.4049/jimm.Recent Trends in Diagnostic Biomarkers of Tumor Microen unol.1701443.
  • Kremlitzka M, Polgár A, Fülöp L, et al. Complement receptor type 1 (CR1, CD35) is a potent inhibitor of B-cell functions in rheumatoid arthritis patients. Int Immunol. 2013;25(1):25–33. doi:10.1093/intimm/dxs090.
  • Carter RH, Fearon DT. Polymeric C3dg primes human B lymphocytes for proliferation induced by anti-IgM. J Immunol. 1989;143(6):1755–1760. doi:10.4049/jimmunol.143.6.1755.
  • Nielsen CH, Leslie RG, Jepsen BS, et al. Natural autoantibodies and complement promote the uptake of a selfantigen, human thyroglobulin, by B cells and the proliferation of thyroglobulin-reactive CD4(+) T cells in healthy individuals. Eur J Immunol. 2001;31(9):2660–2668. doi:10.1002/1521-4141(200109)31:9<2660:aid-immu2660>3.0.co;2-e.
  • Kalli KR, Ahearn JM, Fearon DT. Interaction of iC3b with recombinant isotypic and chimeric forms of CR2. J Immunol. 1991;147(2):590–594. doi:10.4049/jimmunol.147.2.590.
  • Tsokos GC, Lambris JD, Finkelman FD, et al. Monovalent ligands of complement receptor 2 inhibit whereas polyvalent ligands enhance anti-Ig-induced human B cell intracytoplasmic free calcium concentration. J Immunol. 1990;144(5):1640–1645. doi:10.4049/jimmunol.144.5.1640.
  • Mathern DR, Heeger PS. Molecules great and small: the complement system. Clin J Am Soc Nephrol. 2015;10(9):1636–1650. doi:10.2215/CJN.06230614.
  • Strainic MG, Liu J, Huang D, et al. Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+ T cells. Immunity. 2008;28(3):425–435. doi:10.1016/j.immuni.2008.02.001.
  • Chen JY, Zhang L, Luo L, et al. A nanobody-based complement inhibitor targeting complement component 2 reduces hemolysis in a complement humanized mouse model of autoimmune hemolytic anemia. Clin Immunol. 2023;253:109678. doi:10.1016/j.clim.2023.109678.
  • Michailidou I, Willems JG, Kooi EJ, et al. Complement C1q-C3-associated synaptic changes in multiple sclerosis hippocampus. Ann Neurol. 2015;77(6):1007–1026. doi:10.1002/ana.24398.
  • Watkins LM, Neal JW, Loveless S, et al. Complement is activated in progressive multiple sclerosis cortical grey matter lesions. J Neuroinflammation. 2016;13(1):161. doi:10.1186/s12974-016-0611-x.
  • Gomez-Arboledas A, Acharya MM, Tenner AJ. The role of complement in synaptic pruning and neurodegeneration. Immunotargets Ther. 2021;10:373–386. doi:10.2147/ITT.S305420.
  • Gasque P, Fontaine M, Morgan BP. Complement expression in human brain. Biosynthesis of terminal pathway components and regulators in human glial cells and cell lines. J Immunol. 1995;154(9):4726–4733. doi:10.4049/jimmunol.154.9.4726.
  • Carpanini SM, Torvell M, Morgan BP. Therapeutic inhibition of the complement system in diseases of the Central nervous system. Front Immunol. 2019;10:362. doi:10.3389/fimmu.2019.00362.
  • Ingram G, Hakobyan S, Hirst CL, et al. Systemic complement profiling in multiple sclerosis as a biomarker of disease state. Mult Scler. 2012;18(10):1401–1411. doi:10.1177/1352458512438238.
  • Hakobyan S, Luppe S, Evans DR, et al. Plasma complement biomarkers distinguish multiple sclerosis and neuromyelitis optica spectrum disorder. Mult Scler. 2017;23(7):946–955. doi:10.1177/1352458516669002.
  • Hu X, Tomlinson S, Barnum SR. Targeted inhibition of complement using complement receptor 2-conjugated inhibitors attenuates EAE. Neurosci Lett. 2012;531(1):35–39. doi:10.1016/j.neulet.2012.10.012.
  • Morgan BP, Gommerman JL, Ramaglia V. An “outside-in” and “inside-out” consideration of complement in the multiple sclerosis brain: lessons from development and neurodegenerative diseases. Front Cell Neurosci. 2020;14:600656. doi:10.3389/fncel.2020.600656.
  • Asavapanumas N, Tradtrantip L, Verkman AS. Targeting the complement system in neuromyelitis optica spectrum disorder. Expert Opin Biol Ther. 2021;21(8):1073–1086. doi:10.1080/14712598.2021.1884223.
  • Kusner LL, Losen M, Vincent A, et al. Guidelines for pre-clinical assessment of the acetylcholine receptor–specific passive transfer myasthenia gravis model-Recommendations for methods and experimental designs. Exp Neurol. 2015;270:3–10. doi:10.1016/j.expneurol.2015.02.025.
  • Nakano S, Engel AG. Myasthenia gravis: quantitative immunocytochemical analysis of inflammatory cells and detection of complement membrane attack complex at the end-plate in 30 patients. Neurology. 1993;43(6):1167–1172. doi:10.1212/wnl.43.6.1167.
  • Zhou Y, Gong B, Lin F, et al. Anti-C5 antibody treatment ameliorates weakness in experimentally acquired myasthenia gravis. J Immunol. 2007;179(12):8562–8567. doi:10.4049/jimmunol.179.12.8562.
  • Soltys J, Kusner LL, Young A, et al. Novel complement inhibitor limits severity of experimentally myasthenia gravis. Ann Neurol. 2009;65(1):67–75. doi:10.1002/ana.21536.
  • Howard JFJr, Nowak RJ, Wolfe GI, et al. Clinical effects of the self-administered subcutaneous complement inhibitor zilucoplan in patients with moderate to severe generalized myasthenia gravis: results of a phase 2 randomized, double-blind, placebo-controlled, multicenter clinical trial. JAMA Neurol. 2020;77(5):582–592. doi:10.1001/jamaneurol.2019.5125.
  • Howard JFJr, Vissing J, Gilhus NE, et al. Zilucoplan: an investigational complement C5 inhibitor for the treatment of acetylcholine receptor autoantibody-positive generalized myasthenia gravis. Expert Opin Investig Drugs. 2021;30(5):483–493. doi:10.1080/13543784.2021.1897567.
  • Ayano M, Horiuchi T. Complement as a biomarker for systemic lupus erythematosus. Biomolecules. 2023;13(2):367. doi:10.3390/biom13020367.
  • Fanouriakis A, Tziolos N, Bertsias G, et al. Update οn the diagnosis and management of systemic lupus erythematosus. Ann Rheum Dis. 2021;80(1):14–25. doi:10.1136/annrheumdis-2020-218272.
  • Pan L, Lu MP, Wang JH, et al. Immunological pathogenesis and treatment of systemic lupus erythematosus. World J Pediatr. 2020;16(1):19–30. doi:10.1007/s12519-019-00229-3.
  • Bao L, Haas M, Kraus DM, et al. Administration of a soluble recombinant complement C3 inhibitor protects against renal disease in MRL/lpr mice. J Am Soc Nephrol. 2003;14(3):670–679. doi:10.1097/01.asn.0000051597.27127.a1.
  • Atkinson C, Qiao F, Song H, et al. Low-dose targeted complement inhibition protects against renal disease and other manifestations of autoimmune disease in MRL/lpr mice. J Immunol. 2008;180(2):1231–1238. doi:10.4049/jimmunol.180.2.1231.
  • Trouw LA, Pickering MC, Blom AM. The complement system as a potential therapeutic target in rheumatic disease. Nat Rev Rheumatol. 2017;13(9):538–547. doi:10.1038/nrrheum.2017.125.
  • Wang Y, Kristan J, Hao L, et al. A role for complement in antibody-mediated inflammation: c 5-deficient DBA/1 mice are resistant to collagen-induced arthritis. J Immunol. 2000;164(8):4340–4347. doi:10.4049/jimmunol.164.8.4340.
  • Wang Y, Rollins SA, Madri JA, et al. Anti-C5 monoclonal antibody therapy prevents collagen-induced arthritis and ameliorates established disease. Proc Natl Acad Sci U S A. 1995;92(19):8955–8959. doi:10.1073/pnas.92.19.8955.
  • Goodfellow RM, Williams AS, Levin JL, et al. Soluble complement receptor one (sCR1) inhibits the development and progression of rat collagen-induced arthritis. Clin Exp Immunol. 2000;119(1):210–216. doi:10.1046/j.1365-2249.2000.01129.x.
  • Ricklin D, Hajishengallis G, Yang K, et al. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785–797. doi:10.1038/ni.1923.
  • Phieler J, Garcia-Martin R, Lambris JD, et al. The role of the complement system in metabolic organs and metabolic diseases. Semin Immunol. 2013;25(1):47–53. doi:10.1016/j.smim.2013.04.003.
  • Sina C, Kemper C, Derer S. The intestinal complement system in inflammatory bowel disease: shaping intestinal barrier function. Semin Immunol. 2018;37:66–73. doi:10.1016/j.smim.2018.02.008.
  • Asgari E, Le Friec G, Yamamoto H, et al. C3a modulates IL-1β secretion in human monocytes by regulating ATP efflux and subsequent NLRP3 inflammasome activation. Blood. 2013;122(20):3473–3481. doi:10.1182/blood-2013-05-502229.
  • Gu D, Wang H, Yan M, et al. Echinacea purpurea (L.) moench extract suppresses inflammation by inhibition of C3a/C3aR signaling pathway in TNBS-induced ulcerative colitis rats. J Ethnopharmacol. 2023;307:116221. doi:10.1016/j.jep.2023.116221.
  • Piddlesden SJ, Jiang S, Levin JL, et al. Soluble complement receptor 1 (sCR1) protects against experimental autoimmune myasthenia gravis. J Neuroimmunol. 1996;71(1–2):173–177. doi:10.1016/s0165-5728(96)00144-0.
  • Biesecker G, Gomez CM. Inhibition of acute passive transfer experimental autoimmune myasthenia gravis with Fab antibody to complement C6. J Immunol. 1989;142(8):2654–2659. doi:10.4049/jimmunol.142.8.2654.
  • Schubart A, Anderson K, Mainolfi N, et al. Small-molecule factor B inhibitor for the treatment of complement-mediated diseases. Proc Natl Acad Sci U S A. 2019;116(16):7926–7931. doi:10.1073/pnas.1820892116.
  • Ames RS, Lee D, Foley JJ, et al. Identification of a selective nonpeptide antagonist of the anaphylatoxin C3a receptor that demonstrates antiinflammatory activity in animal models. J Immunol. 2001;166(10):6341–6348. doi:10.4049/jimmunol.166.10.6341.
  • Woodruff TM, Strachan AJ, Dryburgh N, et al. Antiarthritic activity of an orally active C5a receptor antagonist against antigen-induced monarticular arthritis in the rat. Arthritis Rheum. 2002;46(9):2476–2485. doi:10.1002/art.10449.
  • Fraser DA, Harris CL, Williams AS, et al. Generation of a recombinant, membrane-targeted form of the complement regulator CD59: activity in vitro and in vivo. J Biol Chem. 2003;278(49):48921–48927. doi:10.1074/jbc.M302598200.
  • Murayama MA, Kakuta S, Inoue A, et al. CTRP6 is an endogenous complement regulator that can effectively treat induced arthritis. Nat Commun. 2015;6(1):8483. doi:10.1038/ncomms9483.
  • Saez-Calveras N, Stuve O. The role of the complement system in multiple sclerosis: a review. Front Immunol. 2022;13:970486. doi:10.3389/fimmu.2022.970486.
  • Werneburg S, Jung J, Kunjamma RB, et al. Targeted complement inhibition at synapses prevents microglial synaptic engulfment and synapse loss in demyelinating disease. Immunity. 2020;52(1):167–182.e7. doi:10.1016/j.immuni.2019.12.004.
  • Michailidou I, Jongejan A, Vreijling JP, et al. Systemic inhibition of the membrane attack complex impedes neuroinflammation in chronic relapsing experimental autoimmune encephalomyelitis. Acta Neuropathol Commun. 2018;6(1):36. doi:10.1186/s40478-018-0536-y.
  • Li Q, Nacion K, Bu H, et al. The complement inhibitor FUT-175 suppresses T cell autoreactivity in experimental autoimmune encephalomyelitis. Am J Pathol. 2009;175(2):661–667. doi:10.2353/ajpath.2009.081093.
  • Hu X, Holers VM, Thurman JM, et al. Therapeutic inhibition of the alternative complement pathway attenuates chronic EAE. Mol Immunol. 2013;54(3–4):302–308. doi:10.1016/j.molimm.2012.12.018.
  • Morgan BP, Griffiths M, Khanom H, et al. Blockade of the C5a receptor fails to protect against experimental autoimmune encephalomyelitis in rats. Clin Exp Immunol. 2004;138(3):430–438. doi:10.1111/j.1365-2249.2004.02646.x.
  • Barilla-Labarca ML, Toder K, Furie R. Targeting the complement system in systemic lupus erythematosus and other diseases. Clin Immunol. 2013;148(3):313–321. doi:10.1016/j.clim.2013.02.014.
  • Sekine H, Ruiz P, Gilkeson GS, et al. The dual role of complement in the progression of renal disease in NZB/W F (1) mice and alternative pathway inhibition. Mol Immunol. 2011;49(1–2):317–323. doi:10.1016/j.molimm.2011.09.015.
  • Sekine H, Kinser TT, Qiao F, et al. The benefit of targeted and selective inhibition of the alternative complement pathway for modulating autoimmunity and renal disease in MRL/lpr mice. Arthritis Rheum. 2011;63(4):1076–1085. doi:10.1002/art.30222.
  • Xu L, Xu H, Chen S, et al. Inhibition of complement C3 signaling ameliorates locomotor and visual dysfunction in autoimmune inflammatory diseases. Mol Ther. 2023;31(9):2715–2733. doi:10.1016/j.ymthe.2023.07.017.
  • Zhong L, Sheng X, Wang W, et al. TREM2 receptor protects against complement-mediated synaptic loss by binding to complement C1q during neurodegeneration. Immunity. 2023;56(8):1794–1808.e8. doi:10.1016/j.immuni.2023.06.016.
  • Fonseca MI, Ager RR, Chu SH, et al. Treatment with a C5aR antagonist decreases pathology and enhances behavioral performance in murine models of Alzheimer’s disease. J Immunol. 2009;183(2):1375–1383. doi:10.4049/jimmunol.0901005.
  • Krus U, King BC, Nagaraj V, et al. The complement inhibitor CD59 regulates insulin secretion by modulating exocytotic events. Cell Metab. 2014;19(5):883–890. doi:10.1016/j.cmet.2014.03.001.
  • Li L, Yin Q, Tang X, et al. C3a receptor antagonist ameliorates inflammatory and fibrotic signals in type 2 diabetic nephropathy by suppressing the activation of TGF-β/smad3 and IKBα pathway. PLoS One. 2014;9(11):e113639. doi:10.1371/journal.pone.0113639.
  • Li L, Chen L, Zang J, et al. C3a and C5a receptor antagonists ameliorate endothelial-myofibroblast transition via the wnt/β-catenin signaling pathway in diabetic kidney disease. Metabolism. 2015;64(5):597–610. doi:10.1016/j.metabol.2015.01.014.
  • Prasad SR, Kumar TSS, Jayakrishnan A. Nanocarrier-based drug delivery systems for bone cancer therapy: a review. Biomed Mater. 2021;16(4):044107. doi:10.1088/1748-605X/abf7d5.
  • Lin CY, Shieh MJ. Near-infrared fluorescent dye-decorated nanocages to form grenade-like nanoparticles with dual control release for photothermal theranostics and chemotherapy. Bioconjug Chem. 2018;29(4):1384–1398. doi:10.1021/acs.bioconjchem.8b00088.
  • Zahedipour F, Jamialahmadi K, Zamani P, et al. Improving the efficacy of peptide vaccines in cancer immunotherapy. Int Immunopharmacol. 2023;123:110721. doi:10.1016/j.intimp.2023.110721.
  • Siminzar P, Tohidkia MR, Eppard E, et al. Recent trends in diagnostic biomarkers of tumor microenvironment. Mol Imaging Biol. 2023;25(3):464–482. doi:10.1007/s11307-022-01795-1.
  • Suzuki Y, Hyodo K, Suzuki T, et al. Biodegradable lipid nanoparticles induce a prolonged RNA interference-mediated protein knockdown and show rapid hepatic clearance in mice and nonhuman primates. Int J Pharm. 2017;519(1–2):34–43. doi:10.1016/j.ijpharm.2017.01.016.
  • Kuboi Y, Suzuki Y, Motoi S, et al. Identification of potent siRNA targeting complement C5 and its robust activity in pre-clinical models of myasthenia gravis and collagen-induced arthritis. Mol Ther Nucleic Acids. 2023;31:339–351. doi:10.1016/j.omtn.2023.01.005.
  • Ameller T, Marsaud V, Legrand P, et al. In vitro and in vivo biologic evaluation of long-circulating biodegradable drug carriers loaded with the pure antiestrogen RU 58668. Int J Cancer. 2003;106(3):446–454. doi:10.1002/ijc.11248.
  • Xu W, Kumar V, Cui CS, et al. Success in navigating hurdles to oral delivery of a bioactive peptide complement antagonist through use of nanoparticles to increase bioavailability and in vivo efficacy. Advanced Therapeutics. 2022;5(12):2200109. doi:10.1002/adtp.202200109.
  • Gan Z, Xiao Z, Zhang Z, et al. Stiffness-tuned and ROS-sensitive hydrogel incorporating complement C5a receptor antagonist modulates antibacterial activity of macrophages for periodontitis treatment. Bioact Mater. 2023;25:347–359. doi:10.1016/j.bioactmat.2023.01.011.
  • Malekshahi Z, Bernklau S, Schiela B, et al. Incorporation of CD55 into the Zika viral envelope contributes to its stability against human complement. Viruses. 2021;13(3):510. doi:10.3390/v13030510.
  • Ferreira-Silva M, Faria-Silva C, Viana Baptista P, et al. Liposomal nanosystems in rheumatoid arthritis. Pharmaceutics. 2021;13(4):454. doi:10.3390/pharmaceutics13040454.
  • Taha MS, Padmakumar S, Singh A, et al. Critical quality attributes in the development of therapeutic nanomedicines toward clinical translation. Drug Deliv Transl Res. 2020;10(3):766–790. doi:10.1007/s13346-020-00744-1.
  • Zhang N, Li M, Hou Z, et al. From vaccines to nanovaccines: a promising strategy to revolutionize rheumatoid arthritis treatment. J Control Release. 2022;350:107–121. doi:10.1016/j.jconrel.2022.08.020.
  • Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng Transl Med. 2019;4(3):e10143. doi:10.1002/btm2.10143.
  • Dolati S, Sadreddini S, Rostamzadeh D, et al. Utilization of nanoparticle technology in rheumatoid arthritis treatment. Biomed Pharmacother. 2016;80:30–41. doi:10.1016/j.biopha.2016.03.004.
  • Nautiyal G, Sharma SK, Kaushik D, et al. Nano - based therapeutic strategies in management of rheumatoid arthritis. Recent Pat Nanotechnol. 2023. doi:10.2174/1872210517666230822100324.
  • Javadi M, Khadem Haghighian H, Goodarzy S, et al. Effect of curcumin nanomicelle on the clinical symptoms of patients with rheumatoid arthritis: a randomized, double-blind, controlled trial. Int J Rheum Dis. 2019;22(10):1857–1862. doi:10.1111/1756-185X.13688.
  • Bilia AR, Bergonzi MC, Isacchi B, et al. Curcumin nanoparticles potentiate therapeutic effectiveness of acitrein in moderate-to-severe psoriasis patients and control serum cholesterol levels. J Pharm Pharmacol. 2018;70(7):919–928. doi:10.1111/jphp.12910.
  • Dolati S, Babaloo Z, Ayromlou H, et al. Nanocurcumin improves regulatory T-cell frequency and function in patients with multiple sclerosis. J Neuroimmunol. 2019;327:15–21. doi:10.1016/j.jneuroim.2019.01.007.
  • Masoodi M, Mahdiabadi MA, Mokhtare M, et al. The efficacy of curcuminoids in improvement of ulcerative colitis symptoms and patients’ self-reported well-being: a randomized double-blind controlled trial. J Cell Biochem. 2018;119(11):9552–9559. doi:10.1002/jcb.27273.
  • Xiao X, Gao Y, Liu S, et al. “Nano-courier” for precise delivery of acetylcholine and melatonin by C5a-targeted aptamers effectively attenuates reperfusion injury of ischemic stroke. Adv Funct Materials. 2023;33(23):2213633. doi:10.1002/adfm.202213633.
  • Zhou J, Gao B, Zhang H, et al. Ginsenoside modified lipid-coated perfluorocarbon nanodroplets: a novel approach to reduce complement protein adsorption and prolong in vivo circulation. Acta Pharmaceutica Sinica B. 2023. doi:10.1016/j.apsb.2023.11.016.
  • Rabiee N, Dokmeci MR, Zarrabi A, et al. Green biomaterials: fundamental principles. Green Biomaterials. 2023;1(1):1–4. doi:10.1080/29934168.2023.2268943.
  • Zelek WM, Xie L, Morgan BP, et al. Compendium of current complement therapeutics. Mol Immunol. 2019;114:341–352. doi:10.1016/j.molimm.2019.07.030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.