66
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Navigating the tumor microenvironment: mesenchymal stem cell-mediated delivery of anticancer agents

ORCID Icon, , , &
Received 26 Feb 2024, Accepted 21 Apr 2024, Published online: 06 May 2024

References

  • Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: an overview. Int J Cancer. 2021;149(4):778–789. doi: 10.1002/ijc.33588.
  • Cheng Z, Li M, Dey R, et al. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol. 2021;14(1):85. doi: 10.1186/s13045-021-01096-0.
  • Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies. 2020;9(3):34. doi: 10.3390/antib9030034.
  • Munir M, Zaman M, Waqar MA, et al. A comprehensive review on transethosomes as a novel vesicular approach for drug delivery through transdermal route. J Liposome Res. 2023;34(1):203–218. doi: 10.1080/08982104.2023.2221354.
  • Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Res Lett. 2021;16(1):173. doi: 10.1186/s11671-021-03628-6.
  • Waqar MA, Zaman M, Hameed H, et al. Formulation, characterization, and evaluation of β-cyclodextrin functionalized hypericin loaded nanocarriers. ACS Omega. 2023;8(41):38191–38203. doi: 10.1021/acsomega.3c04444.
  • Punekar SR, Velcheti V, Neel BG, et al. The current state of the art and future trends in RAS-targeted cancer therapies. Nat Rev Clin Oncol. 2022;19(10):637–655. doi: 10.1038/s41571-022-00671-9.
  • Waqar MA, Zaman M, Hameed H, et al. Ethosomes: a novel approach for the delivery of drug. IJPIHS. 2023;4(2):31–46. doi: 10.56536/ijpihs.v4i2.93.
  • Huang M, Lu J-J, Ding J. Natural products in cancer therapy: past, present and future. Nat Prod Bioprospect. 2021;11(1):5–13. doi: 10.1007/s13659-020-00293-7.
  • Propper DJ, Balkwill FR. Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol. 2022;19(4):237–253. doi: 10.1038/s41571-021-00588-9.
  • Robert C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commun. 2020;11(1):3801. doi: 10.1038/s41467-020-17670-y.
  • Ke Y, Al Aboody MS, Alturaiki W, et al. Photosynthesized gold nanoparticles from catharanthus roseus induces caspase-mediated apoptosis in cervical cancer cells (HeLa). Artif Cells Nanomed Biotechnol. 2019;47(1):1938–1946. doi: 10.1080/21691401.2019.1614017.
  • Cervantes-Villagrana RD, Albores-García D, Cervantes-Villagrana AR, et al. Tumor-induced neurogenesis and immune evasion as targets of innovative anti-cancer therapies. Signal Transduct Target Ther. 2020;5(1):99. doi: 10.1038/s41392-020-0205-z.
  • Ashfaq A, Riaz T, Waqar MA, et al. A comprehensive review on transdermal patches as an efficient approach for the delivery of drug. Polym Plast Technol Mater. 2024;63(8):1045–1069. doi: 10.1080/25740881.2024.2317408.
  • Hmadcha A, Martin-Montalvo A, Gauthier BR, et al. Therapeutic potential of mesenchymal stem cells for cancer therapy. Front Bioeng Biotechnol. 2020;8:43. doi: 10.3389/fbioe.2020.00043.
  • Lan T, Luo M, Wei X. Mesenchymal stem/stromal cells in cancer therapy. J Hematol Oncol. 2021;14(1):195. doi: 10.1186/s13045-021-01208-w.
  • Chen H-T, Liu H, Mao M-J, et al. Crosstalk between autophagy and epithelial-mesenchymal transition and its application in cancer therapy. Mol Cancer. 2019;18(1):101. doi: 10.1186/s12943-019-1030-2.
  • Vakhshiteh F, Atyabi F, Ostad SN. Mesenchymal stem cell exosomes: a two-edged sword in cancer therapy. Int J Nanomed. 2019;14:2847–2859. doi: 10.2147/IJN.S200036.
  • Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020;17(7):395–417. doi: 10.1038/s41571-020-0341-y.
  • Waqar MA, Riaz T, Munir M, et al. Self-medication in general ailments and its potential risks. Anaesth Pain Intensive Care. 2023;27(4):579–584. doi: 10.35975/apic.v27i4.2089.
  • Du R, Huang C, Liu K, et al. Targeting AURKA in cancer: molecular mechanisms and opportunities for cancer therapy. Mol Cancer. 2021;20(1):15. doi: 10.1186/s12943-020-01305-3.
  • Siddique S, Chow JC. Application of nanomaterials in biomedical imaging and cancer therapy. Nanomaterials. 2020;10(9):1700. doi: 10.3390/nano10091700.
  • Ahsan A, et al. Formulation and evaluation of miconazole lipogel for enhanced drug permeation. Pakistan J Pharm Sci. 2024;37(1):15–24.
  • Iqbal S, Zaman M, Waqar MA, et al. Vesicular approach of cubosomes, its components, preparation techniques, evaluation and their appraisal for targeting cancer cells. J Liposome Res. 2023;5(3):1–17. doi: 10.1080/08982104.2023.2272643.
  • Shariff AI, Syed S, Shelby RA, et al. Novel cancer therapies and their association with diabetes. J Mol Endocrinol. 2019;62(2):R187–R199. doi: 10.1530/JME-18-0002.
  • Lang F, Liu Y, Chou F-J, et al. Genotoxic therapy and resistance mechanism in gliomas. Pharmacol Ther. 2021;228:107922. doi: 10.1016/j.pharmthera.2021.107922.
  • Hani U, Osmani RAM, Yasmin S, et al. Novel drug delivery systems as an emerging platform for stomach cancer therapy. Pharmaceutics. 2022;14(8):1576. doi: 10.3390/pharmaceutics14081576.
  • Ko EC, Formenti SC. Radiation therapy to enhance tumor immunotherapy: a novel application for an established modality. Int J Radiat Biol. 2019;95(7):936–939. doi: 10.1080/09553002.2019.1623429.
  • Poh HS, Lee MC, Yap SS, et al. Potential use of plasma focus radiation sources in superficial cancer therapy. Jpn J Appl Phys. 2020;59(SH):SHHB06. doi: 10.35848/1347-4065/ab7c10.
  • Anderson PM, Lalla RV. Glutamine for amelioration of radiation and chemotherapy associated mucositis during cancer therapy. Nutrients. 2020;12(6):1675. doi: 10.3390/nu12061675.
  • Ferris RL, Flamand Y, Weinstein GS, et al. Phase II randomized trial of transoral surgery and low-dose intensity modulated radiation therapy in resectable p16+ locally advanced oropharynx cancer: an ECOG-ACRIN cancer research group trial (E3311). J Clin Oncol. 2022;40(2):138–149. doi: 10.1200/JCO.21.01752.
  • Fu Z, Li S, Han S, et al. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Sig Transduct Target Ther. 2022;7(1):93. doi: 10.1038/s41392-022-00947-7.
  • Nicolaou KC, Rigol S. The role of organic synthesis in the emergence and development of antibody–drug conjugates as targeted cancer therapies. Angew Chem Int Ed Engl. 2019;58(33):11206–11241. doi: 10.1002/anie.201903498.
  • Rondon A, Rouanet J, Degoul F. Radioimmunotherapy in oncology: overview of the last decade clinical trials. Cancers (Basel). 2021;13(21):5570. doi: 10.3390/cancers13215570.
  • Uzunhisarcikli E. Monoclonal antibodies for targeted cancer therapy. In: Pioneer and contemporary studies in health sciences. ANKEM Derg; 2023. p. 229–246. doi: 10.4161/cbt.9.8.11403.
  • De Angelis ML, Francescangeli F, La Torre F, et al. Stem cell plasticity and dormancy in the development of cancer therapy resistance. Front Oncol. 2019;9:626. doi: 10.3389/fonc.2019.00626.
  • Thakkar S, Sharma D, Kalia K, et al. Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: a review. Acta Biomater. 2020;101:43–68. doi: 10.1016/j.actbio.2019.09.009.
  • Panigrahi DP, Praharaj PP, Bhol CS, et al. The emerging, multifaceted role of mitophagy in cancer and cancer therapeutics. in. Semin Cancer Biol. 2020;66:45–58. doi: 10.1016/j.semcancer.2019.07.015.
  • Ginn SL, Amaya AK, Alexander IE, et al. Gene therapy clinical trials worldwide to 2017: an update. J Gene Med. 2018;20(5):e3015. doi: 10.1002/jgm.3015.
  • Hossain JA, Latif MA, Ystaas LAR, et al. Long-term treatment with valganciclovir improves lentiviral suicide gene therapy of glioblastoma. Neuro Oncol. 2019;21(7):890–900. doi: 10.1093/neuonc/noz060.
  • Kimura Y, Shofuda T, Higuchi Y, et al. Human genomic safe harbors and the suicide gene-based safeguard system for iPSC-based cell therapy. Stem Cells Transl Med. 2019;8(7):627–638. doi: 10.1002/sctm.18-0039.
  • Fang H, Yan HHN, Bilardi RA, et al. Ganciclovir-induced mutations are present in a diverse spectrum of post-transplant malignancies. Genome Med. 2022;14(1):124. doi: 10.1186/s13073-022-01131-w.
  • Cao Z, Wu Y, Yu L, et al. Exosomal miR-335 derived from mature dendritic cells enhanced mesenchymal stem cell-mediated bone regeneration of bone defects in athymic rats. Mol Med. 2021;27(1):20. doi: 10.1186/s10020-021-00268-5.
  • Li Z, Yu X-F, Chu PK. Recent advances in cell-mediated nanomaterial delivery systems for photothermal therapy. J Mater Chem B. 2018;6(9):1296–1311. doi: 10.1039/c7tb03166a.
  • Xie M. Mesenchymal stem cells mediated drug delivery in tumor-targeted therapy. CDD. 2021;18(7):876–891. doi: 10.2174/18755704MTA56Mjkuz.
  • Carvalho AÉSilva, Sousa MRR, Alencar-Silva T, et al. Mesenchymal stem cells immunomodulation: the road to IFN-γ licensing and the path ahead. Cytokine Growth Factor Rev. 2019;47:32–42. doi: 10.1016/j.cytogfr.2019.05.006.
  • Munoz-Perez E, Gonzalez-Pujana A, Igartua M, et al. Mesenchymal stromal cell secretome for the treatment of immune-mediated inflammatory diseases: latest trends in isolation, content optimization and delivery avenues. Pharmaceutics. 2021;13(11):1802. doi: 10.3390/pharmaceutics13111802.
  • Ceruso A, Gonzalez-Pujana A, Igartua M, et al. Latest advances to enhance the therapeutic potential of mesenchymal stromal cells for the treatment of immune-mediated diseases. Drug Deliv Transl Res. 2021;11(2):498–514. doi: 10.1007/s13346-021-00934-5.
  • Baek G, Choi H, Kim Y, et al. Mesenchymal stem cell-derived extracellular vesicles as therapeutics and as a drug delivery platform. Stem Cells Transl Med. 2019;8(9):880–886. doi: 10.1002/sctm.18-0226.
  • Yoon A-R, Hong J, Li Y, et al. Mesenchymal stem cell–mediated delivery of an oncolytic adenovirus enhances antitumor efficacy in hepatocellular carcinoma. Cancer Res. 2019;79(17):4503–4514. doi: 10.1158/0008-5472.CAN-18-3900.
  • Wang L-T, Liu K-J, Sytwu H-K, et al. Advances in mesenchymal stem cell therapy for immune and inflammatory diseases: use of cell-free products and human pluripotent stem cell-derived mesenchymal stem cells. Stem Cells Transl Med. 2021;10(9):1288–1303. doi: 10.1002/sctm.21-0021.
  • Yoon J, Lee SK, Park A, et al. Exosome from IFN-γ-primed induced pluripotent stem cell-derived mesenchymal stem cells improved skin inflammation and barrier function. Int J Mol Sci. 2023;24(14):11635. doi: 10.3390/ijms241411635.
  • Chulpanova DS, Kitaeva KV, Tazetdinova LG, et al. Application of mesenchymal stem cells for therapeutic agent delivery in anti-tumor treatment. Front Pharmacol. 2018;9:259. doi: 10.3389/fphar.2018.00259.
  • Kuşoğlu A, Avcı ÇB. Cancer stem cells: a brief review of the current status. Gene. 2019;681:80–85. doi: 10.1016/j.gene.2018.09.052.
  • Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5(1):8. doi: 10.1038/s41392-020-0110-5.
  • Clarke MF. Clinical and therapeutic implications of cancer stem cells. N Engl J Med. 2019;380(23):2237–2245. doi: 10.1056/NEJMra1804280.
  • Sethy C, Kundu CN. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: implication of DNA repair inhibition. Biomed Pharmacother. 2021;137:111285. doi: 10.1016/j.biopha.2021.111285.
  • Merle P, Blanc J-F, Phelip J-M, et al. Doxorubicin-loaded nanoparticles for patients with advanced hepatocellular carcinoma after sorafenib treatment failure (RELIVE): a phase 3 randomised controlled trial. Lancet Gastroenterol Hepatol. 2019;4(6):454–465. doi: 10.1016/S2468-1253(19)30040-8.
  • Alsubait SA, Al Ajlan R, Mitwalli H, et al. Cytotoxicity of different concentrations of three root canal sealers on human mesenchymal stem cells. Biomolecules. 2018;8(3):68. doi: 10.3390/biom8030068.
  • Baxter-Holland M, Dass CR. Doxorubicin, mesenchymal stem cell toxicity and antitumour activity: implications for clinical use. J Pharm Pharmacol. 2018;70(3):320–327. doi: 10.1111/jphp.12869.
  • Hass R. Role of MSC in the tumor microenvironment. Cancers (Basel). 2020;12(8):2107. doi: 10.3390/cancers12082107.
  • Jovic D, Yu Y, Wang D, et al. A brief overview of global trends in MSC-based cell therapy. Stem Cell Rev Rep. 2022;18(5):1525–1545. doi: 10.1007/s12015-022-10369-1.
  • Rossignoli F, Grisendi G, Spano C, et al. Inducible Caspase9-mediated suicide gene for MSC-based cancer gene therapy. Cancer Gene Ther. 2019;26(1-2):11–16. doi: 10.1038/s41417-018-0034-1.
  • Silva LHA, Antunes MA, Dos Santos CC, et al. Strategies to improve the therapeutic effects of mesenchymal stromal cells in respiratory diseases. Stem Cell Res Ther. 2018;9(1):45. doi: 10.1186/s13287-018-0802-8.
  • Damasceno PKF, de Santana TA, Santos GC, et al. Genetic engineering as a strategy to improve the therapeutic efficacy of mesenchymal stem/stromal cells in regenerative medicine. Front Cell Dev Biol. 2020;8:737. doi: 10.3389/fcell.2020.00737.
  • Ocansey DKW, Pei B, Yan Y, et al. Improved therapeutics of modified mesenchymal stem cells: an update. J Transl Med. 2020;18(1):42. doi: 10.1186/s12967-020-02234-x.
  • Ma S, Xie N, Li W, et al. Immunobiology of mesenchymal stem cells. Cell Death Differ. 2014;21(2):216–225. doi: 10.1038/cdd.2013.158.
  • Meirelles LdS, Fontes AM, Covas DT, et al. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009;20(5–6):419–427. doi: 10.1016/j.cytogfr.2009.10.002.
  • Stewart MC, Stewart AA. Mesenchymal stem cells: characteristics, sources, and mechanisms of action. Vet Clin equine Pract. 2011;27(2):243–261.
  • Gnecchi M, et al. Paracrine mechanisms of mesenchymal stem cells in tissue repair. Mesenchymal stem cells: methods and protocols; 2016. p. 123–146. doi: 10.1007/978-1-4939-3584-0_7.
  • Singer NG, Caplan AI. Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol. 2011;6(1):457–478. doi: 10.1146/annurev-pathol-011110-130230.
  • Shi Y, Wang Y, Li Q, et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol. 2018;14(8):493–507. doi: 10.1038/s41581-018-0023-5.
  • Prockop DJ, Oh JY. Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther. 2012;20(1):14–20. doi: 10.1038/mt.2011.211.
  • Newman RE, Yoo D, LeRoux MA, et al. Treatment of inflammatory diseases with mesenchymal stem cells. Inflamm Allergy Drug Targets. 2009;8(2):110–123. doi: 10.2174/187152809788462635.
  • Rubio D, Garcia S, De la Cueva T, et al. Human mesenchymal stem cell transformation is associated with a mesenchymal–epithelial transition. Exp Cell Res. 2008;314(4):691–698. doi: 10.1016/j.yexcr.2007.11.017.
  • Liu H, Li D, Zhang Y, et al. Inflammation, mesenchymal stem cells and bone regeneration. Histochem Cell Biol. 2018;149(4):393–404. doi: 10.1007/s00418-018-1643-3.
  • Heidari HR, et al. Mesenchymal stem cells cause telomere length reduction of molt-4 cells via caspase-3, BAD and P53 apoptotic pathway. Int J Mol Cell Med. 2021;10(2):113.
  • Baharaghdam S, et al. Effects of hypoxia on biology of human leukemia T-cell line (MOLT-4 cells) co-cultured with bone marrow mesenchymal stem cells. Avicenna J Med Biotechnol. 2018;10(2):62.
  • Robb KP, Fitzgerald JC, Barry F, et al. Mesenchymal stromal cell therapy: progress in manufacturing and assessments of potency. Cytotherapy. 2019;21(3):289–306. doi: 10.1016/j.jcyt.2018.10.014.
  • Zhao S, Huang M, Yan L, et al. Exosomes derived from baicalin-pretreated mesenchymal stem cells alleviate hepatocyte ferroptosis after acute liver injury via the Keap1-NRF2 pathway. Oxid Med Cell Longev. 2022;2022:8287227–8287218. doi: 10.1155/2022/8287227.
  • Tang T-T, Wang B, Lv L-L, et al. Extracellular vesicles for renal therapeutics: state of the art and future perspective. J Control Release. 2022;349:32–50. doi: 10.1016/j.jconrel.2022.06.049.
  • Hao Y, Miao J, Liu W, et al. Mesenchymal stem cell-derived exosomes carry MicroRNA-125a to protect against diabetic nephropathy by targeting histone deacetylase 1 and downregulating endothelin-1. Diabetes Metab Syndr Obes. 2021;14:1405–1418. doi: 10.2147/DMSO.S286191.
  • Guo S, Perets N, Betzer O, et al. Intranasal delivery of mesenchymal stem cell derived exosomes loaded with phosphatase and tensin homolog siRNA repairs complete spinal cord injury. ACS Nano. 2019;13(9):10015–10028. doi: 10.1021/acsnano.9b01892.
  • Andrzejewska A, Lukomska B, Janowski M. Concise review: mesenchymal stem cells: from roots to boost. Stem Cells. 2019;37(7):855–864. doi: 10.1002/stem.3016.
  • Layek B, Sadhukha T, Panyam J, et al. Nano-engineered mesenchymal stem cells increase therapeutic efficacy of anticancer drug through true active tumor targeting. Mol Cancer Ther. 2018;17(6):1196–1206. doi: 10.1158/1535-7163.MCT-17-0682.
  • Andrée L, Barata D, Sutthavas P, et al. Guiding mesenchymal stem cell differentiation using mesoporous silica nanoparticle-based films. Acta Biomater. 2019;96:557–567. doi: 10.1016/j.actbio.2019.07.008.
  • Yang N, Ding Y, Zhang Y, et al. Surface functionalization of polymeric nanoparticles with umbilical cord-derived mesenchymal stem cell membrane for tumor-targeted therapy. ACS Appl Mater Interfaces. 2018;10(27):22963–22973. doi: 10.1021/acsami.8b05363.
  • Ping Y-F, Yao X-h, Jiang J-y, et al. The chemokine CXCL12 and its receptor CXCR4 promote glioma stem cell-mediated VEGF production and tumour angiogenesis via PI3K/AKT signalling. J Pathol. 2011;224(3):344–354. doi: 10.1002/path.2908.
  • Myszczyszyn A, Czarnecka AM, Matak D, et al. The role of hypoxia and cancer stem cells in renal cell carcinoma pathogenesis. Stem Cell Rev Rep. 2015;11(6):919–943. doi: 10.1007/s12015-015-9611-y.
  • Yin T, Wang G, He S, et al. Human cancer cells with stem cell-like phenotype exhibit enhanced sensitivity to the cytotoxicity of IL-2 and IL-15 activated natural killer cells. Cell Immunol. 2016;300:41–45. doi: 10.1016/j.cellimm.2015.11.009.
  • Jamal SME, Alamodi A, Wahl RU, et al. Melanoma stem cell maintenance and chemo-resistance are mediated by CD133 signal to PI3K-dependent pathways. Oncogene. 2020;39(32):5468–5478. doi: 10.1038/s41388-020-1373-6.
  • Chen D, Wang C-Y. Targeting cancer stem cells in squamous cell carcinoma. Precis Clin Med. 2019;2(3):152–165. doi: 10.1093/pcmedi/pbz016.
  • Krantz SB, Shields MA, Dangi-Garimella S, et al. Contribution of epithelial-to-mesenchymal transition and cancer stem cells to pancreatic cancer progression. J Surg Res. 2012;173(1):105–112. doi: 10.1016/j.jss.2011.09.020.
  • Kim BR, Van de Laar E, Cabanero M, et al. SOX2 and PI3K cooperate to induce and stabilize a squamous-committed stem cell injury state during lung squamous cell carcinoma pathogenesis. PLoS Biol. 2016;14(11):e1002581. doi: 10.1371/journal.pbio.1002581.
  • Chopra N, Choudhury S, Bhargava S, et al. Potentials of “stem cell-therapy” in pancreatic cancer: an update. Pancreatology. 2019;19(8):1034–1042. doi: 10.1016/j.pan.2019.09.016.
  • Scioli MG, Artuso S, D’Angelo C, et al. Adipose-derived stem cell-mediated paclitaxel delivery inhibits breast cancer growth. PLoS One. 2018;13(9):e0203426. doi: 10.1371/journal.pone.0203426.
  • Wang X, Gao J, Ouyang X, et al. Mesenchymal stem cells loaded with paclitaxel-poly (lactic-co-glycolic acid) nanoparticles for glioma-targeting therapy. Int J Nanomed. 2018;13:5231–5248. doi: 10.2147/IJN.S167142.
  • Wu H-H, Zhou Y, Tabata Y, et al. Mesenchymal stem cell-based drug delivery strategy: from cells to biomimetic. J Control Release. 2019;294:102–113. doi: 10.1016/j.jconrel.2018.12.019.
  • Liu R, Colby AH, Gilmore D, et al. Nanoparticle tumor localization, disruption of autophagosomal trafficking, and prolonged drug delivery improve survival in peritoneal mesothelioma. Biomaterials. 2016;102:175–186. doi: 10.1016/j.biomaterials.2016.06.031.
  • Ham SY, Kwon T, Bak Y, et al. Mucin 1-mediated chemo-resistance in lung cancer cells. Oncogenesis. 2016;5(1):e185-e185–e185. doi: 10.1038/oncsis.2015.47.
  • Vathipadiekal V, Saxena D, Mok SC, et al. Identification of a potential ovarian cancer stem cell gene expression profile from advanced stage papillary serous ovarian cancer. PLoS One. 2012;7(1):e29079. doi: 10.1371/journal.pone.0029079.
  • Akbulut H, Tang Y, Akbulut KG, et al. Addition of adenoviral vector targeting of chemotherapy to the MUC-1/ecdCD40L VPPP vector prime protein boost vaccine prolongs survival of mice carrying growing subcutaneous deposits of lewis lung cancer cells. Gene Ther. 2010;17(11):1333–1340. doi: 10.1038/gt.2010.93.
  • Shen Y, Li Y, Ma X, et al. Connexin 43 SUMOylation improves gap junction functions between liver cancer stem cells and enhances their sensitivity to HSVtk/GCV. Int J Oncol. 2018;52(3):872–880. doi: 10.3892/ijo.2018.4263.
  • Fujii H, et al. Sphere-forming stem-like cell populations with drug resistance in human sarcoma cell lines. Int J Oncol. 2009;34(5):1381–1386.
  • Zheng J, Lu Y, Lin Y, et al. Epitranscriptomic modifications in mesenchymal stem cell differentiation: advances, mechanistic insights, and beyond. Cell Death Differ. 2024;31(1):9–27. doi: 10.1038/s41418-023-01238-6.
  • Xiao Y, Xu RH, Dai Y. Nanoghosts: harnessing mesenchymal stem cell membrane for construction of drug delivery platforms via optimized biomimetics. Small. 2024;20(1):e2304824. doi: 10.1002/smll.202304824.
  • Yang S, Zhang Y, Peng Q, et al. Regulating pyroptosis by mesenchymal stem cells and extracellular vesicles: a promising strategy to alleviate intervertebral disc degeneration. Biomed Pharmacother. 2024;170:116001. doi: 10.1016/j.biopha.2023.116001.
  • Gou Y, Huang Y, Luo W, et al. Adipose-derived mesenchymal stem cells (MSCs) are a superior cell source for bone tissue engineering. Bioact Mater. 2024;34:51–63. doi: 10.1016/j.bioactmat.2023.12.003.
  • Cao C, Maska B, Malik MA, et al. Immunomodulatory differences between mesenchymal stem cells from different oral tissues. Heliyon. 2024;10(1):e23317. doi: 10.1016/j.heliyon.2023.e23317.
  • Soleimani A, Oraee Yazdani S, Pedram M, et al. Intrathecal injection of human placental mesenchymal stem cells derived exosomes significantly improves functional recovery in spinal cord injured rats. Mol Biol Rep. 2024;51(1):193. doi: 10.1007/s11033-023-08972-7.
  • Zayed HM, Kheir El Din NH, Abu-Seida AM, et al. Gingival-derived mesenchymal stem cell therapy regenerated the radiated salivary glands: functional and histological evidence in murine model. Stem Cell Res Ther. 2024;15(1):46. doi: 10.1186/s13287-024-03659-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.