106
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Surface-functionalised polymeric nanoparticles for breast cancer treatment: processes and advances

ORCID Icon, ORCID Icon & ORCID Icon
Received 20 Feb 2024, Accepted 03 May 2024, Published online: 17 May 2024

References

  • World Health Organization. Global breast cancer initiative implementation framework: assessing, strengthening and scaling up of services for the early detection and management of breast cancer: executive summary; 2023 [Internet]. Available from: https://www.who.int/publications/i/item/9789240067134
  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. doi: 10.3322/caac.21708.
  • Willson ML, Burke L, Ferguson T, et al. Taxanes for adjuvant treatment of early breast cancer. Cochrane Database Syst Rev. 2019;9(9):CD004421. doi: 10.1002/14651858.CD004421.pub3.
  • Shah AN, Gradishar WJ. Adjuvant anthracyclines in breast cancer: what is their role? Oncologist. 2018;23(10):1153–1161. doi: 10.1634/theoncologist.2017-0672.
  • Stras S, Howe A, Prasad A, et al. Growth of metastatic triple-negative breast cancer is inhibited by deep tumor-penetrating and slow tumor-clearing chemotherapy: the case of tumor-adhering liposomes with interstitial drug release. Mol Pharm. 2020;17(1):118–131. doi: 10.1021/acs.molpharmaceut.9b00812.
  • Gajria D, Chandarlapaty S. HER2-amplified breast cancer: mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev Anticancer Ther. 2011;11(2):263–275. doi: 10.1586/era.10.226.
  • Xiong H, Veedu RN, Diermeier SD. Recent advances in oligonucleotide therapeutics in oncology. Int J Mol Sci. 2021;22(7):3295. doi: 10.3390/ijms22073295.
  • Prasad A, Nair R, Bhatavdekar O, et al. Transport-driven engineering of liposomes for delivery of α-particle radiotherapy to solid tumors: effect on inhibition of tumor progression and onset delay of spontaneous metastases. Eur J Nucl Med Mol Imaging. 2021;48(13):4246–4258. doi: 10.1007/s00259-021-05406-z.
  • Abu Samaan TM, Samec M, Liskova A, et al. Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules. 2019;9(12):789. doi: 10.3390/biom9120789.
  • Bernabeu E, Gonzalez L, Legaspi MJ, et al. Paclitaxel-loaded TPGS-b-PCL nanoparticles: in vitro cytotoxicity and cellular uptake in MCF-7 and MDA-MB-231 cells versus mPEG-b-PCL nanoparticles and Abraxane®. J Nanosci Nanotechnol. 2016;16(1):160–170. doi: 10.1166/jnn.2016.10739.
  • Gupta U, Sharma S, Khan I, et al. Enhanced apoptotic and anticancer potential of paclitaxel loaded biodegradable nanoparticles based on chitosan. Int J Biol Macromol. 2017;98:810–819. doi: 10.1016/j.ijbiomac.2017.02.030.
  • Foglietta F, Spagnoli GC, Muraro MG, et al. Anticancer activity of paclitaxel-loaded keratin nanoparticles in two-dimensional and perfused three-dimensional breast cancer models. Int J Nanomedicine. 2018;13:4847–4867. doi: 10.2147/IJN.S159942.
  • Cui Y-N, Xu Q-X, Davoodi P, et al. Enhanced intracellular delivery and controlled drug release of magnetic PLGA nanoparticles modified with transferrin. Acta Pharmacol Sin. 2017;38(6):943–953. doi: 10.1038/aps.2017.45.
  • Zhang X, Niu S, Williams GR, et al. Dual-responsive nanoparticles based on chitosan for enhanced breast cancer therapy. Carbohydr Polym. 2019;221:84–93. doi: 10.1016/j.carbpol.2019.05.081.
  • Yuan H, Guo H, Luan X, et al. Albumin nanoparticle of paclitaxel (Abraxane) decreases while taxol increases breast cancer stem cells in treatment of triple negative breast cancer. Mol Pharm. 2020;17(7):2275–2286. doi: 10.1021/acs.molpharmaceut.9b01221.
  • Cheng Y, Wang C, Wang H, et al. Combination of an autophagy inhibitor with immunoadjuvants and an anti-PD-L1 antibody in multifunctional nanoparticles for enhanced breast cancer immunotherapy. BMC Med. 2022;20(1):411. doi: 10.1186/s12916-022-02614-8.
  • Sun B, Ranganathan B, Feng SS. Multifunctional poly(d,l-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by trastuzumab for targeted chemotherapy of breast cancer. Biomaterials. 2008;29(4):475–486. doi: 10.1016/j.biomaterials.2007.09.038.
  • Liu F, Chen Y, Li Y, et al. Folate-receptor-targeted laser-activable poly(lactide-co-glycolic acid) nanoparticles loaded with paclitaxel/indocyanine green for photoacoustic/ultrasound imaging and chemo/photothermal therapy. Int J Nanomedicine. 2018;13:5139–5158. doi: 10.2147/IJN.S167043.
  • Zhou Z, Kennell C, Lee J-Y, et al. Calcium phosphate-polymer hybrid nanoparticles for enhanced triple negative breast cancer treatment via co-delivery of paclitaxel and miR-221/222 inhibitors. Nanomedicine. 2017;13(2):403–410. doi: 10.1016/j.nano.2016.07.016.
  • Lyseng-Williamson KA, Fenton C. Docetaxel: a review of its use in metastatic breast cancer. Drugs. 2005;65(17):2513–2531. doi: 10.2165/00003495-200565170-00007.
  • Figgitt DP, Wiseman LR. Docetaxel: an update of its use in advanced breast cancer. Drugs. 2000;59(3):621–651. doi: 10.2165/00003495-200059030-00015.
  • Wang Y, Zuo A, Huang X, et al. Docetaxel-loaded PAMAM-based poly(γ-benzyl-l-glutamate)-b-d-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles in human breast cancer and human cervical cancer therapy. J Microencapsul. 2019;36(6):552–565. doi: 10.1080/02652048.2019.1654002.
  • Jain S, Spandana G, Agrawal AK, et al. Enhanced antitumor efficacy and reduced toxicity of docetaxel loaded estradiol functionalized stealth polymeric nanoparticles. Mol Pharm. 2015;12(11):3871–3884. doi: 10.1021/acs.molpharmaceut.5b00281.
  • Vardhan H, Mittal P, Adena SKR, et al. Long-circulating polyhydroxybutyrate-co-hydroxyvalerate nanoparticles for tumor targeted docetaxel delivery: formulation, optimization and in vitro characterization. Eur J Pharm Sci. 2017;99:85–94. doi: 10.1016/j.ejps.2016.12.007.
  • Abou-El-Naga AM, Mutawa G, El-Sherbiny IM, et al. Activation of polymeric nanoparticle intracellular targeting overcomes chemodrug resistance in human primary patient breast cancer cells. Int J Nanomedicine. 2018;13:8153–8164. doi: 10.2147/IJN.S182184.
  • Bowerman CJ, Byrne JD, Chu KS, et al. Docetaxel-loaded PLGA nanoparticles improve efficacy in taxane-resistant triple-negative breast cancer. Nano Lett. 2017;17(1):242–248. doi: 10.1021/acs.nanolett.6b03971.
  • Liu Y, Li K, Liu B, et al. A strategy for precision engineering of nanoparticles of biodegradable copolymers for quantitative control of targeted drug delivery. Biomaterials. 2010;31(35):9145–9155. doi: 10.1016/j.biomaterials.2010.08.053.
  • Conte C, Moret F, Esposito D, et al. Biodegradable nanoparticles exposing a short anti-FLT1 peptide as antiangiogenic platform to complement docetaxel anticancer activity. Mater Sci Eng C Mater Biol Appl. 2019;102:876–886. doi: 10.1016/j.msec.2019.04.054.
  • Kong N, Deng M, Sun X-N, et al. Polydopamine-functionalized CA–(PCL-ran-PLA) nanoparticles for target delivery of docetaxel and chemo-photothermal therapy of breast cancer. Front Pharmacol. 2018;9:125. doi: 10.3389/fphar.2018.00125.
  • Conte C, Longobardi G, Barbieri A, et al. Non-covalent strategies to functionalize polymeric nanoparticles with NGR peptides for targeting breast cancer. Int J Pharm. 2023;641:123045. doi: 10.1016/j.ijpharm.2023.122618.
  • Nicoletto RE, Ofner CM3rd. Cytotoxic mechanisms of doxorubicin at clinically relevant concentrations in breast cancer cells. Cancer Chemother Pharmacol. 2022;89(3):285–311. doi: 10.1007/s00280-022-04400-y.
  • Banu H, Sethi DK, Edgar A, et al. Doxorubicin loaded polymeric gold nanoparticles targeted to human folate receptor upon laser photothermal therapy potentiates chemotherapy in breast cancer cell lines. J Photochem Photobiol B. 2015;149:116–128. doi: 10.1016/j.jphotobiol.2015.05.008.
  • Yildiz T, Gu R, Zauscher S, et al. Doxorubicin-loaded protease-activated near-infrared fluorescent polymeric nanoparticles for imaging and therapy of cancer. Int J Nanomedicine. 2018;13:6961–6986. doi: 10.2147/IJN.S174068.
  • Hu C, Fan F, Qin Y, et al. Redox-sensitive folate-conjugated polymeric nanoparticles for combined chemotherapy and photothermal therapy against breast cancer. J Biomed Nanotechnol. 2018;14(12):2018–2030. doi: 10.1166/jbn.2018.2647.
  • Zhang S, Guo N, Wan G, et al. pH and redox dual-responsive nanoparticles based on disulfide-containing poly(β-amino ester) for combining chemotherapy and COX-2 inhibitor to overcome drug resistance in breast cancer. J Nanobiotechnol. 2019;17(1):109. doi: 10.1186/s12951-019-0540-9.
  • Barenholz Y. Doxil® – the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–134. doi: 10.1016/j.jconrel.2012.03.020.
  • Siddharth S, Nayak A, Nayak D, et al. Chitosan-Dextran sulfate coated doxorubicin loaded PLGA–PVA-nanoparticles caused apoptosis in doxorubicin resistance breast cancer cells through induction of DNA damage. Sci Rep. 2017;7(1):2143. doi: 10.1038/s41598-017-02134-z.
  • Mondal L, Mukherjee B, Das K, et al. CD-340 functionalized doxorubicin-loaded nanoparticle induces apoptosis and reduces tumor volume along with drug-related cardiotoxicity in mice. Int J Nanomedicine. 2019;14:8073–8094. doi: 10.2147/IJN.S220740.
  • Yang H, Deng L, Li T, et al. Multifunctional PLGA nanobubbles as theranostic agents: combining doxorubicin and P-gp siRNA co-delivery into human breast cancer cells and ultrasound cellular imaging. J Biomed Nanotechnol. 2015;11(12):2124–2136. doi: 10.1166/jbn.2015.2168.
  • Hu D, Mezghrani O, Zhang L, et al. GE11 peptide modified and reduction-responsive hyaluronic acid-based nanoparticles induced higher efficacy of doxorubicin for breast carcinoma therapy. Int J Nanomedicine. 2016;11:5125–5147. doi: 10.2147/IJN.S113469.
  • Maheshwari N, Kumar Atneriya U, Tekade M, et al. Guiding factors and surface modification strategies for biomaterials in pharmaceutical product development. In: Tekade RKBT-BB, editor. Biomaterials and bionanotechnology [Internet]. Elsevier; 2019. p. 57–87. Available from: https://www.sciencedirect.com/science/article/pii/B9780128144275000032
  • Sur S, Rathore A, Dave V, et al. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano Struct Nano Obj. 2019;20:100397. doi: 10.1016/j.nanoso.2019.100397.
  • Wong KH, Lu A, Chen X, et al. Natural ingredient-based polymeric nanoparticles for cancer treatment. Molecules. 2020;25(16):3620. doi: 10.3390/molecules25163620.
  • Joshi MD, Patravale V, Prabhu R. Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomedicine. 2015;10:1001.
  • Hosseini SM, Mohammadnejad J, Salamat S, et al. Theranostic polymeric nanoparticles as a new approach in cancer therapy and diagnosis: a review. Mater Today Chem. 2023;29:101400. doi: 10.1016/j.mtchem.2023.101400.
  • Karim S, Akhter MH, Burzangi AS, et al. Phytosterol-loaded surface-tailored bioactive-polymer nanoparticles for cancer treatment: optimization, in vitro cell viability, antioxidant activity, and stability studies. Gels. 2022;8(4):219. doi: 10.3390/gels8040219.
  • Ahmad MZ,Rizwanullah M,Ahmad J, et al. Progress in nanomedicine-based drug delivery in designing of chitosan nanoparticles for cancer therapy. Int J Polym Mater Polym Biomater. 2022;71(8):602–623. doi: 10.1080/00914037.2020.1869737.
  • Afzal O, Akhter MH, Ahmad I, et al. A β-sitosterol encapsulated biocompatible alginate/chitosan polymer nanocomposite for the treatment of breast cancer. Pharmaceutics. 2022;14(8):1711. doi: 10.3390/pharmaceutics14081711.
  • Othman N, Masarudin M, Kuen C, et al. Synthesis and optimization of chitosan nanoparticles loaded with l-ascorbic acid and thymoquinone. Nanomaterials. 2018;8(11):920. doi: 10.3390/nano8110920.
  • Iravani S, Varma RS. Alginate-based micro- and nanosystems for targeted cancer therapy. Mar Drugs. 2022;20(10):598. doi: 10.3390/md20100598.
  • Alvi M, Yaqoob A, Rehman K, et al. PLGA-based nanoparticles for the treatment of cancer: current strategies and perspectives. AAPS Open. 2022;8(1):12. doi: 10.1186/s41120-022-00060-7.
  • Andima M, Costabile G, Isert L, et al. Evaluation of β-sitosterol loaded PLGA and PEG-PLA nanoparticles for effective treatment of breast cancer: preparation, physicochemical characterization, and antitumor activity. Pharmaceutics. 2018;10(4):232. doi: 10.3390/pharmaceutics10040232.
  • Shipunova VO, Sogomonyan AS, Zelepukin IV, et al. PLGA nanoparticles decorated with anti-HER2 affibody for targeted delivery and photoinduced cell death. Molecules. 2021;26(13):1–12. doi: 10.3390/molecules26133955.
  • Kovalenko VL, Komedchikova EN, Sogomonyan AS, et al. Lectin-modified magnetic nano-PLGA for photodynamic therapy in vivo. Pharmaceutics. 2022;15(1):92. doi: 10.3390/pharmaceutics15010092.
  • Zhao J, Feng SS. Effects of PEG tethering chain length of vitamin E TPGS with a Herceptin-functionalized nanoparticle formulation for targeted delivery of anticancer drugs. Biomaterials. 2014;35(10):3340–3347. doi: 10.1016/j.biomaterials.2014.01.003.
  • Wang S, Zhang J, Wang Y, et al. Hyaluronic acid-coated PEI–PLGA nanoparticles mediated co-delivery of doxorubicin and miR-542-3p for triple negative breast cancer therapy. Nanomedicine. 2016;12(2):411–420. doi: 10.1016/j.nano.2015.09.014.
  • Valcourt DM, Dang MN, Scully MA, et al. Nanoparticle-mediated co-delivery of notch-1 antibodies and ABT-737 as a potent treatment strategy for triple-negative breast cancer. ACS Nano. 2020;14(3):3378–3388. doi: 10.1021/acsnano.9b09263.
  • Valcourt DM, Day ES. Dual regulation of miR-34a and notch signaling in triple-negative breast cancer by antibody/miRNA nanocarriers. Mol Ther Nucleic Acids. 2020;21:290–298. doi: 10.1016/j.omtn.2020.06.003.
  • Kapadia CH, Ioele SA, Day ES. Layer-by-layer assembled PLGA nanoparticles carrying miR-34a cargo inhibit the proliferation and cell cycle progression of triple-negative breast cancer cells. J Biomed Mater Res A. 2020;108(3):601–613. doi: 10.1002/jbm.a.36840.
  • Djafari J, Fernández-Lodeiro J, Santos HM, et al. Study and preparation of multifunctional poly(l-lysine)@hyaluronic acid nanopolyplexes for the effective delivery of tumor suppressive MiR-34a into triple-negative breast cancer cells. Materials. 2020;13(23):5309. doi: 10.3390/ma13235309.
  • Xu Y, Liu D, Hu J, et al. Hyaluronic acid-coated pH sensitive poly(β-amino ester) nanoparticles for co-delivery of embelin and TRAIL plasmid for triple negative breast cancer treatment. Int J Pharm. 2020;573:118637. doi: 10.1016/j.ijpharm.2019.118637.
  • Wang S, Shao M, Zhong Z, et al. Co-delivery of gambogic acid and TRAIL plasmid by hyaluronic acid grafted PEI–PLGA nanoparticles for the treatment of triple negative breast cancer. Drug Deliv. 2017;24(1):1791–1800. doi: 10.1080/10717544.2017.1406558.
  • Lee Y-H, Chang D-S. Fabrication, characterization, and biological evaluation of anti-HER2 indocyanine green-doxorubicin-encapsulated PEG-b-PLGA copolymeric nanoparticles for targeted photochemotherapy of breast cancer cells. Sci Rep. 2017;7(1):46688. doi: 10.1038/srep46688.
  • Escareño N, Hassan N, Kogan MJ, et al. Microfluidics-assisted conjugation of chitosan-coated polymeric nanoparticles with antibodies: significance in drug release, uptake, and cytotoxicity in breast cancer cells. J Colloid Interface Sci. 2021;591:440–450. doi: 10.1016/j.jcis.2021.02.031.
  • Powell D, Chandra S, Dodson K, et al. Aptamer-functionalized hybrid nanoparticle for the treatment of breast cancer. Eur J Pharm Biopharm. 2017;114:108–118. doi: 10.1016/j.ejpb.2017.01.011.
  • Fernandes RS, Arribada RG, Silva JO, et al. In vitro and in vivo effect of pH-sensitive PLGA-TPGS-based hybrid nanoparticles loaded with doxorubicin for breast cancer therapy. Pharmaceutics. 2022;14(11):2394. doi: 10.3390/pharmaceutics14112394.
  • Li B, Xu H, Li Z, et al. Bypassing multidrug resistance in human breast cancer cells with lipid/polymer particle assemblies. Int J Nanomedicine. 2012;7:187–197.
  • Goyal R, Kapadia CH, Melamed JR, et al. Layer-by-layer assembled gold nanoshells for the intracellular delivery of miR-34a. Cell Mol Bioeng. 2018;11(5):383–396. doi: 10.1007/s12195-018-0535-x.
  • Cheaburu-Yilmaz CN, Karasulu HY, Yilmaz O. Chapter 13 – nanoscaled dispersed systems used in drug-delivery applications. In: Vasile C, editor. Polymeric nanomaterials in nanotherapeutics. Micro and nano technologies [Internet]. Elsevier; 2019. p. 437–468. Available from: https://www.sciencedirect.com/science/article/pii/B9780128139325000133
  • Quérette T, Fleury E, Sintes-Zydowicz N. Non-isocyanate polyurethane nanoparticles prepared by nanoprecipitation. Eur Polym J. 2019;114:434–445. doi: 10.1016/j.eurpolymj.2019.03.006.
  • Pedroso-Santana S, Fleitas-Salazar N. Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polym Int. 2020;69(5):443–447. doi: 10.1002/pi.5970.
  • Fraguas-Sánchez AI, Lozza I, Torres-Suárez AI. Actively targeted nanomedicines in breast cancer: from pre-clinal investigation to clinic. Cancers. 2022;14(5):1198. doi: 10.3390/cancers14051198.
  • FDA. FDA grants regular approval to pertuzumab for adjuvant treatment of HER2-positive breast cancer; 2017 [Internet]. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-regular-approval-pertuzumab-adjuvant-treatment-her2-positive-breast-cancer
  • Srinivasarao M, Galliford CV, Low PS. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discov. 2015;14(3):203–219. doi: 10.1038/nrd4519.
  • Partridge AH, Burstein HJ, Winer EP. Side effects of chemotherapy and combined chemohormonal therapy in women with early-stage breast cancer. J Natl Cancer Inst Monogr. 2001;2001(30):135–142. doi: 10.1093/oxfordjournals.jncimonographs.a003451.
  • Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release. 2001;74(1–3):47–61. doi: 10.1016/s0168-3659(01)00309-1.
  • Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65(1):71–79. doi: 10.1016/j.addr.2012.10.002.
  • Nakamura Y, Mochida A, Choyke PL, et al. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem. 2016;27(10):2225–2238. doi: 10.1021/acs.bioconjchem.6b00437.
  • Wu J. The enhanced permeability and retention (EPR) effect: the significance of the concept and methods to enhance its application. J Pers Med. 2021;11(8):771. doi: 10.3390/jpm11080771.
  • Ejigah V, Owoseni O, Bataille-Backer P, et al. Approaches to improve macromolecule and nanoparticle accumulation in the tumor microenvironment by the enhanced permeability and retention effect. Polymers. 2022;14(13):2601. doi: 10.3390/polym14132601.
  • Rasool M, Malik A, Waquar S, et al. New challenges in the use of nanomedicine in cancer therapy. Bioengineered. 2022;13(1):759–773. doi: 10.1080/21655979.2021.2012907.
  • Habban Akhter M, Sateesh Madhav N, Ahmad J. Epidermal growth factor receptor based active targeting: a paradigm shift towards advance tumor therapy. Artif Cells Nanomed Biotechnol. 2018;46(Suppl. 2):1188–1198. doi: 10.1080/21691401.2018.1481863.
  • Ahmad J, Ameeduzzafar , Ahmad MZ, et al. Surface-engineered cancer nanomedicine: rational design and recent progress. Curr Pharm Des. 2020;26(11):1181–1190. doi: 10.2174/1381612826666200214110645.
  • Akhter MH, Rizwanullah M, Ahmad J, et al. Nanocarriers in advanced drug targeting: setting novel paradigm in cancer therapeutics. Artif Cells Nanomed Biotechnol. 2018;46(5):873–884. doi: 10.1080/21691401.2017.1366333.
  • Bareford L, Swaan P. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev. 2007;59(8):748–758. doi: 10.1016/j.addr.2007.06.008.
  • Attia MF, Anton N, Wallyn J, et al. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol. 2019;71(8):1185–1198. doi: 10.1111/jphp.13098.
  • van Osdol W, Fujimori K, Weinstein JN. An analysis of monoclonal antibody distribution in microscopic tumor nodules: consequences of a “binding site barrier”. Cancer Res. 1991;51(18):4776–4784.
  • Thurber GM, Zajic SC, Wittrup KD. Theoretic criteria for antibody penetration into solid tumors and micrometastases. J Nucl Med. 2007;48(6):995–999. doi: 10.2967/jnumed.106.037069.
  • Alexis F, Pridgen E, Molnar LK, et al. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–515. doi: 10.1021/mp800051m.
  • Walkey CD, Olsen JB, Guo H, et al. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc. 2012;134(4):2139–2147. doi: 10.1021/ja2084338.
  • Swain SM, Shastry M, Hamilton E. Targeting HER2-positive breast cancer: advances and future directions. Nat Rev Drug Discov. 2023;22(2):101–126. doi: 10.1038/s41573-022-00579-0.
  • Wang Z. ErbB receptors and cancer BT – ErbB receptor signaling: methods and protocols [Internet]; 2017. p. 3–35. Available from: doi: 10.1007/978-1-4939-7219-7_1.
  • Schettini F, Pascual T, Conte B, et al. HER2-enriched subtype and pathological complete response in HER2-positive breast cancer: a systematic review and meta-analysis. Cancer Treat Rev. 2020;84:101965. doi: 10.1016/j.ctrv.2020.101965.
  • Behravan N, Zahedipour F, Jaafari MR, et al. Lipid-based nanoparticulate delivery systems for HER2-positive breast cancer immunotherapy. Life Sci. 2022;291:120294. doi: 10.1016/j.lfs.2021.120294.
  • Tokunaga E, Oki E, Nishida K, et al. Trastuzumab and breast cancer: developments and current status. Int J Clin Oncol. 2006;11(3):199–208. doi: 10.1007/s10147-006-0575-4.
  • Sitia L, Sevieri M, Signati L, et al. HER-2-targeted nanoparticles for breast cancer diagnosis and treatment. Cancers. 2022;14(10):2424. doi: 10.3390/cancers14102424.
  • Meng Y, Zheng L, Yang Y, et al. A monoclonal antibody targeting ErbB2 domain III inhibits ErbB2 signaling and suppresses the growth of ErbB2-overexpressing breast tumors. Oncogenesis. 2016;5(3):e211. doi: 10.1038/oncsis.2016.25.
  • Miladinova D. Molecular imaging of HER2 receptor: targeting HER2 for imaging and therapy in nuclear medicine. Front Mol Biosci. 2023;10:1144817. doi: 10.3389/fmolb.2023.1144817.
  • Rugo HS, Im S-A, Cardoso F, et al. Efficacy of margetuximab vs trastuzumab in patients with pretreated ERBB2-positive advanced breast cancer. JAMA Oncol. 2021;7(4):573–584. doi: 10.1001/jamaoncol.2020.7932.
  • Shipunova VO, Deyev SM. Artificial scaffold polypeptides as an efficient tool for the targeted delivery of nanostructures in vitro and in vivo. Acta Nat. 2022;14(1):54–72. doi: 10.32607/actanaturae.11545.
  • Kong X, Qi Y, Wang X, et al. Nanoparticle drug delivery systems and their applications as targeted therapies for triple negative breast cancer. Prog Mater Sci. 2023;134:101070. doi: 10.1016/j.pmatsci.2023.101070.
  • Dong S, Bi Y, Sun X, et al. Dual-loaded liposomes tagged with hyaluronic acid have synergistic effects in triple-negative breast cancer. Small. 2022;18(16):e2107690. doi: 10.1002/smll.202107690.
  • Zhang Z, Lin G, Yan Y, et al. Transmembrane TNF-alpha promotes chemoresistance in breast cancer cells. Oncogene. 2018;37(25):3456–3470. doi: 10.1038/s41388-018-0221-4.
  • Zhu H, Bhaijee F, Ishaq N, et al. Correlation of Notch1, pAKT and nuclear NF-κB expression in triple negative breast cancer. Am J Cancer Res. 2013;3(2):230–239.
  • Liao W-S, Ho Y, Lin Y-W, et al. Targeting EGFR of triple-negative breast cancer enhances the therapeutic efficacy of paclitaxel- and cetuximab-conjugated nanodiamond nanocomposite. Acta Biomater. 2019;86:395–405. doi: 10.1016/j.actbio.2019.01.025.
  • Hossein-Nejad-Ariani H, Althagafi E, Kaur K. Small peptide ligands for targeting EGFR in triple negative breast cancer cells. Sci Rep. 2019;9(1):2723. doi: 10.1038/s41598-019-38574-y.
  • Carey L, Winer E, Viale G, et al. Triple-negative breast cancer: disease entity or title of convenience? Nat Rev Clin Oncol. 2010;7(12):683–692. doi: 10.1038/nrclinonc.2010.154.
  • Yang Y, Long Y, Wang Y, et al. Enhanced anti-tumor and anti-metastasis therapy for triple negative breast cancer by CD44 receptor-targeted hybrid self-delivery micelles. Int J Pharm. 2020;577(17):119085. doi: 10.1016/j.ijpharm.2020.119085.
  • Yu C-H, Betrehem UM, Ali N, et al. Design strategies, surface functionalization, and environmental remediation potentialities of polymer-functionalized nanocomposites. Chemosphere. 2022;306:135656. doi: 10.1016/j.chemosphere.2022.135656.
  • Makvandi P, Iftekhar S, Pizzetti F, et al. Functionalization of polymers and nanomaterials for water treatment, food packaging, textile and biomedical applications: a review. Environ Chem Lett. 2021;19(1):583–611. doi: 10.1007/s10311-020-01089-4.
  • Ahmad F, Salem-Bekhit MM, Khan F, et al. Unique properties of surface-functionalized nanoparticles for bio-application: functionalization mechanisms and importance in application. Nanomaterials. 2022;12(8):1333.
  • Sanità G, Carrese B, Lamberti A. Nanoparticle surface functionalization: how to improve biocompatibility and cellular internalization. Front Mol Biosci. 2020;7:587012. doi: 10.3389/fmolb.2020.587012.
  • Nobs L, Buchegger F, Gurny R, et al. Current methods for attaching targeting ligands to liposomes and nanoparticles. J Pharm Sci. 2004;93(8):1980–1992. doi: 10.1002/jps.20098.
  • Lu J, Shi M, Shoichet MS. Click chemistry functionalized polymeric nanoparticles target corneal epithelial cells through RGD-cell surface receptors. Bioconjug Chem. 2009;20(1):87–94. doi: 10.1021/bc8003167.
  • Gessner I, Neundorf I. Nanoparticles modified with cell-penetrating peptides: conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy. Int J Mol Sci. 2020;21(7):2536. doi: 10.3390/ijms21072536.
  • Qian Y, Zhang J, Xu R, et al. Nanoparticles based on polymers modified with pH-sensitive molecular switch and low molecular weight heparin carrying celastrol and ferrocene for breast cancer treatment. Int J Biol Macromol. 2021;183:2215–2226. doi: 10.1016/j.ijbiomac.2021.05.204.
  • Yu K, Zhao J, Zhang Z, et al. Enhanced delivery of paclitaxel using electrostatically-conjugated Herceptin-bearing PEI/PLGA nanoparticles against HER-positive breast cancer cells. Int J Pharm. 2016;497(1–2):78–87. doi: 10.1016/j.ijpharm.2015.11.033.
  • Zheng D, Wan C, Yang H, et al. Her2-targeted multifunctional nano-theranostic platform mediates tumor microenvironment remodeling and immune activation for breast cancer treatment. Int J Nanomedicine. 2020;15:10007–10028. doi: 10.2147/IJN.S271213.
  • Elhabak M, Osman R, Mohamed M, et al. Near IR responsive targeted integrated lipid polymer nanoconstruct for enhanced magnolol cytotoxicity in breast cancer. Sci Rep. 2020;10(1):8771. doi: 10.1038/s41598-020-65521-z.
  • Fan Z, Fu PP, Yu H, et al. Theranostic nanomedicine for cancer detection and treatment. J Food Drug Anal. 2014;22(1):3–17. doi: 10.1016/j.jfda.2014.01.001.
  • Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev. 2010;62(11):1052–1063. doi: 10.1016/j.addr.2010.08.004.
  • Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy. Bioconjug Chem. 2011;22(10):1879–1903. doi: 10.1021/bc200151q.
  • Cabral H, Nishiyama N, Kataoka K. Supramolecular nanodevices: from design validation to theranostic nanomedicine. Acc Chem Res. 2011;44(10):999–1008. doi: 10.1021/ar200094a.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.