70
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Indocyanine green-loaded N-doped carbon quantum dot nanoparticles for effective photodynamic therapy and cell imaging of melanoma cancer: in vitro, ex vivo and in vivo study

, &
Received 03 Jan 2024, Accepted 16 May 2024, Published online: 19 Jun 2024

References

  • Juarranz A, Jaén P, Sanz-Rodríguez F, et al. Photodynamic therapy of cancer. Basic principles and applications. Clin Transl Oncol. 2008;10(3):148–154. doi: 10.1007/s12094-008-0172-2.
  • van Straten D, Mashayekhi V, de Bruijn HS, et al. Oncologic photodynamic therapy: basic principles, current clinical status and future directions. Cancers. 2017;9(2):19. doi: 10.3390/cancers9020019.
  • Luksiene Z. Photodynamic therapy: mechanism of action and ways to improve the efficiency of treatment. Medicina. 2003;39(12):1137–1150.
  • Allison RR, Moghissi K. Photodynamic therapy (PDT): PDT mechanisms. Clin Endosc. 2013;46(1):24–29. doi: 10.5946/ce.2013.46.1.24.
  • Dolmans D, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380–387. doi: 10.1038/nrc1071.
  • Konopka K, Goslinski T. Photodynamic therapy in dentistry. J Dent Res. 2007;86(8):694–707. doi: 10.1177/154405910708600803
  • Gomes AJ, Lunardi LO, Marchetti JM, et al. Indocyanine green nanoparticles useful for photomedicine. Photomed Laser Surg. 2006;24(4):514–521.
  • Chen Y, Chen G, Zhao Y, et al. Indocyanine green-loaded nanocarriers as contrast agents for NIR fluorescent optical imaging. J. Nanomed. Nanotechol. 2012;3(122.10):4172.
  • Tamai K, Mizushima T, Wu X, et al. Photodynamic therapy using indocyanine green loaded on super carbonate apatite as minimally invasive cancer treatment. Mol Cancer Ther. 2018;17(7):1613–1622. doi: 10.1158/1535-7163.MCT-17-0788.
  • Xue P, Hou M, Sun L, et al. Calcium-carbonate packaging magnetic polydopamine nanoparticles loaded with indocyanine green for near-infrared induced photothermal/photodynamic therapy. Acta Biomater. 2018;81:242–255. doi: 10.1016/j.actbio.2018.09.045.
  • Zheng X, Zhou F, Wu B, et al. Enhanced tumor treatment using biofunctional indocyanine green-containing nanostructure by intratumoral or intravenous injection. Mol Pharm. 2012;9(3):514–522. doi: 10.1021/mp200526m.
  • Kirchherr A-K, Briel A, Mäder K. Stabilization of indocyanine green by encapsulation within micellar systems. Mol Pharm. 2009;6(2):480–491. doi: 10.1021/mp8001649.
  • Fadel M, Kassab K, Samy N, et al. Indocyanine green transferosomal hydrogel with enhanced stability and skin permeation for treatment of acne vulgaris:(in-vitro and clinical study). EJPBS. 2015;2:20–36.
  • Ding X, Xu X, Zhao Y, et al. Tumor targeted nanostructured lipid carrier co-delivering paclitaxel and indocyanine green for laser triggered synergetic therapy of cancer. RSC Adv. 2017;7(56):35086–35095. doi: 10.1039/C7RA06119F.
  • Park T, Lee S, Amatya R, et al. ICG-loaded pegylated BSA-silver nanoparticles for effective photothermal cancer therapy. Int J Nanomed. 2020;15:5459–5471. doi: 10.2147/IJN.S255874.
  • Gamal-Eldeen AM, El-Daly SM, Borai IH, et al. Photodynamic therapeutic effect of indocyanine green entrapped in polymeric nanoparticles and their anti-EGFR-conjugate in skin cancer in CD1 mice. Photodiagnosis Photodyn Ther. 2013;10(4):446–459. doi: 10.1016/j.pdpdt.2013.03.013.
  • Lee E-H, Lim S-J, Lee M-K. Chitosan-coated liposomes to stabilize and enhance transdermal delivery of indocyanine green for photodynamic therapy of melanoma. Carbohydr Polym. 2019;224:115143. doi: 10.1016/j.carbpol.2019.115143.
  • Lee E-H, Kim J-K, Lim J-S, et al. Enhancement of indocyanine green stability and cellular uptake by incorporating cationic lipid into indocyanine green-loaded nanoemulsions. Colloids Surf B Biointerfaces. 2015;136:305–313. doi: 10.1016/j.colsurfb.2015.09.025.
  • Miele D, Sorrenti M, Catenacci L, et al. Association of indocyanine green with chitosan oleate coated PLGA nanoparticles for photodynamic therapy. Pharmaceutics. 2022;14(8):1740. doi: 10.3390/pharmaceutics14081740.
  • Chen S, Zhu L, Du Z, et al. Polymer encapsulated clinical ICG nanoparticles for enhanced photothermal therapy and NIR fluorescence imaging in cervical cancer. RSC Adv. 2021;11(34):20850–20858. doi: 10.1039/d1ra02875h.
  • Ting C-W, Chou Y-H, Huang S-Y, et al. Indocyanine green-carrying polymeric nanoparticles with acid-triggered detachable PEG coating and drug release for boosting cancer photothermal therapy. Colloids Surf B Biointerfaces. 2021;208:112048. doi: 10.1016/j.colsurfb.2021.112048.
  • Yu J, Wang L, Xie X,, et al. Multifunctional nanoparticles codelivering doxorubicin and amorphous calcium carbonate preloaded with indocyanine green for enhanced Chemo-Photothermal cancer therapy. Int J Nanomed. 2023;18:323–337.
  • Ryplida B, Lee G, In I, et al. Zwitterionic carbon dot-encapsulating pH-responsive mesoporous silica nanoparticles for NIR light-triggered photothermal therapy through pH-controllable release. Biomater Sci. 2019;7(6):2600–2610. doi: 10.1039/c9bm00160c.
  • Huang Y, Shen K, Si Y, et al. Dendritic organosilica nanospheres with large mesopores as multi-guests vehicle for photoacoustic/ultrasound imaging-guided photodynamic therapy. J Colloid Interface Sci. 2021;583:166–177. doi: 10.1016/j.jcis.2020.09.028.
  • Malekmohammadi S, Mohammed RUR, Samadian H, et al. Nonordered dendritic mesoporous silica nanoparticles as promising platforms for advanced methods of diagnosis and therapies. Mater Today Chem. 2022;26:101144. doi: 10.1016/j.mtchem.2022.101144.
  • Nguyen VP, Oh Y, Ha K, et al. Enhancement of high-resolution photoacoustic imaging with indocyanine green-conjugated carbon nanotubes. Jpn J Appl Phys. 2015;54(7S1):07HF04. doi: 10.7567/JJAP.54.07HF04.
  • Gholibegloo E, Karbasi A, Pourhajibagher M, et al. Carnosine-graphene oxide conjugates decorated with hydroxyapatite as promising nanocarrier for ICG loading with enhanced antibacterial effects in photodynamic therapy against Streptococcus mutans. J Photochem Photobiol B. 2018;181:14–22. doi: 10.1016/j.jphotobiol.2018.02.004.
  • Khan ZMSH, Saifi S, Aslam Z, et al. A facile one step hydrothermal synthesis of carbon quantum dots for label-free fluorescence sensing approach to detect picric acid in aqueous solution. J Photochem Photobiol A Chem. 2020;388:112201. doi: 10.1016/j.jphotochem.2019.112201.
  • Das R, Bandyopadhyay R, Pramanik P. Carbon quantum dots from natural resource: a review. Mater Today Chem. 2018;8:96–109. doi: 10.1016/j.mtchem.2018.03.003.
  • Kuo W-S, Chang Y-T, Cho K-C, et al. Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy. Biomaterials. 2012;33(11):3270–3278. doi: 10.1016/j.biomaterials.2012.01.035.
  • Yang L, Jiang W, Qiu L, et al. One pot synthesis of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging. Nanoscale. 2015;7(14):6104–6113. doi: 10.1039/c5nr01080b.
  • Khoshnood A, Farhadian N, Abnous K, et al. N doped-carbon quantum dots with ultra-high quantum yield photoluminescent property conjugated with folic acid for targeted drug delivery and bioimaging applications. J Photochem Photobiol A. 2023;444:114972. doi: 10.1016/j.jphotochem.2023.114972.
  • Zwinkels JC, DeRose PC, Leland JE. Spectral fluorescence measurements. In: Germer TA, Zwinkels JC, Tsai BK, editors. Experimental methods in the physical sciences. Elsevier; 2014. p. 221–290. doi: 10.1016/B978-0-12-386022-4.00007-8.
  • Williams ATR, Winfield SA, Miller JN. Relative fluorescence quantum yields using a computer controlled luminescence spectrometer. Analyst. 1983;108:1067.
  • Ziaee N, Farhadian N, Abnous K, et al. Dual targeting of Mg/N doped-carbon quantum dots with folic and hyaluronic acid for targeted drug delivery and cell imaging. Biomed Pharmacother. 2023;164:114971. doi: 10.1016/j.biopha.2023.114971.
  • Lajunen T, Nurmi R, Wilbie D, et al. The effect of light sensitizer localization on the stability of indocyanine green liposomes. J Control Release. 2018;284:213–223. doi: 10.1016/j.jconrel.2018.06.029.
  • Xue P, Yang R, Sun L, et al. Indocyanine green-conjugated magnetic Prussian blue nanoparticles for synchronous photothermal/photodynamic tumor therapy. Nanomicro Lett. 2018;10(4):74. doi: 10.1007/s40820-018-0227-z.
  • Gu L, Shi T, Sun Y, et al. Folate-modified, indocyanine green-loaded lipid-polymer hybrid nanoparticles for targeted delivery of cisplatin. J Biomater Sci Polym Ed. 2017;28(7):690–702. doi: 10.1080/09205063.2017.1296347.
  • Rady M, Gomaa I, Afifi N, et al. Dermal delivery of Fe-chlorophyllin via ultradeformable nanovesicles for photodynamic therapy in melanoma animal model. Int J Pharm. 2018;548(1):480–490. doi: 10.1016/j.ijpharm.2018.06.057.
  • Fan KFM, Hopper C, Speight PM, et al. Photodynamic therapy using 5-aminolevulinic acid for premalignant and malignant lesions of the oral cavity. Cancer Interdiscip Int J Am Cancer Soc. 1996;78(7):1374–1383. doi: 10.1002/(SICI)1097-0142(19961001)78:7<1374::AID-CNCR2>3.0.CO;2-L.
  • Urbanska K, Romanowska-Dixon B, Matuszak Z, et al. Indocyanine green as a prospective sensitizer for photodynamic therapy of melanomas. Acta Biochim Pol. 2002;49(2):387–391. doi: 10.18388/abp.2002_3797.
  • Ates G, Vanhaecke T, Rogiers V, et al. Assaying cellular viability using the neutral red uptake assay. Methods Mol Biol. 2017;1601:19–26. doi: 10.1007/978-1-4939-6960-9_2.
  • Repetto G, Del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc. 2008;3(7):1125–1131. doi: 10.1038/nprot.2008.75.
  • Yan F, Wu H, Liu H, et al. Molecular imaging-guided photothermal/photodynamic therapy against tumor by iRGD-modified indocyanine green nanoparticles. J Control Release. 2016;224:217–228. doi: 10.1016/j.jconrel.2015.12.050.
  • Md Jan M, Zainal N, Jamaludin S. Region of interest-based image retrieval techniques: a review. IAES Int J Artif Intell. 2020;9:520. doi: 10.11591/IJAI.V9.I3.PP520-528.
  • Yang Z, Du Y, Sun Q, et al. Albumin-based nanotheranostic probe with hypoxia alleviating potentiates synchronous multimodal imaging and phototherapy for glioma. ACS Nano. 2020;14(5):6191–6212. doi: 10.1021/acsnano.0c02249.
  • Sun S, Chen J, Jiang K, et al. Ce6-modified carbon dots for multimodal-imaging-guided and single-NIR-laser-triggered photothermal/photodynamic synergistic cancer therapy by reduced irradiation power. ACS Appl Mater Interfaces. 2019;11(6):5791–5803. doi: 10.1021/acsami.8b19042.
  • Wang H, Chao Y, Liu J, et al. Photosensitizer-crosslinked in-situ polymerization on catalase for tumor hypoxia modulation & enhanced photodynamic therapy. Biomaterials. 2018;181:310–317. doi: 10.1016/j.biomaterials.2018.08.011.
  • Kang H-M, Sohn I, Kim S, et al. Optical measurement of mouse strain differences in cerebral blood flow using indocyanine green. J Cereb Blood Flow Metab. 2015;35(6):912–916. doi: 10.1038/jcbfm.2015.50.
  • Liu X, Jiang H, Ye J, et al. Nitrogen-doped carbon quantum dot stabilized magnetic iron oxide nanoprobe for fluorescence, magnetic resonance, and computed tomography triple-modal in vivo bioimaging. Adv Funct Materials. 2016;26(47):8694–8706. doi: 10.1002/adfm.201603084.
  • Frank LA, Onzi GR, Morawski AS, et al. Chitosan as a coating material for nanoparticles intended for biomedical applications. React Funct Polym. 2020;147:104459. doi: 10.1016/j.reactfunctpolym.2019.104459.
  • Zhu S, Song Y, Zhao X, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 2015;8(2):355–381. doi: 10.1007/s12274-014-0644-3.
  • Depan D, Shah J, Misra R. Controlled release of drug from folate-decorated and graphene mediated drug delivery system: synthesis, loading efficiency, and drug release response. Mater Sci Eng C. 2011;31(7):1305–1312. doi: 10.1016/j.msec.2011.04.010.
  • Liu H, Li Z, Sun Y, et al. Synthesis of luminescent carbon dots with ultrahigh quantum yield and inherent folate receptor-positive cancer cell targetability. Sci Rep. 2018;8(1):1086. doi: 10.1038/s41598-018-19373-3.
  • Nandiyanto ABD, Oktiani R, Ragadhita R. How to read and interpret FTIR spectroscope of organic material. Indonesian J Sci Technol. 2019;4(1):97–118. doi: 10.17509/ijost.v4i1.15806.
  • Liu J-H, Wang Y, Yan G-H, et al. Systematic toxicity evaluations of high-performance carbon “quantum” dots. J Nanosci Nanotechnol. 2019;19(4):2130–2137. doi: 10.1166/jnn.2019.15807.
  • Weng Y, Guan S, Lu H, et al. Confinement of carbon dots localizing to the ultrathin layered double hydroxides toward simultaneous triple-mode bioimaging and photothermal therapy. Talanta. 2018;184:50–57. doi: 10.1016/j.talanta.2018.02.093.
  • Barreca D, Neri G, Scala A, et al. Covalently immobilized catalase on functionalized graphene: effect on the activity, immobilization efficiency, and tetramer stability. Biomater Sci. 2018;6(12):3231–3240. doi: 10.1039/c8bm00850g.
  • Kim D-H, Kim K-N, Kim K-M, et al. Targeting to carcinoma cells with chitosan-and starch-coated magnetic nanoparticles for magnetic hyperthermia. J Biomed Mater Res A. 2009;88(1):1–11. doi: 10.1002/jbm.a.31775.
  • Ederer J, Janoš P, Ecorchard P, et al. Determination of amino groups on functionalized graphene oxide for polyurethane nanomaterials: XPS quantitation vs. functional speciation. RSC Adv. 2017;7(21):12464–12473. doi: 10.1039/C6RA28745J.
  • Yuan Y, Guo B, Hao L, et al. Doxorubicin-loaded environmentally friendly carbon dots as a novel drug delivery system for nucleus targeted cancer therapy. Colloids Surf B Biointerfaces. 2017;159:349–359. doi: 10.1016/j.colsurfb.2017.07.030.
  • Zhang X, Li N, Liu Y, et al. On-demand drug release of ICG-liposomal wedelolactone combined photothermal therapy for tumor. Nanomedicine. 2016;12(7):2019–2029. doi: 10.1016/j.nano.2016.05.013.
  • Zhu S, Meng Q, Wang L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed Engl. 2013;52(14):3953–3957. doi: 10.1002/anie.201300519.
  • Jayaramudu T, Raghavendra GM, Varaprasad K, et al. Preparation and characterization of poly (ethylene glycol) stabilized nano silver particles by a mechanochemical assisted ball mill process. J Appl Polym Sci. 2016;133(7):43027. doi: 10.1002/app.43027.
  • Bandyopadhyay S, Sáha T, Sanétrník D, et al. Thermo compression of thermoplastic Agar-Xanthan gum-carboxymethyl cellulose blend. Polymers. 2021;13(20):3472. doi: 10.3390/polym13203472.
  • Fu C-C, Wu C-Y, Chien C-C, et al. Polyethylene Glycol6000/carbon nanodots as fluorescent bioimaging agents. Nanomaterials. 2020;10(4):677. doi: 10.3390/nano10040677.
  • Bunjes H, Unruh T. Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Adv Drug Deliv Rev. 2007;59(6):379–402. doi: 10.1016/j.addr.2007.04.013.
  • Papaioannou N, Titirici M-M, Sapelkin A. Investigating the effect of reaction time on carbon dot formation, structure, and optical properties. ACS Omega. 2019;4(26):21658–21665. doi: 10.1021/acsomega.9b01798.
  • Wang L, Li B, Xu F, et al. High-yield synthesis of strong photoluminescent N-doped carbon nanodots derived from hydrosoluble chitosan for mercury ion sensing via smartphone APP. Biosens Bioelectron. 2016;79:1–8. doi: 10.1016/j.bios.2015.11.085.
  • Liu X, Pang J, Xu F, et al. Simple approach to synthesize amino-functionalized carbon dots by carbonization of chitosan. Sci Rep. 2016;6(1):31100. doi: 10.1038/srep31100.
  • Zheng J, Xie Y, Wei Y, et al. An efficient synthesis and photoelectric properties of green carbon quantum dots with high fluorescent quantum yield. Nanomaterials. 2020;10(1):82. doi: 10.3390/nano10010082.
  • Khan A, Goepel M, Colmenares JC, et al. Chitosan-based N-doped carbon materials for electrocatalytic and photocatalytic applications. ACS Sustain Chem Eng. 2020;8(12):4708–4727. doi: 10.1021/acssuschemeng.9b07522.
  • Xue X, Fang T, Yin L, et al. Multistage delivery of CDs-DOX/ICG-loaded liposome for highly penetration and effective chemo-photothermal combination therapy. Drug Deliv. 2018;25(1):1826–1839. doi: 10.1080/10717544.2018.1482975.
  • Chen Z, Huang Q, Song Y, et al. Cubosomes-assisted transdermal delivery of doxorubicin and indocyanine green for chemo-photothermal combination therapy of melanoma. Biomed Pharmacother. 2023;166:115316. doi: 10.1016/j.biopha.2023.115316.
  • Zhang H, Zhang X, Zhu X, et al. NIR light-induced tumor phototherapy using photo-stable ICG delivery system based on inorganic hybrid. Nanomedicine. 2018;14(1):73–84. doi: 10.1016/j.nano.2017.08.019.
  • Prasanth S, RitheshRaj D, Vineeshkumar TV, et al. Spectroscopic exploration of interaction between PEG-functionalized Ag2S nanoparticles with bovine serum albumin. Chem Phys Lett. 2018;700:15–21. doi: 10.1016/j.cplett.2018.04.004.
  • Hou K-T, Liu T-I, Chiu H-C, et al. DOX/ICG-carrying γ-PGA-g-PLGA-based polymeric nanoassemblies for acid-triggered rapid DOX release combined with NIR-activated photothermal effect. Eur Polym J. 2019;110:283–292. doi: 10.1016/j.eurpolymj.2018.11.038.
  • Hu X, Li J, Chen Y, et al. A self-assembly ICG nanoparticle potentiating targeted photothermal and photodynamic therapy in NSCLC. ACS Biomater Sci Eng. 2022;8(10):4535–4546. doi: 10.1021/acsbiomaterials.2c00620.
  • Björnsson ÓG, Murphy R, Chadwick V. Physicochemical studies of indocyanine green (ICG): absorbance/concentration relationship, pH tolerance and assay precision in various solvents. Experientia. 1982;38(12):1441–1442. doi: 10.1007/BF01955757.
  • Ocsoy I, Isiklan N, Cansiz S, et al. ICG-conjugated magnetic graphene oxide for dual photothermal and photodynamic therapy. RSC Adv. 2016;6(36):30285–30292. doi: 10.1039/C6RA06798K.
  • Li G, Pei M, Liu P. DOX-conjugated CQD-based nanosponges for tumor intracellular pH-triggered DOX release and imaging. Colloids Surf A. 2020;603:125258. doi: 10.1016/j.colsurfa.2020.125258.
  • Hu Y, Wang R, Zhou Y, et al. Targeted dual-mode imaging and phototherapy of tumors using ICG-loaded multifunctional MWCNTs as a versatile platform. J Mater Chem B. 2018;6(38):6122–6132. doi: 10.1039/c8tb01870g.
  • Jaiswal S, Roy R, Dutta SB, et al. Role of doxorubicin on the loading efficiency of ICG within silk fibroin nanoparticles. ACS Biomater Sci Eng. 2022;8(7):3054–3065. doi: 10.1021/acsbiomaterials.1c01616.
  • Saxena V, Sadoqi M, Shao J. Indocyanine green-loaded biodegradable nanoparticles: preparation, physicochemical characterization and in vitro release. Int J Pharm. 2004;278(2):293–301. doi: 10.1016/j.ijpharm.2004.03.032.
  • Ruhi MK, Ak A, Gülsoy M. Dose-dependent photochemical/photothermal toxicity of indocyanine green-based therapy on three different cancer cell lines. Photodiagnosis Photodyn Ther. 2018;21:334–343. doi: 10.1016/j.pdpdt.2018.01.008.
  • Sharma R, Roychoudhury S, Singh N, et al. Methods to measure reactive oxygen species (ROS) and total antioxidant capacity (TAC) in the reproductive system. In: Agarwal A, Sharma R, Gupta S, Harlev A, Ahmad G, du Plessis SS, et al., editors. Oxidative stress in human reproduction: shedding light on a complicated phenomenon. Cham: Springer International Publishing; 2017. p. 17–46.
  • Wu F, Yue L, Su H, et al. Carbon dots @ platinum porphyrin composite as theranostic nanoagent for efficient photodynamic cancer therapy. Nanoscale Res Lett. 2018;13(1):357. doi: 10.1186/s11671-018-2761-5.
  • Ciapetti G, Granchi D, Verri E, et al. Application of a combination of neutral red and amido black staining for rapid, reliable cytotoxicity testing of biomaterials. Biomaterials. 1996;17(13):1259–1264. doi: 10.1016/0142-9612(96)88670-4.
  • Inayat-Hussain S, Rajab NF, Siew EL. In vitro testing of biomaterials toxicity and biocompatibility. In: Di Silvio L, editor. Cellular response to biomaterials. Woodhead Publishing Series in Biomaterial; 2009. p. 508–537. doi: 10.1533/9781845695477.3.508.
  • Wang C, Zeng Y, Chen K-F, et al. A self-monitoring microneedle patch for light-controlled synergistic treatment of melanoma. Bioact Mater. 2023;27:58–71. doi: 10.1016/j.bioactmat.2023.03.016.
  • Yu L, Dong A, Guo R, et al. DOX/ICG coencapsulated liposome-coated thermosensitive nanogels for NIR-triggered simultaneous drug release and photothermal effect. ACS Biomater Sci Eng. 2018;4(7):2424–2434. doi: 10.1021/acsbiomaterials.8b00379.
  • Ma Y, Tong S, Bao G, et al. Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy. Biomaterials. 2013;34(31):7706–7714. doi: 10.1016/j.biomaterials.2013.07.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.