32
Views
0
CrossRef citations to date
0
Altmetric
Original Article

The anti-cancer properties of miR-340 plasmid-chitosan complexes (miR-340 CC) on murine model of breast cancer*

, , , , &
Received 11 Mar 2024, Accepted 24 May 2024, Published online: 04 Jun 2024

References

  • Cuthrell KM, Tzenios N. Breast cancer: updated and deep insights. Int Res J Oncol. 2023;6(1):104–118.
  • Dinakar YH, Kumar H, Mudavath SL, et al. Role of STAT3 in the initiation, progression, proliferation and metastasis of breast cancer and strategies to deliver JAK and STAT3 inhibitors. Life Sci. 2022;309:120996. doi: 10.1016/j.lfs.2022.120996.
  • Bekes I, Huober J. Extended adjuvant endocrine therapy in early breast cancer patients—review and perspectives. Cancers (Basel). 2023;15(16):4190. doi: 10.3390/cancers15164190.
  • Wu S, Lu J, Zhu H, et al. A novel axis of circKIF4A-miR-637-STAT3 promotes brain metastasis in triple-negative breast cancer. Cancer Lett. 2024;581:216508. doi: 10.1016/j.canlet.2023.216508.
  • Wang Z, Yang L, Wu P, et al. The circROBO1/KLF5/FUS feedback loop regulates the liver metastasis of breast cancer by inhibiting the selective autophagy of Afadin. Mol Cancer. 2022;21(1):29. doi: 10.1186/s12943-022-01498-9.
  • Park M, Kim D, Ko S, et al. Breast cancer metastasis: mechanisms and therapeutic implications. Int J Mol Sci. 2022;23(12):6806. doi: 10.3390/ijms23126806.
  • Kerr AJ, Dodwell D, McGale P, et al. Adjuvant and neoadjuvant breast cancer treatments: a systematic review of their effects on mortality. Cancer Treat Rev. 2022;105:102375. doi: 10.1016/j.ctrv.2022.102375.
  • Katsura C, Ogunmwonyi I, Kankam HK, et al. Breast cancer: presentation, investigation and management. Br J Hosp Med. 2022;83(2):1–7. doi: 10.12968/hmed.2021.0459.
  • Chen S, Wang Y, Li D, et al. Mechanisms controlling microRNA expression in tumor. Cells. 2022;11(18):2852. doi: 10.3390/cells11182852.
  • Mitra R, Adams CM, Jiang W, et al. Pan-cancer analysis reveals cooperativity of both strands of microRNA that regulate tumorigenesis and patient survival. Nat Commun. 2020;11(1):968. doi: 10.1038/s41467-020-14713-2.
  • Budakoti M, Panwar AS, Molpa D, et al. Micro-RNA: the darkhorse of cancer. Cell Signal. 2021;83:109995. doi: 10.1016/j.cellsig.2021.109995.
  • Apollonova V, Plevako D, Garanin A, et al. Resistance of breast cancer cells to paclitaxel is associated with low expressions of miRNA-186 and miRNA-7. Cancer Drug Resist. 2023;6(3):596–610. doi: 10.20517/cdr.2023.19.
  • Huang Z, Xu Y, Wan M, et al. miR-340: a multifunctional role in human malignant diseases. Int J Biol Sci. 2021;17(1):236–246. doi: 10.7150/ijbs.51123.
  • Lin N, Li W, Wang X, et al. Upregulation of miR-340 inhibits tumor growth and mesenchymal transition via targeting c-MET in glioblastoma. Cancer Manag Res. 2020;12:3343–3352. doi: 10.2147/CMAR.S250772.
  • Kashefi S, Mohammadi-Yeganeh S, Ghorbani-Bidkorpeh F, et al. Anti-cancer effects of a chitosan based nanoformulation expressing miR-340 on 4T1 breast cancer cells. J Pharm Sci. 2024;113(2):445–454. doi: 10.1016/j.xphs.2023.10.006.
  • Gupta A, Andresen JL, Manan RS, et al. Nucleic acid delivery for therapeutic applications. Adv Drug Deliv Rev. 2021;178:113834. doi: 10.1016/j.addr.2021.113834.
  • Zu H, Gao D. Non-viral vectors in gene therapy: recent development, challenges, and prospects. Aaps J. 2021;23(4):78. doi: 10.1208/s12248-021-00608-7.
  • Chuan D, Jin T, Fan R, et al. Chitosan for gene delivery: methods for improvement and applications. Adv Coll Interface Sci. 2019;268:25–38. doi: 10.1016/j.cis.2019.03.007.
  • Sharma DK, Pattnaik G, Behera A. Recent developments in nanoparticles for the treatment of diabetes. J Drug Target. 2023;31(9):908–919. doi: 10.1080/1061186X.2023.2261077.
  • Nyamay’Antu A, Dumont M, Kedinger V, et al. Non-viral vector mediated gene delivery: the outsider to watch out for in gene therapy. Cell Gene Ther Insights. 2019;5(S1):51–57.
  • Safarzadeh M, Mohammadi-Yeganeh S, Ghorbani-Bidkorbeh F, et al. Chitosan based nanoformulation expressing miR-155 as a promising adjuvant to enhance Th1-biased immune responses. Life Sci. 2022;297:120459. doi: 10.1016/j.lfs.2022.120459.
  • Adhikari HS, Yadav PN. Anticancer activity of chitosan, chitosan derivatives, and their mechanism of action. Int J Biomater. 2018;2018:2952085–2952029. doi: 10.1155/2018/2952085.
  • Salehi F, Behboudi H, Kavoosi G, et al. Chitosan promotes ROS-mediated apoptosis and S phase cell cycle arrest in triple-negative breast cancer cells: evidence for intercalative interaction with genomic DNA. RSC Adv. 2017;7(68):43141–43150. doi: 10.1039/C7RA06793C.
  • Metwaly AM, Abu-Saied MA, Gobaara IM, et al. Nicotinamide loaded chitosan nanocomplex shows improved anticancer potential: molecular docking, synthesis, characterization and in vitro evaluations. Curr Organ Chem. 2024;28(1):46–55. doi: 10.2174/0113852728283226231227061211.
  • Razavipour SF, Harikumar KB, Slingerland JM. p27 as a transcriptional regulator: new roles in development and cancer. Cancer Res. 2020;80(17):3451–3458. doi: 10.1158/0008-5472.CAN-19-3663.
  • Mohanty AK, Choudhary S, Kaushik JK, et al. Crystal structure of breast regression protein 39 (BRP39), a signaling glycoprotein expressed during mammary gland apoptosis, at 2.6 Å resolution. J Struct Biol. 2021;213(2):107737. doi: 10.1016/j.jsb.2021.107737.
  • Skytthe MK, Graversen JH, Moestrup SK. Targeting of CD163+ macrophages in inflammatory and malignant diseases. Int J Mol Sci. 2020;21(15):5497. doi: 10.3390/ijms21155497.
  • Huang C-Y, Ye Z-H, Huang M-Y, et al. Regulation of CD47 expression in cancer cells. Transl Oncol. 2020;13(12):100862. doi: 10.1016/j.tranon.2020.100862.
  • Piazzon MC, Lutfalla G, Forlenza M. IL10, a tale of an evolutionarily conserved cytokine across vertebrates. Crit Rev Immunol. 2016;36(2):99–129. doi: 10.1615/CritRevImmunol.2016017480.
  • Greiner JW, Morillon YM, Schlom J. NHS-IL12, a tumor-targeting immunocytokine. Immunotarget Ther. 2021;10:155–169. doi: 10.2147/ITT.S306150.
  • Otmani K, Lewalle P. Tumor suppressor miRNA in cancer cells and the tumor microenvironment: mechanism of deregulation and clinical implications. Front Oncol. 2021;11:708765. doi: 10.3389/fonc.2021.708765.
  • Yousuf T, Dar SB, Bangri SA, et al. Diagnostic implication of a circulating serum-based three-microRNA signature in hepatocellular carcinoma. Front Genet. 2022;13:929787. doi: 10.3389/fgene.2022.929787.
  • Kim ES, Choi YE, Hwang SJ, et al. IL-4, a direct target of miR-340/429, is involved in radiation-induced aggressive tumor behavior in human carcinoma cells. Oncotarget. 2016;7(52):86836–86856. doi: 10.18632/oncotarget.13561.
  • Xiao C, Hong H, Yu H, et al. MiR-340 affects gastric cancer cell proliferation, cycle, and apoptosis through regulating SOCS3/JAK-STAT signaling pathway. Immunopharmacol Immunotoxicol. 2018;40(4):278–283. doi: 10.1080/08923973.2018.1455208.
  • Zhao P, Ma W, Hu Z, et al. Up-regulation of miR-340-5p promotes progression of thyroid cancer by inhibiting BMP4. J Endocrinol Invest. 2018;41(10):1165–1172. doi: 10.1007/s40618-018-0848-6.
  • Desai N, Rana D, Salave S, et al. Chitosan: a potential biopolymer in drug delivery and biomedical applications. Pharmaceutics. 2023;15(4):1313. doi: 10.3390/pharmaceutics15041313.
  • Gagliardi A, Giuliano E, Venkateswararao E, et al. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front Pharmacol. 2021;12:601626. doi: 10.3389/fphar.2021.601626.
  • Bashir SM, Ahmed Rather G, Patrício A, et al. Chitosan nanoparticles: a versatile platform for biomedical applications. Materials. 2022;15(19):6521. doi: 10.3390/ma15196521.
  • Lima BV, Oliveira MJ, Barbosa MA, et al. Immunomodulatory potential of chitosan-based materials for cancer therapy: a systematic review of in vitro, in vivo and clinical studies. Biomater Sci. 2021;9(9):3209–3227. doi: 10.1039/d0bm01984d.
  • Vo JL, Yang L, Kurtz SL, et al. Neoadjuvant immunotherapy with chitosan and interleukin-12 to control breast cancer metastasis. Oncoimmunology. 2014;3(12):e968001. doi: 10.4161/21624011.2014.968001.
  • Chu X-Y, Huang W, Wang Y-L, et al. Improving antitumor outcomes for palliative intratumoral injection therapy through lecithin–chitosan nanoparticles loading paclitaxel–cholesterol complex. Int J Nanomed. 2019;14:689–705. doi: 10.2147/IJN.S188667.
  • Boix-Montesinos P, Soriano-Teruel PM, Arminan A, et al. The past, present, and future of breast cancer models for nanomedicine development. Adv Drug Deliv Rev. 2021;173:306–330. doi: 10.1016/j.addr.2021.03.018.
  • Fernandez S, Risolino M, Mandia N, et al. miR-340 inhibits tumor cell proliferation and induces apoptosis by targeting multiple negative regulators of p27 in non-small cell lung cancer. Oncogene. 2015;34(25):3240–3250. doi: 10.1038/onc.2014.267.
  • Komohara Y, Kurotaki D, Tsukamoto H, et al. Involvement of protumor macrophages in breast cancer progression and characterization of macrophage phenotypes. Cancer Sci. 2023;114(6):2220–2229. doi: 10.1111/cas.15751.
  • Erlandsson A, Carlsson J, Lundholm M, et al. M2 macrophages and regulatory T cells in lethal prostate cancer. Prostate. 2019;79(4):363–369. doi: 10.1002/pros.23742.
  • Jamiyan T, Kuroda H, Yamaguchi R, et al. CD68-and CD163-positive tumor-associated macrophages in triple negative cancer of the breast. Virchows Arch. 2020;477(6):767–775. doi: 10.1007/s00428-020-02855-z.
  • Cohen N, Shani O, Raz Y, et al. Fibroblasts drive an immunosuppressive and growth-promoting microenvironment in breast cancer via secretion of chitinase 3-like 1. Oncogene. 2017;36(31):4457–4468. doi: 10.1038/onc.2017.65.
  • Richer J, Spoelstra N, Williams M, et al. OR30-5 androgen-regulated secreted factors promote tumorigenesis and immune suppression in breast cancer. J Endocr Soc. 2022;6(Supplement_1):A883–A883. doi: 10.1210/jendso/bvac150.1828.
  • Libreros S, Garcia-Areas R, Shibata Y, et al. Induction of proinflammatory mediators by CHI3L1 is reduced by chitin treatment: decreased tumor metastasis in a breast cancer model. Int J Cancer. 2012;131(2):377–386. doi: 10.1002/ijc.26379.
  • Oronsky B, Carter C, Reid T, Brinkhaus F, Knox SJ, editors. Just eat it: a review of CD47 and SIRP-α antagonism. Semin Oncol. 2020;0093775447(2–3):117–124. doi: 10.1053/j.seminoncol.2020.05.009.
  • Xi Q, Zhang J, Yang G, et al. Restoration of miR-340 controls pancreatic cancer cell CD47 expression to promote macrophage phagocytosis and enhance antitumor immunity. J Immunother Cancer. 2020;8(1):e000253. doi: 10.1136/jitc-2019-000253.
  • Huang X, Cao J, Zu X. Tumor-associated macrophages: an important player in breast cancer progression. Thorac Cancer. 2022;13(3):269–276. doi: 10.1111/1759-7714.14268.
  • Mirlekar B. Tumor promoting roles of IL-10, TGF-β, IL-4, and IL-35: its implications in cancer immunotherapy. SAGE Open Med. 2022;10:20503121211069012. doi: 10.1177/20503121211069012.
  • Cirella A, Luri-Rey C, Di Trani CA, et al. Novel strategies exploiting interleukin-12 in cancer immunotherapy. Pharmacol Ther. 2022;239:108189. doi: 10.1016/j.pharmthera.2022.108189.
  • Mortezaee K, Majidpoor J. Roles for macrophage-polarizing interleukins in cancer immunity and immunotherapy. Cell Oncol. 2022;45(3):333–353. doi: 10.1007/s13402-022-00667-8.
  • Chen Y, Song Y, Du W, et al. Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci. 2019;26(1):78. doi: 10.1186/s12929-019-0568-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.