1
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exosomes Derived from Cancer Cells Relieve Inflammatory Bowel Disease in Mice

, , , , , , , & show all
Received 07 May 2024, Accepted 13 Jun 2024, Accepted author version posted online: 19 Jun 2024
Accepted author version

References

  • Abraham C, Cho JH. Inflammatory Bowel Disease. N Engl J Med. 2009;361(21):2066-2078. doi: 10.1056/NEJMra0804647.
  • Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol. 2010;28:573-621. doi: 10.1146/annurev-immunol-030409-101225.
  • Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142(1):46-54.e42; quiz e30. doi: 10.1053/j.gastro.2011.10.001.
  • Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature. 2011;474(7351):298-306. doi: 10.1038/nature10208.
  • Baumgart DC, Le Berre C. Newer Biologic and Small-Molecule Therapies for Inflammatory Bowel Disease. N Engl J Med. 2021;385(14):1302-1315. doi: 10.1056/NEJMra1907607.
  • Lu Q, Yang MF, Liang YJ, et al. Immunology of Inflammatory Bowel Disease: Molecular Mechanisms and Therapeutics. Journal of Inflammation Research. 2022;15:1825-1844. doi: 10.2147/JIR.S353038.
  • Danese S. New therapies for inflammatory bowel disease: from the bench to the bedside. Gut. 2012;61(6):918-932. doi: 10.1136/gutjnl-2011-300904.
  • Kaplan GG. The global burden of IBD: from 2015 to 2025. Nat Rev Gastro Hepat. 2015;12(12):720-727. doi: 10.1038/nrgastro.2015.150.
  • Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science (New York, NY). 2020;367(6478):eaau6977. doi: 10.1126/science.aau6977.
  • Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255-289. doi: 10.1146/annurev-cellbio-101512-122326.
  • Fang Y, Ni J, Wang YS, et al. Exosomes as biomarkers and therapeutic delivery for autoimmune diseases: Opportunities and challenges. Autoimmun Rev. Published online December 21, 2022:103260. doi: 10.1016/j.autrev.2022.103260.
  • Cao L, Xu H, Wang G, Liu M, Tian D, Yuan Z. Extracellular vesicles derived from bone marrow mesenchymal stem cells attenuate dextran sodium sulfate-induced ulcerative colitis by promoting M2 macrophage polarization. Int Immunopharmacol. 2019;72:264-274. doi: 10.1016/j.intimp.2019.04.020.
  • Mao F, Wu Y, Tang X, et al. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Inflammatory Bowel Disease in Mice. BioMed Research International. 2017;2017:5356760. doi: 10.1155/2017/5356760.
  • Yang S, Liang X, Song J, et al. A novel therapeutic approach for inflammatory bowel disease by exosomes derived from human umbilical cord mesenchymal stem cells to repair intestinal barrier via TSG-6. Stem Cell Res Ther. 2021;12(1):315. doi: 10.1186/s13287-021-02404-8.
  • Wei Z, Hang S, Wiredu Ocansey DK, et al. Human umbilical cord mesenchymal stem cells derived exosome shuttling mir-129-5p attenuates inflammatory bowel disease by inhibiting ferroptosis. Journal of Nanobiotechnology. 2023;21(1):188. doi: 10.1186/s12951-023-01951-x.
  • Yang R, Liao Y, Wang L, et al. Exosomes Derived From M2b Macrophages Attenuate DSS-Induced Colitis. Front Immunol. 2019;10. doi: 10.3389/fimmu.2019.02346.
  • Yang X, Meng S, Jiang H, Chen T, Wu W. Exosomes derived from interleukin-10-treated dendritic cells can inhibit trinitrobenzene sulfonic acid-induced rat colitis. Scand J Gastroenterol. 2010;45(10):1168-1177. doi: 10.3109/00365521.2010.490596.
  • Okoye IS, Coomes SM, Pelly VS, et al. MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity. 2014;41(1):89-103. doi: 10.1016/j.immuni.2014.05.019.
  • Liu C, Yan X, Zhang Y, et al. Oral administration of turmeric-derived exosome-like nanovesicles with anti-inflammatory and pro-resolving bioactions for murine colitis therapy. Journal of Nanobiotechnology. 2022;20(1):206. doi: 10.1186/s12951-022-01421-w.
  • Zhu MZ, Xu HM, Liang YJ, et al. Edible exosome-like nanoparticles from portulaca oleracea L mitigate DSS-induced colitis via facilitating double-positive CD4 + CD8 + T cells expansion. J Nanobiotechnology. 2023;21(1):309. doi: 10.1186/s12951-023-02065-0.
  • Whiteside TL. Exosomes carrying immunoinhibitory proteins and their role in cancer. Clin Exp Immunol. 2017;189(3):259-267. doi: 10.1111/cei.12974.
  • Chen G, Huang AC, Zhang W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018;560(7718):382-386. doi: 10.1038/s41586-018-0392-8.
  • Poggio M, Hu T, Pai CC, et al. Suppression of Exosomal PD-L1 Induces Systemic Anti-tumor Immunity and Memory. Cell. 2019;177(2):414-427.e13. doi: 10.1016/j.cell.2019.02.016.
  • Kim JW, Wieckowski E, Taylor DD, Reichert TE, Watkins S, Whiteside TL. Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research. 2005;11(3):1010-1020.
  • Clayton A, Mitchell JP, Court J, Mason MD, Tabi Z. Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Res. 2007;67(15):7458-7466. doi: 10.1158/0008-5472.CAN-06-3456.
  • Dd T, C GT. Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. British journal of cancer. 2005;92(2). doi: 10.1038/sj.bjc.6602316.
  • Muller L, Mitsuhashi M, Simms P, Gooding WE, Whiteside TL. Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets. Sci Rep. 2016;6(1):20254. doi: 10.1038/srep20254.
  • Whiteside TL. The effect of tumor-derived exosomes on immune regulation and cancer immunotherapy. Future Oncol. 2017;13(28):2583-2592. doi: 10.2217/fon-2017-0343.
  • Bolandi Z, Mokhberian N, Eftekhary M, et al. Adipose derived mesenchymal stem cell exosomes loaded with miR-10a promote the differentiation of Th17 and Treg from naive CD4+ T cell. Life Sci. 2020;259:118218. doi: 10.1016/j.lfs.2020.118218.
  • Zitvogel L, Regnault A, Lozier A, et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med. 1998;4(5):594-600. doi: 10.1038/nm0598-594.
  • Romagnoli GG, Zelante BB, Toniolo PA, Migliori IK, Barbuto JAM. Dendritic Cell-Derived Exosomes may be a Tool for Cancer Immunotherapy by Converting Tumor Cells into Immunogenic Targets. Front Immunol. 2014;5:692. doi: 10.3389/fimmu.2014.00692.
  • Ning Y, Shen K, Wu Q, et al. Tumor exosomes block dendritic cells maturation to decrease the T cell immune response. Immunol Lett. 2018;199:36-43. doi: 10.1016/j.imlet.2018.05.002.
  • Luo S, Chen J, Xu F, Chen H, Li Y, Li W. Dendritic Cell-Derived Exosomes in Cancer Immunotherapy. Pharmaceutics. 2023;15(8):2070. doi: 10.3390/pharmaceutics15082070.
  • Liu H, Chen L, Peng Y, et al. Dendritic cells loaded with tumor derived exosomes for cancer immunotherapy. Oncotarget. 2018;9(2):2887-2894. doi: 10.18632/oncotarget.20812.
  • Voedisch S, Koenecke C, David S, et al. Mesenteric lymph nodes confine dendritic cell-mediated dissemination of Salmonella enterica serovar Typhimurium and limit systemic disease in mice. Infect Immun. 2009;77(8):3170-3180. doi: 10.1128/IAI.00272-09.
  • Macpherson AJ, Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science. 2004;303(5664):1662-1665. doi: 10.1126/science.1091334.
  • Siddiqui KRR, Laffont S, Powrie F. E-Cadherin Marks a Subset of Inflammatory Dendritic Cells that Promote T Cell-Mediated Colitis. Immunity. 2010;32(4):557-567. doi: 10.1016/j.immuni.2010.03.017.
  • Cai Z, Zhang W, Li M, et al. TGF-beta1 gene-modified, immature dendritic cells delay the development of inflammatory bowel disease by inducing CD4(+)Foxp3(+) regulatory T cells. Cell Mol Immunol. 2010;7(1):35-43. doi: 10.1038/cmi.2009.107.
  • Théry C, Amigorena S, Raposo G, Clayton A. Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids. Current Protocols in Cell Biology. 2006;30(1). doi: 10.1002/0471143030.cb0322s30.
  • Roda G, Chien Ng S, Kotze PG, et al. Crohn’s disease. Nature Reviews Disease Primers. 2020;6(1):22. doi: 10.1038/s41572-020-0156-2.
  • Cosnes J, Gower-Rousseau C, Seksik P, Cortot A. Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology. 2011;140(6):1785-1794. doi: 10.1053/j.gastro.2011.01.055.
  • Mosli MH, Feagan BG, Sandborn WJ, et al. Histologic evaluation of ulcerative colitis: a systematic review of disease activity indices. Inflamm Bowel Dis. 2014;20(3):564-575. doi: 10.1097/01.MIB.0000437986.00190.71.
  • Yan JB, Luo MM, Chen ZY, He BH. The Function and Role of the Th17/Treg Cell Balance in Inflammatory Bowel Disease. Journal of Immunology Research. 2020;2020:8813558. doi: 10.1155/2020/8813558.
  • Acharya S, Timilshina M, Jiang L, et al. Amelioration of Experimental autoimmune encephalomyelitis and DSS induced colitis by NTG-A-009 through the inhibition of Th1 and Th17 cells differentiation. Sci Rep. 2018;8(1):7799. doi: 10.1038/s41598-018-26088-y.
  • Omenetti S, Pizarro TT. The Treg/Th17 Axis: A Dynamic Balance Regulated by the Gut Microbiome. Front Immunol. 2015;6:639. doi: 10.3389/fimmu.2015.00639.
  • Coombes JL, Powrie F. Dendritic cells in intestinal immune regulation. Nat Rev Immunol. 2008;8(6):435-446. doi: 10.1038/nri2335.
  • Hart AL, Al-Hassi HO, Rigby RJ, et al. Characteristics of intestinal dendritic cells in inflammatory bowel diseases. Gastroenterology. 2005;129(1):50-65. doi: 10.1053/j.gastro.2005.05.013.
  • Jiang P, Zheng C, Xiang Y, et al. The involvement of TH17 cells in the pathogenesis of IBD. Cytokine Growth Factor Rev. 2023;69:28-42. doi: 10.1016/j.cytogfr.2022.07.005.
  • Britton GJ, Contijoch EJ, Mogno I, et al. Microbiotas from Humans with Inflammatory Bowel Disease Alter the Balance of Gut Th17 and RORγt + Regulatory T Cells and Exacerbate Colitis in Mice. Immunity. 2019;50(1):212-224.e4. doi: 10.1016/j.immuni.2018.12.015.
  • Chen QH, Wu F, Liu L, et al. Mesenchymal stem cells regulate the Th17/Treg cell balance partly through hepatocyte growth factor in vitro. Stem Cell Res Ther. 2020;11(1):91. doi: 10.1186/s13287-020-01612-y.
  • Globig AM, Hennecke N, Martin B, et al. Comprehensive intestinal T helper cell profiling reveals specific accumulation of IFN-γ + IL-17 + coproducing CD4+ T cells in active inflammatory bowel disease. Inflamm Bowel Dis. 2014;20(12):2321-2329. doi: 10.1097/MIB.0000000000000210.
  • Fujino S, Andoh A, Bamba S, et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 2003;52(1):65-70. doi: 10.1136/gut.52.1.65.
  • Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30(6):492-506. doi: 10.1038/s41422-020-0332-7.
  • Lee JY, Hall JA, Kroehling L, et al. Serum Amyloid A Proteins Induce Pathogenic Th17 Cells and Promote Inflammatory Disease. Cell. 2020;180(1):79-91.e16. doi: 10.1016/j.cell.2019.11.026.
  • Moschen AR, Tilg H, Raine T. IL-12, IL-23 and IL-17 in IBD: immunobiology and therapeutic targeting. Nature Reviews Gastroenterology & Hepatology. 2019;16(3):185-196. doi: 10.1038/s41575-018-0084-8.
  • Brombacher F, Kastelein RA, Alber G. Novel IL-12 family members shed light on the orchestration of Th1 responses. Trends Immunol. 2003;24(4):207-212. doi: 10.1016/s1471-4906(03)00067-x.
  • Cooper AM, Khader SA. IL-12p40: an inherently agonistic cytokine. Trends Immunol. 2007;28(1):33-38. doi: 10.1016/j.it.2006.11.002.
  • Wada Y, Lu R, Zhou D, et al. Selective abrogation of Th1 response by STA-5326, a potent IL-12/IL-23 inhibitor. Blood. 2007;109(3):1156-1164. doi: 10.1182/blood-2006-04-019398.
  • Kaiga T, Sato M, Kaneda H, Iwakura Y, Takayama T, Tahara H. Systemic administration of IL-23 induces potent antitumor immunity primarily mediated through Th1-type response in association with the endogenously expressed IL-12. J Immunol. 2007;178(12):7571-7580. doi: 10.4049/jimmunol.178.12.7571.
  • Kim DJ, Kim KS, Song MY, et al. Delivery of IL-12p40 ameliorates DSS-induced colitis by suppressing IL-17A expression and inflammation in the intestinal mucosa. Clinical Immunology (Orlando, Fla). 2012;144(3):190-199. doi: 10.1016/j.clim.2012.06.009.
  • Toh ML, Kawashima M, Hot A, Miossec P, Miossec P. Role of IL-17 in the Th1 systemic defects in rheumatoid arthritis through selective IL-12Rbeta2 inhibition. Ann Rheum Dis. 2010;69(8):1562-1567. doi: 10.1136/ard.2009.111757.
  • Wu C, Yosef N, Thalhamer T, et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature. 2013;496(7446):513-517. doi: 10.1038/nature11984.
  • D’Haens GR, van Deventer S. 25 years of anti-TNF treatment for inflammatory bowel disease: lessons from the past and a look to the future. Gut. 2021;70(7):1396-1405. doi: 10.1136/gutjnl-2019-320022.
  • Hanauer SB, Sandborn WJ, Feagan BG, et al. IM-UNITI: Three-year Efficacy, Safety, and Immunogenicity of Ustekinumab Treatment of Crohn’s Disease. Journal of Crohn’s & Colitis. 2020;14(1):23-32. doi: 10.1093/ecco-jcc/jjz110.
  • Sandborn WJ, Ghosh S, Panes J, et al. A phase 2 study of tofacitinib, an oral Janus kinase inhibitor, in patients with Crohn’s disease. Clinical Gastroenterology and Hepatology: The Official Clinical Practice Journal of the American Gastroenterological Association. 2014;12(9):1485-1493.e2. doi: 10.1016/j.cgh.2014.01.029.
  • Sands BE, Feagan BG, Sandborn WJ, et al. Mongersen (GED-0301) for Active Crohn’s Disease: Results of a Phase 3 Study. Am J Gastroenterol. 2020;115(5):738-745. doi: 10.14309/ajg.0000000000000493.
  • Danese S, Neurath MF, Kopoń A, et al. Effects of Apremilast, an Oral Inhibitor of Phosphodiesterase 4, in a Randomized Trial of Patients With Active Ulcerative Colitis. Clinical Gastroenterology and Hepatology: The Official Clinical Practice Journal of the American Gastroenterological Association. 2020;18(11):2526-2534.e9. doi: 10.1016/j.cgh.2019.12.032.
  • Rakshit T, Pal S. Extracellular Vesicles for Drug Delivery and Theranostics In Vivo. JACS Au. 2024;4(2):318-327. doi: 10.1021/jacsau.3c00611.
  • Yokoyama W. Production of Monoclonal Antibodies. Current Protocols in Cell Biology. 1999;3. doi: 10.1002/0471143030.cb1601s03.
  • Parray H, Shukla S, Samal S, et al. Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives. Int Immunopharmacol. 2020;85:106639-106639. doi: 10.1016/j.intimp.2020.106639.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.