0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Smart nanocarriers for enzyme-activated prodrug therapy

, , &
Received 18 Mar 2024, Accepted 17 Jul 2024, Accepted author version posted online: 24 Jul 2024
Accepted author version

References

  • A.D. Ross, G. Varghese, B. Oporto, F.J. Carmichael, Y. Israel, Effect of propylthiouracil treatment on NADPH-cytochrome P450 reductase levels, oxygen consumption and hydroxyl radical formation in liver microsomes from rats fed ethanol or acetone chronically, Biochem. Pharmacol. 49 (1995) 979–989. doi: 10.1016/0006-2952.(95)00007-m.
  • P.-A. Burnouf, Y.-L. Leu, Y.-C. Su, K. Wu, W.-C. Lin, S.R. Roffler, Reversible glycosidic switch for secure delivery of molecular nanocargos, Nat. Commun. 9 (2018) 1843. doi: 10.1038/s41467-018-04225-5.
  • K.J. Isaacson, M. Martin Jensen, N.B. Subrahmanyam, H. Ghandehari, Matrix-metalloproteinases as targets for controlled delivery in cancer: An analysis of upregulation and expression, J. Control. Release Off. J. Control. Release Soc. 259 (2017) 62–75. doi: 10.1016/j.jconrel.2017.01.034.
  • M. Hosokawa, Structure and catalytic properties of carboxylesterase isozymes involved in metabolic activation of prodrugs, Mol. Basel Switz. 13 (2008) 412–431. doi: 10.3390/molecules13020412.
  • S. Sheikh, D. Ernst, A. Keating, Prodrugs and prodrug-activated systems in gene therapy, Mol. Ther. 29 (2021) 1716–1728. doi: 10.1016/j.ymthe.2021.04.006.
  • M. De La Fuente, L. Lombardero, A. Gómez-González, C. Solari, I. Angulo-Barturen, A. Acera, E. Vecino, E. Astigarraga, G. Barreda-Gómez, Enzyme Therapy: Current Challenges and Future Perspectives, Int. J. Mol. Sci. 22 (2021) 9181. doi: 10.3390/ijms22179181.
  • K.V. Nemani, R.C. Ennis, K.E. Griswold, B. Gimi, Magnetic nanoparticle hyperthermia induced cytosine deaminase expression in microencapsulated E. coli for enzyme–prodrug therapy, J. Biotechnol. 203 (2015) 32–40. doi: 10.1016/j.jbiotec.2015.03.008.
  • K. Bagshawe, C. Springer, F. Searle, P. Antoniw, S. Sharma, R. Melton, R. Sherwood, A cytotoxic agent can be generated selectively at cancer sites, Br. J. Cancer 58 (1988) 700–703. doi: 10.1038/bjc.1988.293.
  • E. Appel, A. Rabinkov, M. Neeman, F. Kohen, D. Mirelman, Conjugates of daidzein-alliinase as a targeted pro-drug enzyme system against ovarian carcinoma, J. Drug Target. 19 (2011) 326–335. doi: 10.3109/1061186X.2010.504265.
  • N.P. Minton, M.L. Mauchline, M.J. Lemmon, J.K. Brehm, M. Fox, N.P. Michael, A. Giaccia, J.M. Brown, Chemotherapeutic tumour targeting using clostridial spores, FEMS Microbiol. Rev. 17 (1995) 357–364. doi: 10.1111/j.1574-6976.1995.tb00219.x.
  • S.A. Rosenberg, P. Aebersold, K. Cornetta, A. Kasid, R.A. Morgan, R. Moen, E.M. Karson, M.T. Lotze, J.C. Yang, S.L. Topalian, M.J. Merino, K. Culver, A.D. Miller, R.M. Blaese, W.F. Anderson, Gene Transfer into Humans — Immunotherapy of Patients with Advanced Melanoma, Using Tumor-Infiltrating Lymphocytes Modified by Retroviral Gene Transduction, N. Engl. J. Med. 323 (1990) 570–578. doi: 10.1056/NEJM199008303230904.
  • V.V. Gwenin, C.D. Gwenin, M. Kalaji, Colloidal gold modified with a genetically engineered nitroreductase: toward a novel enzyme delivery system for cancer prodrug therapy, Langmuir ACS J. Surf. Colloids 27 (2011) 14300–14307. doi: 10.1021/la202951p.
  • R. Dhankhar, V. Gupta, S. Kumar, R.K. Kapoor, P. Gulati, Microbial enzymes for deprivation of amino acid metabolism in malignant cells: biological strategy for cancer treatment, Appl. Microbiol. Biotechnol. 104 (2020) 2857–2869. doi: 10.1007/s00253-020-10432-2.
  • R. Mooney, A. Abdul Majid, J. Batalla, A.J. Annala, K.S. Aboody, Cell-mediated enzyme prodrug cancer therapies, Adv. Drug Deliv. Rev. 118 (2017) 35–51. doi: 10.1016/j.addr.2017.09.003.
  • P. Lehouritis, C. Springer, M. Tangney, Bacterial-directed enzyme prodrug therapy, J. Control. Release Off. J. Control. Release Soc. 170 (2013) 120–131. doi: 10.1016/j.jconrel.2013.05.005.
  • N. Schellmann, P.M. Deckert, D. Bachran, H. Fuchs, C. Bachran, Targeted enzyme prodrug therapies, Mini Rev. Med. Chem. 10 (2010) 887–904. doi: 10.2174/138955710792007196.
  • Y. Wang, C. Wang, K. Li, X. Song, X. Yan, L. Yu, Z. He, Recent advances of nanomedicine-based strategies in diabetes and complications management: Diagnostics, monitoring, and therapeutics, J. Controlled Release 330 (2021) 618–640. doi: 10.1016/j.jconrel.2021.01.002.
  • E.-L. Chang, C.-Y. Ting, P.-H. Hsu, Y.-C. Lin, E.-C. Liao, C.-Y. Huang, Y.-C. Chang, H.-L. Chan, C.-S. Chiang, H.-L. Liu, K.-C. Wei, C.-H. Fan, C.-K. Yeh, Angiogenesis-targeting microbubbles combined with ultrasound-mediated gene therapy in brain tumors, J. Controlled Release 255 (2017) 164–175. doi: 10.1016/j.jconrel.2017.04.010.
  • M. Wu, W. Chen, Y. Chen, H. Zhang, C. Liu, Z. Deng, Z. Sheng, J. Chen, X. Liu, F. Yan, H. Zheng, Focused Ultrasound‐Augmented Delivery of Biodegradable Multifunctional Nanoplatforms for Imaging‐Guided Brain Tumor Treatment, Adv. Sci. 5 (2018) 1700474. doi: 10.1002/advs.201700474.
  • M.-H. Chan, W. Chen, C.-H. Li, C.-Y. Fang, Y.-C. Chang, D.-H. Wei, R.-S. Liu, M. Hsiao, An Advanced In Situ Magnetic Resonance Imaging and Ultrasonic Theranostics Nanocomposite Platform: Crossing the Blood–Brain Barrier and Improving the Suppression of Glioblastoma Using Iron-Platinum Nanoparticles in Nanobubbles, ACS Appl. Mater. Interfaces 13 (2021) 26759–26769. doi: 10.1021/acsami.1c04990.
  • R.A. Silverstein, E. González De Valdivia, N. Visa, The Incorporation of 5-Fluorouracil into RNA Affects the Ribonucleolytic Activity of the Exosome Subunit Rrp6, Mol. Cancer Res. 9 (2011) 332–340. doi: 10.1158/1541-7786.MCR-10-0084.
  • S.M. Stribbling, J. Martin, R.B. Pedley, J.A. Boden, S.K. Sharma, C.J. Springer, Biodistribution of an antibody-enzyme conjugate for antibody-directed enzyme prodrug therapy in nude mice bearing a human colon adenocarcinoma xenograft, Cancer Chemother. Pharmacol. 40 (1997) 277–284. doi: 10.1007/s002800050659.
  • F.L. Moolten, J.M. Wells, Curability of Tumors Bearing Herpes Thymidine Kinase Genes Transfered by Retroviral Vectors, JNCI J. Natl. Cancer Inst. 82 (1990) 297–300. doi: 10.1093/jnci/82.4.297.
  • D. Craperi, J.-M. Vicat, M.-F. Nissou, J. Mathieu, J. Baudier, A.L. Benabid, J.-M. Verna, Increased Bax Expression Is Associated with Cell Death Induced by Ganciclovir in a Herpes Thymidine Kinase Gene-Expressing Glioma Cell Line, Hum. Gene Ther. 10 (1999) 679–688. doi: 10.1089/10430349950018751.
  • P.A. Robe, F. Princen, D. Martin, B. Malgrange, A. Stevenaert, G. Moonen, J. Gielen, M.-P. Merville, V. Bours, Pharmacological modulation of the bystander effect in the herpes simplex virus thymidine kinase/ganciclovir gene therapy system, Biochem. Pharmacol. 60 (2000) 241–249. doi: 10.1016/S0006-2952.(00)00315-4.
  • H. Chen, G.P. Beardsley, D.M. Coen, Mechanism of ganciclovir-induced chain termination revealed by resistant viral polymerase mutants with reduced exonuclease activity, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 17462–17467. doi: 10.1073/pnas.1405981111.
  • I.V. Alekseenko, E.V. Snezhkov, I.P. Chernov, V.V. Pleshkan, V.K. Potapov, A.V. Sass, G.S. Monastyrskaya, E.P. Kopantzev, T.V. Vinogradova, Y.V. Khramtsov, A.V. Ulasov, A.A. Rosenkranz, A.S. Sobolev, O.A. Bezborodova, A.D. Plyutinskaya, E.R. Nemtsova, R.I. Yakubovskaya, E.D. Sverdlov, Therapeutic properties of a vector carrying the HSV thymidine kinase and GM-CSF genes and delivered as a complex with a cationic copolymer, J. Transl. Med. 13 (2015) 78. doi: 10.1186/s12967-015-0433-0.
  • R.A. Hock, A.D. Miller, Retrovirus-mediated transfer and expression of drug resistance genes in human haematopoietic progenitor cells, Nature 320 (1986) 275–277. doi: 10.1038/320275a0.
  • V. Poletti, F. Mavilio, Designing Lentiviral Vectors for Gene Therapy of Genetic Diseases, Viruses 13 (2021) 1526. doi: 10.3390/v13081526.
  • K.A. High, M.G. Roncarolo, Gene Therapy, N. Engl. J. Med. 381 (2019) 455–464. doi: 10.1056/NEJMra1706910.
  • R.L. Thangapazham, A. Puri, S. Tele, R. Blumenthal, R.K. Maheshwari, Evaluation of a nanotechnology-based carrier for delivery of curcumin in prostate cancer cells, Int. J. Oncol. 32 (2008) 1119–1123.
  • A. Gigante, M. Li, S. Junghänel, C. Hirschhäuser, S. Knauer, C. Schmuck, Non-viral transfection vectors: are hybrid materials the way forward?, MedChemComm 10 (2019) 1692–1718. doi: 10.1039/C9MD00275H.
  • Y. Hattori, Y. Maitani, Folate-Linked Lipid-Based Nanoparticle for Targeted Gene Delivery, Curr. Drug Deliv. 2 (2005) 243–252. doi: 10.2174/1567201054368002.
  • B.A. Koechlin, F. Rubio, S. Palmer, T. Gabriel, R. Duschinsky, The metabolism of 5-fluorocytosine-214C and of cytosine-14C in the rat and the disposition of 5-fluorocytosine-214C in man, Biochem. Pharmacol. 15 (1966) 435–446. doi: 10.1016/0006-2952.(66)90254-1.
  • A. Polak, H.J. Scholer, Mode of Action of 5-Fluorocytosine and Mechanisms of Resistance, Chemotherapy 21 (1975) 113–130. doi: 10.1159/000221854.
  • M. Kilstrup, L.M. Meng, J. Neuhard, P. Nygaard, Genetic evidence for a repressor of synthesis of cytosine deaminase and purine biosynthesis enzymes in Escherichia coli, J. Bacteriol. 171 (1989) 2124–2127. doi: 10.1128/jb.171.4.2124-2127.1989.
  • C.A. Mullen, M.M. Coale, R. Lowe, R.M. Blaese, Tumors expressing the cytosine deaminase suicide gene can be eliminated in vivo with 5-fluorocytosine and induce protective immunity to wild type tumor, Cancer Res. 54 (1994) 1503–1506.
  • S. Danielsen, M. Kilstrup, K. Barilla, B. Jochimsen, J. Neuhard, Characterization of the Escherichia coli codBA operon encoding cytosine permease and cytosine deaminase, Mol. Microbiol. 6 (1992) 1335–1344. doi: 10.1111/j.1365-2958.1992.tb00854.x.
  • E. Titsworth, E. Grunberg, Chemotherapeutic Activity of 5-Fluorocytosine and Amphotericin B Against Candida albicans in Mice, Antimicrob. Agents Chemother. 4 (1973) 306–308. doi: 10.1128/AAC.4.3.306.
  • Y. Chen, J. Ye, Z. Zhu, W. Zhao, J. Zhou, C. Wu, H. Tang, M. Fan, L. Li, Q. Lin, Y. Xia, Y. Li, J. Li, H. Jia, S. Lu, Z. Zhang, K. Zhao, Comparing Paclitaxel Plus Fluorouracil Versus Cisplatin Plus Fluorouracil in Chemoradiotherapy for Locally Advanced Esophageal Squamous Cell Cancer: A Randomized, Multicenter, Phase III Clinical Trial, J. Clin. Oncol. 37 (2019) 1695–1703. doi: 10.1200/JCO.18.02122.
  • D.B. Longley, D.P. Harkin, P.G. Johnston, 5-Fluorouracil: mechanisms of action and clinical strategies, Nat. Rev. Cancer 3 (2003) 330–338. doi: 10.1038/nrc1074.
  • K. Miura, M. Kinouchi, K. Ishida, W. Fujibuchi, T. Naitoh, H. Ogawa, T. Ando, N. Yazaki, K. Watanabe, S. Haneda, C. Shibata, I. Sasaki, 5-FU Metabolism in Cancer and Orally-Administrable 5-FU Drugs, Cancers 2 (2010) 1717–1730. doi: 10.3390/cancers2031717.
  • G. Argilés, J. Tabernero, R. Labianca, D. Hochhauser, R. Salazar, T. Iveson, P. Laurent-Puig, P. Quirke, T. Yoshino, J. Taieb, E. Martinelli, D. Arnold, Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up, Ann. Oncol. 31 (2020) 1291–1305. doi: 10.1016/j.annonc.2020.06.022.
  • N. Zhang, Y. Yin, S.-J. Xu, W.-S. Chen, 5-Fluorouracil: mechanisms of resistance and reversal strategies, Mol. Basel Switz. 13 (2008) 1551–1569. doi: 10.3390/molecules13081551.
  • U. Fischer, S. Steffens, S. Frank, N.G. Rainov, K. Schulze-Osthoff, C.M. Kramm, Mechanisms of thymidine kinase/ganciclovir and cytosine deaminase/5-fluorocytosine suicide gene therapy-induced cell death in glioma cells, Oncogene 24 (2005) 1231–1243. doi: 10.1038/sj.onc.1208290.
  • A.J. Johnson, A. Ardiani, M. Sanchez-Bonilla, M.E. Black, Comparative analysis of enzyme and pathway engineering strategies for 5FC-mediated suicide gene therapy applications, Cancer Gene Ther. 18 (2011) 533–542. doi: 10.1038/cgt.2011.6.
  • L.-Y. Deng, J.-P. Wang, Z.-F. Gui, L.-Z. Shen, Antitumor activity of mutant bacterial cytosine deaminase gene for colon cancer, World J. Gastroenterol. 17 (2011) 2958–2964. doi: 10.3748/wjg.v17.i24.2958.
  • S.A. Kaliberov, J.M. Market, G.Y. Gillespie, V. Krendelchtchikova, D. Della Manna, J.C. Sellers, L.N. Kaliberova, M.E. Black, D.J. Buchsbaum, Mutation of Escherichia coli cytosine deaminase significantly enhances molecular chemotherapy of human glioma, Gene Ther. 14 (2007) 1111–1119. doi: 10.1038/sj.gt.3302965.
  • M. Fuchita, A. Ardiani, L. Zhao, K. Serve, B.L. Stoddard, M.E. Black, Bacterial Cytosine Deaminase Mutants Created by Molecular Engineering Show Improved 5-Fluorocytosine–Mediated Cell Killing In vitro and In vivo, Cancer Res. 69 (2009) 4791–4799. doi: 10.1158/0008-5472.CAN-09-0615.
  • A. Raza, V. Kohila, S.S. Ghosh, Redesigned Escherichia coli cytosine deaminase: a new facet of suicide gene therapy: Cytosine deaminase mutant in suicide gene therapy, J. Gene Med. 17 (2015) 132–139. doi: 10.1002/jgm.2831.
  • M.S. Hayden, P.S. Linsley, A.R. Wallace, H. Marquardt, D.E. Kerr, Cloning, Overexpression, and Purification of Cytosine Deaminase fromSaccharomyces cerevisiae, Protein Expr. Purif. 12 (1998) 173–184. doi: 10.1006/prep.1997.0839.
  • S. Leveille, S. Samuel, M.-L. Goulet, J. Hiscott, Enhancing VSV oncolytic activity with an improved cytosine deaminase suicide gene strategy, Cancer Gene Ther. 18 (2011) 435–443. doi: 10.1038/cgt.2011.14.
  • C. Richard, W. Duivenvoorden, D. Bourbeau, B. Massie, W. Roa, J. Yau, J. Th’ng, Sensitivity of 5-fluorouracil-resistant cancer cells to adenovirus suicide gene therapy, Cancer Gene Ther. 14 (2007) 57–65. doi: 10.1038/sj.cgt.7700980.
  • M. Tiraby, C. Cazaux, M. Baron, D. Drocourt, J.-P. Reynes, G. Tiraby, Concomitant expression of E. coli cytosine deaminase and uracil phosphoribosyltransferase improves the cytotoxicity of 5-fluorocytosine, FEMS Microbiol. Lett. 167 (1998) 41–49. doi: 10.1111/j.1574-6968.1998.tb13205.x.
  • F. Graepler, Bifunctional chimeric SuperCD suicide gene -YCD: YUPRT fusion is highly effective in a rat hepatoma model, World J. Gastroenterol. 11 (2005) 6910. doi: 10.3748/wjg.v11.i44.6910.
  • Y. Ding, J. Fan, L. Deng, B. Huang, B. Zhou, Antitumor efficacy of cytosine deaminase-armed vaccinia virus plus 5-fluorocytosine in colorectal cancers, Cancer Cell Int. 20 (2020) 243. doi: 10.1186/s12935-020-01340-6.
  • W. Liu, J. Zhang, X. Yao, C. Jiang, P. Ni, L. Cheng, J. Liu, S. Ni, Q. Chen, Q. Li, K. Zhou, G. Wang, F. Zhou, Bevacizumab‐enhanced antitumor effect of 5‐fluorouracil via upregulation of thymidine phosphorylase through vascular endothelial growth factor A/vascular endothelial growth factor receptor 2‐specificity protein 1 pathway, Cancer Sci. 109 (2018) 3294–3304. doi: 10.1111/cas.13779.
  • A. Khatri, B. Zhang, E. Doherty, J. Chapman, K. Ow, H. Pwint, R. Martiniello‐Wilks, P.J. Russell, Combination of cytosine deaminase with uracil phosphoribosyl transferase leads to local and distant bystander effects against RM1 prostate cancer in mice, J. Gene Med. 8 (2006) 1086–1096. doi: 10.1002/jgm.944.
  • A. Bzowska, E. Kulikowska, D. Shugar, Purine nucleoside phosphorylases: properties, functions, and clinical aspects, Pharmacol. Ther. 88 (2000) 349–425. doi: 10.1016/s0163-7258.(00)00097-8.
  • M. Friedkin, DESOXYRIBOSE-1-PHOSPHATE, J. Biol. Chem. 184 (1950) 449–459. doi: 10.1016/S0021-9258.(19)50973-5.
  • F. Canduri, D.M. Dos Santos, R.G. Silva, M.A. Mendes, L.A. Basso, M.S. Palma, W.F. De Azevedo, D.S. Santos, Structures of human purine nucleoside phosphorylase complexed with inosine and ddI, Biochem. Biophys. Res. Commun. 313 (2004) 907–914. doi: 10.1016/j.bbrc.2003.11.179.
  • P.J. Russell, A. Khatri, Novel gene-directed enzyme prodrug therapies against prostate cancer, Expert Opin. Investig. Drugs 15 (2006) 947–961. doi: 10.1517/13543784.15.8.947.
  • W.B. Parker, P.W. Allan, S.C. Shaddix, L.M. Rose, H.F. Speegle, G.Y. Gillespie, L.L. Bennett, Metabolism and Metabolic Actions of 6-Methylpurine and 2-Fluoroadenine in Human Cells, Biochem. Pharmacol. 55 (1998) 1673–1681. doi: 10.1016/S0006-2952.(98)00034-3.
  • E.J. Sorscher, J.S. Hong, P.W. Allan, W.R. Waud, W.B. Parker, In vivo antitumor activity of intratumoral fludarabine phosphate in refractory tumors expressing E. coli purine nucleoside phosphorylase, Cancer Chemother. Pharmacol. 70 (2012) 321–329. doi: 10.1007/s00280-012-1908-9.
  • W.B. Parker, P.W. Allan, W.R. Waud, J.S. Hong, E.J. Sorscher, Effect of expression of adenine phosphoribosyltransferase on the in vivo anti-tumor activity of prodrugs activated by E. coli purine nucleoside phosphorylase, Cancer Gene Ther. 18 (2011) 390–398. doi: 10.1038/cgt.2011.4.
  • S. Afshar, M.R. Sawaya, S.L. Morrison, Structure of a mutant human purine nucleoside phosphorylase with the prodrug, 2‐fluoro‐2′‐deoxyadenosine and the cytotoxic drug, 2‐fluoroadenine, Protein Sci. 18 (2009) 1107–1114. doi: 10.1002/pro.91.
  • S. Afshar, T. Olafsen, A.M. Wu, S.L. Morrison, Characterization of an engineered human purine nucleoside phosphorylase fused to an anti-her2/neu single chain Fv for use in ADEPT, J. Exp. Clin. Cancer Res. 28 (2009) 147. doi: 10.1186/1756-9966-28-147.
  • P.P. Singh, S. Joshi, P.J. Russell, S. Nair, A. Khatri, Purine Nucleoside Phosphorylase mediated molecular chemotherapy and conventional chemotherapy: a tangible union against chemoresistant cancer, BMC Cancer 11 (2011) 368. doi: 10.1186/1471-2407-11-368.
  • E.L. Rosenthal, T.K. Chung, W.B. Parker, P.W. Allan, L. Clemons, D. Lowman, J. Hong, F.R. Hunt, J. Richman, R.M. Conry, K. Mannion, W.R. Carroll, L. Nabell, E.J. Sorscher, Phase I dose-escalating trial of Escherichia coli purine nucleoside phosphorylase and fludarabine gene therapy for advanced solid tumors, Ann. Oncol. 26 (2015) 1481–1487. doi: 10.1093/annonc/mdv196.
  • A. Romanini, T.C. Chou, J.R. Bertino, Carboxypeptidase G2 enhances trimetrexate cytotoxicity in CCRF-cem cell lines sensitive and resistant to methotrexate, Adv. Enzyme Regul. 28 (1989) 323–333. doi: 10.1016/0065-2571.(89)90079-4.
  • A.D. Al-Qahtani, S.S. Bashraheel, F.B. Rashidi, C.D. O’Connor, A.R. Romero, A. Domling, S.K. Goda, Production of “biobetter” variants of glucarpidase with enhanced enzyme activity, Biomed. Pharmacother. 112 (2019) 108725. doi: 10.1016/j.biopha.2019.108725.
  • C.J. Springer, P. Antoniw, Bagshawe, F. Searle, G.M.F. Bisset, M. Jarman, Novel prodrugs which are activated to cytotoxic alkylating agents by carboxypeptidase G2, J. Med. Chem. 33 (1990) 677–681. doi: 10.1021/jm00164a034.
  • B.A. Teicher, E. Frei, Development of alkylating agent-resistant human tumor cell lines, Cancer Chemother. Pharmacol. 21 (1988) 292–298. doi: 10.1007/BF00264194.
  • E. Frei, B.A. Teicher, S.A. Holden, K.N. Cathcart, Y.Y. Wang, Preclinical studies and clinical correlation of the effect of alkylating dose, Cancer Res. 48 (1988) 6417–6423.
  • L.C. Davies, F. Friedlos, D. Hedley, J. Martin, L.M. Ogilvie, I.J. Scanlon, C.J. Springer, Novel fluorinated prodrugs for activation by carboxypeptidase G2 showing good in vivo antitumor activity in gene-directed enzyme prodrug therapy, J. Med. Chem. 48 (2005) 5321–5328. doi: 10.1021/jm0502182.
  • R.F. Sherwood, R.G. Melton, S.M. Alwan, P. Hughes, Purification and properties of carboxypeptidase G2 from Pseudomonas sp. strain RS-16. Use of a novel triazine dye affinity method, Eur. J. Biochem. 148 (1985) 447–453. doi: 10.1111/j.1432-1033.1985.tb08860.x.
  • N.P. Michael, K.A. Chester, R.G. Melton, L. Robson, W. Nicholas, J.A. Boden, R.B. Pedley, R.H.J. Begent, R.F. Sherwood, N.P. Minton, In vitro and in vivo characterisation of a recombinant carboxypeptidase G2::anti-CEA scFv fusion protein, Immunotechnology 2 (1996) 47–57. doi: 10.1016/1380-2933.(96)00033-4.
  • F. Friedlos, L. Davies, I. Scanlon, L.M. Ogilvie, J. Martin, S.M. Stribbling, R.A. Spooner, I. Niculescu-Duvaz, R. Marais, C.J. Springer, Three new prodrugs for suicide gene therapy using carboxypeptidase G2 elicit bystander efficacy in two xenograft models, Cancer Res. 62 (2002) 1724–1729.
  • R.A. Spooner, J. Martin, F. Friedlos, R. Marais, C.J. Springer, In suicide gene therapy, the site of subcellular localization of the activating enzyme is more important than the rate at which it activates prodrug, Cancer Gene Ther. 7 (2000) 1348–1356. doi: 10.1038/sj.cgt.7700243.
  • F.B. Rashidi, A.D. AlQhatani, S.S. Bashraheel, S. Shaabani, M.R. Groves, A. Dömling, S.K. Goda, Isolation and molecular characterization of novel glucarpidases: Enzymes to improve the antibody directed enzyme pro-drug therapy for cancer treatment, PloS One 13 (2018) e0196254. doi: 10.1371/journal.pone.0196254.
  • R.A. Spooner, F. Friedlos, K. Maycroft, S.M. Stribbling, J. Roussel, J. Brueggen, B. Stolz, T. O’Reilly, J. Wood, A. Matter, R. Marais, C.J. Springer, A novel vascular endothelial growth factor-directed therapy that selectively activates cytotoxic prodrugs, Br. J. Cancer 88 (2003) 1622–1630. doi: 10.1038/sj.bjc.6600911.
  • T. Yu, X. Li, Development of ZD2767P–carboxypeptidase G2–ultrasound therapy against cisplatin-resistant cancer, Front. Oncol. 13 (2023) 1151613. doi: 10.3389/fonc.2023.1151613.
  • E.M. Williams, R.F. Little, A.M. Mowday, M.H. Rich, J.V.E. Chan-Hyams, J.N. Copp, J.B. Smaill, A.V. Patterson, D.F. Ackerley, Nitroreductase gene-directed enzyme prodrug therapy: insights and advances toward clinical utility, Biochem. J. 471 (2015) 131–153. doi: 10.1042/BJ20150650.
  • N.A. Helsby, S.J. Wheeler, F.B. Pruijn, B.D. Palmer, S. Yang, W.A. Denny, W.R. Wilson, Effect of nitroreduction on the alkylating reactivity and cytotoxicity of the 2,4-dinitrobenzamide-5-aziridine CB 1954 and the corresponding nitrogen mustard SN 23862: distinct mechanisms of bioreductive activation, Chem. Res. Toxicol. 16 (2003) 469–478. doi: 10.1021/tx025662b.
  • R.J. Knox, F. Friedlos, M. Jarman, J.J. Roberts, A new cytotoxic, DNA interstrand crosslinking agent, 5-(aziridin-1-yl)-4-hydroxylamino-2-nitrobenzamide, is formed from 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB 1954) by a nitroreductase enzyme in walker carcinoma cells, Biochem. Pharmacol. 37 (1988) 4661–4669. doi: 10.1016/0006-2952.(88)90335-8.
  • W. Cui, B. Gusterson, A.J. Clark, Nitroreductase-mediated cell ablation is very rapid and mediated by a p53-independent apoptotic pathway, Gene Ther. 6 (1999) 764–770. doi: 10.1038/sj.gt.3300873.
  • N.K. Green, I.A. McNeish, R. Doshi, P.F. Searle, D.J. Kerr, L.S. Young, Immune enhancement of nitroreductase-induced cytotoxicity: Studies using a bicistronic adenovirus vector, Int. J. Cancer 104 (2003) 104–112. doi: 10.1002/ijc.10916.
  • G.U. Dachs, M.A. Hunt, S. Syddall, D.C. Singleton, A.V. Patterson, Bystander or no bystander for gene directed enzyme prodrug therapy, Mol. Basel Switz. 14 (2009) 4517–4545. doi: 10.3390/molecules14114517.
  • D.H. Palmer, V. Mautner, D. Mirza, S. Oliff, W. Gerritsen, J.R.M. van der Sijp, S. Hubscher, G. Reynolds, S. Bonney, R. Rajaratnam, D. Hull, M. Horne, J. Ellis, A. Mountain, S. Hill, P.A. Harris, P.F. Searle, L.S. Young, N.D. James, D.J. Kerr, Virus-directed enzyme prodrug therapy: intratumoral administration of a replication-deficient adenovirus encoding nitroreductase to patients with resectable liver cancer, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 22 (2004) 1546–1552. doi: 10.1200/JCO.2004.10.005.
  • G. Chung-Faye, D. Palmer, D. Anderson, J. Clark, M. Downes, J. Baddeley, S. Hussain, P.I. Murray, P. Searle, L. Seymour, P.A. Harris, D. Ferry, D.J. Kerr, Virus-directed, enzyme prodrug therapy with nitroimidazole reductase: a phase I and pharmacokinetic study of its prodrug, CB1954, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 7 (2001) 2662–2668.
  • P. Patel, J.G. Young, V. Mautner, D. Ashdown, S. Bonney, R.G. Pineda, S.I. Collins, P.F. Searle, D. Hull, E. Peers, J. Chester, D.M. Wallace, A. Doherty, H. Leung, L.S. Young, N.D. James, A phase I/II clinical trial in localized prostate cancer of an adenovirus expressing nitroreductase with CB1954 [correction of CB1984], Mol. Ther. J. Am. Soc. Gene Ther. 17 (2009) 1292–1299. doi: 10.1038/mt.2009.80.
  • P.M. Swe, J.N. Copp, L.K. Green, C.P. Guise, A.M. Mowday, J.B. Smaill, A.V. Patterson, D.F. Ackerley, Targeted mutagenesis of the Vibrio fischeri flavin reductase FRase I to improve activation of the anticancer prodrug CB1954, Biochem. Pharmacol. 84 (2012) 775–783. doi: 10.1016/j.bcp.2012.07.002.
  • D.C. Singleton, D. Li, S.Y. Bai, S.P. Syddall, J.B. Smaill, Y. Shen, W.A. Denny, W.R. Wilson, A.V. Patterson, The nitroreductase prodrug SN 28343 enhances the potency of systemically administered armed oncolytic adenovirus ONYX-411(NTR), Cancer Gene Ther. 14 (2007) 953–967. doi: 10.1038/sj.cgt.7701088.
  • D.C. Singleton, A.M. Mowday, C.P. Guise, S.P. Syddall, S.Y. Bai, D. Li, A. Ashoorzadeh, J.B. Smaill, W.R. Wilson, A.V. Patterson, Bioreductive prodrug PR-104 improves the tumour distribution and titre of the nitroreductase-armed oncolytic adenovirus ONYX-411NTR leading to therapeutic benefit, Cancer Gene Ther. 29 (2022) 1021–1032. doi: 10.1038/s41417-021-00409-2.
  • N.V. Anufrieva, E.A. Morozova, S.V. Revtovich, N.P. Bazhulina, V.P. Timofeev, Y.V. Tkachev, N.G. Faleev, A.D. Nikulin, T.V. Demidkina, Serine 339 in the Catalysis of γ- and β-Elimination Reactions, Acta Naturae 14 (2022) 50–61. doi: 10.32607/actanaturae.11242.
  • H. Tanaka, N. Esaki, K. Soda, Properties of L-methionine γ-lyase from Pseudomonas ovalis, Biochemistry 16 (1977) 100–106. doi: 10.1021/bi00620a016.
  • R.M. Hoffman, Development of recombinant methioninase to target the general cancer-specific metabolic defect of methionine dependence: a 40-year odyssey, Expert Opin. Biol. Ther. 15 (2015) 21–31. doi: 10.1517/14712598.2015.963050.
  • V.S. Pokrovsky, L. Abo Qoura, E. Morozova, V.I. Bunik, Predictive markers for efficiency of the amino-acid deprivation therapies in cancer, Front. Med. 9 (2022) 1035356. doi: 10.3389/fmed.2022.1035356.
  • D.V. Mamaeva, E.A. Morozova, A.D. Nikulin, S.V. Revtovich, S.V. Nikonov, M.B. Garber, T.V. Demidkina, Structure of Citrobacter freundii L -methionine γ-lyase, Acta Crystallograph. Sect. F Struct. Biol. Cryst. Commun. 61 (2005) 546–549. doi: 10.1107/S1744309105015447.
  • S. Revtovich, N. Anufrieva, E. Morozova, V. Kulikova, A. Nikulin, T. Demidkina, Structure of methionine γ-lyase from Clostridium sporogenes, Acta Crystallogr. Sect. F Struct. Biol. Commun. 72 (2016) 65–71. doi: 10.1107/S2053230X15023869.
  • E.A. Morozova, V.V. Kulikova, D.V. Yashin, N.V. Anufrieva, N.Y. Anisimova, S.V. Revtovich, M.I. Kotlov, Y.F. Belyi, V.S. Pokrovsky, T.V. Demidkina, Kinetic Parameters and Cytotoxic Activity of Recombinant Methionine γ-Lyase from Clostridium tetani, Clostridium sporogenes, Porphyromonas gingivalis and Citrobacter freundii, Acta Naturae 5 (2013) 92–98. doi: 10.32607/20758251-2013-5-3-92-98.
  • W. Kreis, C. Hession, Biological effects of enzymatic deprivation of L-methionine in cell culture and an experimental tumor, Cancer Res. 33 (1973) 1866–1869.
  • V.S. Pokrovsky, L. Abo Qoura, E.A. Demidova, Q. Han, R.M. Hoffman, Targeting Methionine Addiction of Cancer Cells with Methioninase, Biochem. Mosc. 88 (2023) 944–952. doi: 10.1134/S0006297923070076.
  • L. Abo Qoura, K.V. Balakin, R.M. Hoffman, V.S. Pokrovsky, The potential of methioninase for cancer treatment, Biochim. Biophys. Acta BBA - Rev. Cancer 1879 (2024) 189122. doi: 10.1016/j.bbcan.2024.189122.
  • V.V. Kulikova, N.V. Anufrieva, S.V. Revtovich, A.S. Chernov, G.B. Telegin, E.A. Morozova, T.V. Demidkina, Mutant form C115H of C lostridium sporogenes methionine γ-lyase efficiently cleaves S-Alk(en)yl- l -cysteine sulfoxides to antibacterial thiosulfinates: C115H MGL/Sulfoxide System, IUBMB Life 68 (2016) 830–835. doi: 10.1002/iub.1562.
  • N.V. Anufrieva, E.A. Morozova, V.V. Kulikova, N.P. Bazhulina, I.V. Manukhov, D.I. Degtev, E.Y. Gnuchikh, A.N. Rodionov, G.B. Zavilgelsky, T.V. Demidkina, Sulfoxides, Analogues of L-Methionine and L-Cysteine As Pro-Drugs against Gram-Positive and Gram-Negative Bacteria, Acta Naturae 7 (2015) 128–135.
  • V.V. Kulikova, E.A. Morozova, V.S. Koval, P.N. Solyev, T.V. Demidkina, S.V. Revtovich, Thiosulfinates: Cytotoxic and Antitumor Activity, Biochem. Mosc. 88 (2023) 912–923. doi: 10.1134/S0006297923070052.
  • V. Kulikova, E. Morozova, A. Rodionov, V. Koval, N. Anufrieva, S. Revtovich, T. Demidkina, Non-stereoselective decomposition of (±)-S-alk(en)yl- l -cysteine sulfoxides to antibacterial thiosulfinates catalyzed by C115H mutant methionine γ-lyase from Citrobacter freundii, Biochimie 151 (2018) 42–44. doi: 10.1016/j.biochi.2018.05.011.
  • V. Koval, E. Morozova, S. Revtovich, A. Lyfenko, A. Chobanian, V. Timofeeva, A. Solovieva, N. Anufrieva, V. Kulikova, T. Demidkina, Characteristics and Stability Assessment of Therapeutic Methionine γ-lyase-Loaded Polyionic Vesicles, ACS Omega 7 (2022) 959–967. doi: 10.1021/acsomega.1c05558.
  • E. Morozova, L. Abo Qoura, N. Anufrieva, V. Koval, E. Lesnova, A. Kushch, V. Kulikova, S. Revtovich, V.S. Pokrovsky, T. Demidkina, Daidzein-directed methionine γ-lyase in enzyme prodrug therapy against breast cancer, Biochimie 201 (2022) 177–183. doi: 10.1016/j.biochi.2022.05.007.
  • L. Abo Qoura, E. Morozova, V. Kulikova, S. Karshieva, D. Sokolova, V. Koval, S. Revtovich, T. Demidkina, V.S. Pokrovsky, Methionine γ-Lyase-Daidzein in Combination with S-Propyl-L-cysteine Sulfoxide as a Targeted Prodrug Enzyme System for Malignant Solid Tumor Xenografts, Int. J. Mol. Sci. 23 (2022) 12048. doi: 10.3390/ijms231912048.
  • A. Stoll, E. Seebeck, Chemical Investigations on Alliin, the Specific Principle of Garlic, in: F.F. Nord (Ed.), Adv. Enzymol. - Relat. Areas Mol. Biol., 1st ed., Wiley, 1951: pp. 377–400. doi: 10.1002/9780470122563.ch8.
  • A. Roseblade, A. Ung, M. Bebawy, Synthesis and in vitro biological evaluation of thiosulfinate derivatives for the treatment of human multidrug-resistant breast cancer, Acta Pharmacol. Sin. 38 (2017) 1353–1368. doi: 10.1038/aps.2016.170.
  • T. Miron, M. Wilchek, A. Sharp, Y. Nakagawa, M. Naoi, Y. Nozawa, Y. Akao, Allicin inhibits cell growth and induces apoptosis through the mitochondrial pathway in HL60 and U937 cells, J. Nutr. Biochem. 19 (2008) 524–535. doi: 10.1016/j.jnutbio.2007.06.009.
  • Y. Zhou, X. Li, W. Luo, J. Zhu, J. Zhao, M. Wang, L. Sang, B. Chang, B. Wang, Allicin in Digestive System Cancer: From Biological Effects to Clinical Treatment, Front. Pharmacol. 13 (2022) 903259. doi: 10.3389/fphar.2022.903259.
  • E. Catanzaro, D. Canistro, V. Pellicioni, F. Vivarelli, C. Fimognari, Anticancer potential of allicin: A review, Pharmacol. Res. 177 (2022) 106118. doi: 10.1016/j.phrs.2022.106118.
  • Talia Miron, Marina Mironchik, David Mirelman, Meir Wilchek, Aharon Rabinkov, Inhibition of tumor growth by a novel approach: In situ allicin generation using targeted alliinase delivery, Mol. Cancer Ther. 2 (2004) 1295–301.
  • F.D. Arditti, A. Rabinkov, T. Miron, Y. Reisner, A. Berrebi, M. Wilchek, D. Mirelman, Apoptotic killing of B-chronic lymphocytic leukemia tumor cells by allicin generated in situ using a rituximab-alliinase conjugate, Mol. Cancer Ther. 4 (2005) 325–332. doi: 10.1158/1535-7163.325.4.2.
  • H.L. Nicastro, S.A. Ross, J.A. Milner, Garlic and Onions: Their Cancer Prevention Properties, Cancer Prev. Res. (Phila. Pa.) 8 (2015) 181–189. doi: 10.1158/1940-6207.CAPR-14-0172.
  • B. Zhu, L. Zou, L. Qi, R. Zhong, X. Miao, Allium Vegetables and Garlic Supplements Do Not Reduce Risk of Colorectal Cancer, Based on Meta-analysis of Prospective Studies, Clin. Gastroenterol. Hepatol. 12 (2014) 1991-2001.e4. doi: 10.1016/j.cgh.2014.03.019.
  • S.A. Adediran, H.B. Dunford, Structure of Horseradish Perosidase Compound I: Kinetic Evidence for the Incorporation of One Oxygen Atom from the Oxidizing Substrate into the Enzyme, Eur. J. Biochem. 132 (1983) 147–150. doi: 10.1111/j.1432-1033.1983.tb07339.x.
  • A.T. Smith, N. Santama, S. Dacey, M. Edwards, R.C. Bray, R.N. Thorneley, J.F. Burke, Expression of a synthetic gene for horseradish peroxidase C in Escherichia coli and folding and activation of the recombinant enzyme with Ca2+ and heme, J. Biol. Chem. 265 (1990) 13335–13343.
  • L.P. Candeias, L.K. Folkes, M.F. Dennis, K.B. Patel, S.A. Everett, M.R.L. Stratford, P. Wardman, Free-Radical Intermediates and Stable Products in the Oxidation of Indole-3-acetic acid, J. Phys. Chem. 98 (1994) 10131–10137. doi: 10.1021/j100091a031.
  • D.-S. Kim, S.-E. Jeon, K.-C. Park, Oxidation of indole-3-acetic acid by horseradish peroxidase induces apoptosis in G361 human melanoma cells, Cell. Signal. 16 (2004) 81–88. doi: 10.1016/s0898-6568.(03)00091-3.
  • Y.-M. Jeong, M.H. Oh, S.Y. Kim, H. Li, H.-Y. Yun, K.J. Baek, N.S. Kwon, W.Y. Kim, D.-S. Kim, Indole-3-acetic acid/horseradish peroxidase induces apoptosis in TCCSUP human urinary bladder carcinoma cells, Pharm. 65 (2010) 122–126.
  • C. Huang, L.-Y. Liu, T.-S. Song, L. Ni, L. Yang, X.-Y. Hu, J.-S. Hu, L.-P. Song, Y. Luo, L.-S. Si, Apoptosis of pancreatic cancer BXPC-3 cells induced by indole-3-acetic acid in combination with horseradish peroxidase, World J. Gastroenterol. 11 (2005) 4519–4523. doi: 10.3748/wjg.v11.i29.4519.
  • J. Tupper, M.R. Stratford, S. Hill, G.M. Tozer, G.U. Dachs, In vivo characterization of horseradish peroxidase with indole-3-acetic acid and 5-bromoindole-3-acetic acid for gene therapy of cancer, Cancer Gene Ther. 17 (2010) 420–428. doi: 10.1038/cgt.2009.86.
  • G. Bonifert, L. Folkes, C. Gmeiner, G. Dachs, O. Spadiut, Recombinant horseradish peroxidase variants for targeted cancer treatment, Cancer Med. 5 (2016) 1194–1203. doi: 10.1002/cam4.668.
  • M. Dai, J. Liu, D.-E. Chen, Y. Rao, Z.-J. Tang, W.-Z. Ho, C.-Y. Dong, Tumor-targeted gene therapy using Adv-AFP-HRPC/IAA prodrug system suppresses growth of hepatoma xenografted in mice, Cancer Gene Ther. 19 (2012) 77–83. doi: 10.1038/cgt.2011.65.
  • D. Humer, V. Furlanetto, A.-K. Schruef, A. Wlodarczyk, M. Kuttke, C. Divne, O. Spadiut, Potential of unglycosylated horseradish peroxidase variants for enzyme prodrug cancer therapy, Biomed. Pharmacother. 142 (2021) 112037. doi: 10.1016/j.biopha.2021.112037.
  • U. Wittstock, K. Meier, F. Dörr, B.M. Ravindran, NSP-Dependent Simple Nitrile Formation Dominates upon Breakdown of Major Aliphatic Glucosinolates in Roots, Seeds, and Seedlings of Arabidopsis thaliana Columbia-0, Front. Plant Sci. 7 (2016). doi: 10.3389/fpls.2016.01821.
  • T. Oliviero, R. Verkerk, M. Dekker, Isothiocyanates from Brassica Vegetables-Effects of Processing, Cooking, Mastication, and Digestion, Mol. Nutr. Food Res. 62 (2018) 1701069. doi: 10.1002/mnfr.201701069.
  • A. Pessina, R.M. Thomas, S. Palmieri, P.L. Luisi, An improved method for the purification of myrosinase and its physicochemical characterization, Arch. Biochem. Biophys. 280 (1990) 383–389. doi: 10.1016/0003-9861.(90)90346-Z.
  • O. Leoni, R. Iori, S. Palmieri, E. Esposito, E. Menegatti, R. Cortesi, C. Nastruzzi, Myrosinase-generated isothiocyanate from glucosinolates: Isolation, characterization and in vitro antiproliferative studies, Bioorg. Med. Chem. 5 (1997) 1799–1806. doi: 10.1016/S0968-0896.(97)00112-0.
  • J. Chiang, F. Tsai, Y. Hsu, M. Yin, H. Chiu, J. Yang, Sensitivity of allyl isothiocyanate to induce apoptosis via ER stress and the mitochondrial pathway upon ROS production in colorectal adenocarcinoma cells, Oncol. Rep. (2020). doi: 10.3892/or.2020.7700.
  • K.-C. Lai, C.-C. Lu, Y.-J. Tang, J.-H. Chiang, D.-H. Kuo, F.-A. Chen, I.-L. Chen, J.-S. Yang, Allyl isothiocyanate inhibits cell metastasis through suppression of the MAPK pathways in epidermal growth factor-stimulated HT29 human colorectal adenocarcinoma cells, Oncol. Rep. 31 (2014) 189–196. doi: 10.3892/or.2013.2865.
  • G. Qin, P. Li, Z. Xue, Effect of allyl isothiocyanate on the viability and apoptosis of the human cervical cancer HeLa cell line in�vitro, Oncol. Lett. (2018). doi: 10.3892/ol.2018.8428.
  • R.-K. Lin, N. Zhou, Y.L. Lyu, Y.-C. Tsai, C.-H. Lu, J. Kerrigan, Y. Chen, Z. Guan, T.-S. Hsieh, L.F. Liu, Dietary Isothiocyanate-induced Apoptosis via Thiol Modification of DNA Topoisomerase IIα, J. Biol. Chem. 286 (2011) 33591–33600. doi: 10.1074/jbc.M111.258137.
  • K. Tripathi, U.K. Hussein, R. Anupalli, R. Barnett, L. Bachaboina, J. Scalici, R.P. Rocconi, L.B. Owen, G.A. Piazza, K. Palle, Allyl isothiocyanate induces replication-associated DNA damage response in NSCLC cells and sensitizes to ionizing radiation, Oncotarget 6 (2015) 5237–5252. doi: 10.18632/oncotarget.3026.
  • I.E. Popova, M.J. Morra, Simultaneous Quantification of Sinigrin, Sinalbin, and Anionic Glucosinolate Hydrolysis Products in Brassica juncea and Sinapis alba Seed Extracts Using Ion Chromatography, J. Agric. Food Chem. 62 (2014) 10687–10693. doi: 10.1021/jf503755m.
  • Y. Zhang, Cancer-preventive isothiocyanates: measurement of human exposure and mechanism of action, Mutat. Res. Mol. Mech. Mutagen. 555 (2004) 173–190. doi: 10.1016/j.mrfmmm.2004.04.017.
  • A. Tarar, C.-A. Peng, Antineoplastic Potency of Sinigrin-functionalized Silver Nanoparticles on Tumor Cells Transfected with Myrosinase-encoded Plasmids, BioNanoScience (2023). doi: 10.1007/s12668-023-01233-8.
  • R.J. Francis, S.K. Sharma, C. Springer, A.J. Green, L.D. Hope-Stone, L. Sena, J. Martin, K.L. Adamson, A. Robbins, L. Gumbrell, D. O’Malley, E. Tsiompanou, H. Shahbakhti, S. Webley, D. Hochhauser, A.J. Hilson, D. Blakey, R.H.J. Begent, A phase I trial of antibody directed enzyme prodrug therapy (ADEPT) in patients with advanced colorectal carcinoma or other CEA producing tumours, Br. J. Cancer 87 (2002) 600–607. doi: 10.1038/sj.bjc.6600517.
  • G. Chung-Faye, D. Palmer, D. Anderson, J. Clark, M. Downes, J. Baddeley, S. Hussain, P.I. Murray, P. Searle, L. Seymour, P.A. Harris, D. Ferry, D.J. Kerr, Virus-directed, enzyme prodrug therapy with nitroimidazole reductase: a phase I and pharmacokinetic study of its prodrug, CB1954, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 7 (2001) 2662–2668.
  • M.S. Chen, W.P. Summers, J. Walker, W.C. Summers, W.H. Prusoff, Characterization of pyrimidine deoxyribonucleoside kinase (thymidine kinase) and thymidylate kinase as a multifunctional enzyme in cells transformed by herpes simplex virus type 1 and in cells infected with mutant strains of herpes simplex virus, J. Virol. 30 (1979) 942–945. doi: 10.1128/jvi.30.3.942-945.1979.
  • J.N. Champness, M.S. Bennett, F. Wien, R. Visse, W.C. Summers, P. Herdewijn, E. De Clercq, T. Ostrowski, R.L. Jarvest, M.R. Sanderson, Exploring the active site of herpes simplex virus type-1 thymidine kinase by X-ray crystallography of complexes with aciclovir and other ligands, Proteins Struct. Funct. Genet. 32 (1998) 350–361. doi: ;2-8.
  • P.T. Golumbek, F.M. Hamzeh, E.M. Jaffee, H. Levitsky, P.S. Lietman, D.M. Pardoll, Herpes Simplex-1 Virus Thymidine Kinase Gene Is Unable to Completely Eliminate Live, Nonimmunogenic Tumor Cell Vaccines:, J. Immunother. 12 (1992) 224–230. doi: 10.1097/00002371-199211000-00002.
  • A. Abe, T. Takeo, N. Emi, M. Tanimoto, R. Ueda, J.-K. Yee, T. Friedmann, H. Saito, Transduction of a Drug-Sensitive Toxic Gene into Human Leukemia Cell Lines with a Novel Retroviral Vector, Exp. Biol. Med. 203 (1993) 354–359. doi: 10.3181/00379727-203-43611.
  • K. Kato, J. Yoshida, M. Mizuno, K. Sugita, N. Emi, Retroviral Transfer of Herpes Simplex Thymidine Kinase Gene into Glioma Cells Causes Targeting of Gancyclovir Cytotoxic Effect, Neurol. Med. Chir. (Tokyo) 34 (1994) 339–344. doi: 10.2176/nmc.34.339.
  • D. Barba, J. Hardin, J. Ray, F.H. Gage, Thymidine kinase-mediated killing of rat brain tumors, J. Neurosurg. 79 (1993) 729–735. doi: 10.3171/jns.1993.79.5.0729.
  • W.R. Smythe, H.C. Hwang, K.M. Amin, S.L. Eck, B.L. Davidson, J.M. Wilson, L.R. Kaiser, S.M. Albelda, Use of recombinant adenovirus to transfer the herpes simplex virus thymidine kinase (HSVtk) gene to thoracic neoplasms: an effective in vitro drug sensitization system, Cancer Res. 54 (1994) 2055–2059.
  • T. Osaki, Y. Tanio, I. Tachibana, S. Hosoe, T. Kumagai, I. Kawase, S. Oikawa, T. Kishimoto, Gene therapy for carcinoembryonic antigen-producing human lung cancer cells by cell type-specific expression of herpes simplex virus thymidine kinase gene, Cancer Res. 54 (1994) 5258–5261.
  • S. Kuriyama, T. Sakamoto, K. Masui, T. Nakatani, K. Tominaga, M. Kikukawa, M. Yoshikawa, K. Ikenaka, H. Fukui, T. Tsujii, Tissue-specific expression of HSV-tk gene can induce efficient antitumor effect and protective immunity to wild-type hepatocellular carcinoma, Int. J. Cancer 71 (1997) 470–475. doi: ;2-I.
  • G. Plautz, E.G. Nabel, G.J. Nabel, Selective elimination of recombinant genes in vivo with a suicide retroviral vector, New Biol. 3 (1991) 709–715.
  • L.K. Aguilar, L.A. Shirley, V.M. Chung, C.L. Marsh, J. Walker, W. Coyle, H. Marx, T. Bekaii-Saab, G.B. Lesinski, B. Swanson, D. Sanchez, A.G. Manzanera, E. Aguilar-Cordova, M. Bloomston, Gene-mediated cytotoxic immunotherapy as adjuvant to surgery or chemoradiation for pancreatic adenocarcinoma, Cancer Immunol. Immunother. 64 (2015) 727–736. doi: 10.1007/s00262-015-1679-3.
  • B. Sangro, G. Mazzolini, M. Ruiz, J. Ruiz, J. Quiroga, I. Herrero, C. Qian, A. Benito, J. Larrache, C. Olagüe, J. Boan, I. Peñuelas, B. Sádaba, J. Prieto, A phase I clinical trial of thymidine kinase-based gene therapy in advanced hepatocellular carcinoma, Cancer Gene Ther. 17 (2010) 837–843. doi: 10.1038/cgt.2010.40.
  • L. Wu, W.-B. Zhou, F. Shen, W. Liu, H.-W. Wu, S.-J. Zhou, S.-W. Li, Connexin32‑mediated antitumor effects of suicide gene therapy against hepatocellular carcinoma: In vitro and in vivo anticancer activity, Mol. Med. Rep. 13 (2016) 3213–3219. doi: 10.3892/mmr.2016.4895.
  • M. Adachi, J. Sampath, L. Lan, D. Sun, P. Hargrove, R. Flatley, A. Tatum, M.Z. Edwards, M. Wezeman, L. Matherly, R. Drake, J. Schuetz, Expression of MRP4 confers resistance to ganciclovir and compromises bystander cell killing, J. Biol. Chem. 277 (2002) 38998–39004. doi: 10.1074/jbc.M203262200.
  • W. Hu, W. Liu, Side populations of glioblastoma cells are less sensitive to HSV-TK/GCV suicide gene therapy system than the non-side population, In Vitro Cell. Dev. Biol. Anim. 46 (2010) 497–501. doi: 10.1007/s11626-010-9274-6.
  • E. Preuss, A. Muik, K. Weber, J. Otte, D. von Laer, B. Fehse, Cancer suicide gene therapy with TK.007: superior killing efficiency and bystander effect, J. Mol. Med. Berl. Ger. 89 (2011) 1113–1124. doi: 10.1007/s00109-011-0777-8.
  • S.-Y. Park, W. Lee, J. Lee, I.-S. Kim, Combination gene therapy using multidrug resistance (MDR1) gene shRNA and herpes simplex virus-thymidine kinase, Cancer Lett. 261 (2008) 205–214. doi: 10.1016/j.canlet.2007.11.011.
  • T. Xiong, Y. Li, F. Ni, F. Zhang, Monitoring of bystander effect of herpes simplex virus thymidine kinase/acyclovir system using fluorescence resonance energy transfer technique, J. Biomed. Nanotechnol. 8 (2012) 74–79. doi: 10.1166/jbn.2012.1357.
  • X. Li, P. Zhou, L. Wang, S. Tian, Y. Qian, L. Chen, P. Zhang, The targeted gene (KDRP-CD/TK) therapy of breast cancer mediated by SonoVue and ultrasound irradiation in vitro, Ultrasonics 52 (2012) 186–191. doi: 10.1016/j.ultras.2011.08.002.
  • B. Zhang, M. Chen, Y. Zhang, W. Chen, L. Zhang, L. Chen, An ultrasonic nanobubble-mediated PNP/fludarabine suicide gene system: A new approach for the treatment of hepatocellular carcinoma, PLOS ONE 13 (2018) e0196686. doi: 10.1371/journal.pone.0196686.
  • A. Aoi, Y. Watanabe, S. Mori, M. Takahashi, G. Vassaux, T. Kodama, Herpes Simplex Virus Thymidine Kinase-Mediated Suicide Gene Therapy Using Nano/Microbubbles and Ultrasound, Ultrasound Med. Biol. 34 (2008) 425–434. doi: 10.1016/j.ultrasmedbio.2007.09.004.
  • J. Li, P. Zhou, L. Li, Y. Zhang, Y. Shao, L. Tang, S. Tian, Effects of Cationic Microbubble Carrying CD/TK Double Suicide Gene and αVβ3 Integrin Antibody in Human Hepatocellular Carcinoma HepG2 Cells, PLOS ONE 11 (2016) e0158592. doi: 10.1371/journal.pone.0158592.
  • C. Hu, D. Jiang, M. Wu, J. Wang, R. Zhang, Ultrasound-mediated nanobubble destruction (UMND) facilitates the delivery of VEGFR2-targeted CD-TK-loaded cationic nanobubbles in the treatment of bladder cancer, J. Cancer Res. Clin. Oncol. 146 (2020) 1415–1426. doi: 10.1007/s00432-020-03160-7.
  • Y. Liu, Y. Zhang, D. Du, X. Gu, X. Zhang, G. Hong, X. Lai, Nanotargeted Cationic Lipid Microbubbles Carrying HSV‐TK Gene Inhibit the Development of Subcutaneous Liver Tumor Model After HIFU Ablation, J. Ultrasound Med. 43 (2024) 95–107. doi: 10.1002/jum.16342.
  • R. Devulapally, T. Lee, A. Barghava-Shah, T.V. Sekar, K. Foygel, S.V. Bachawal, J.K. Willmann, R. Paulmurugan, Ultrasound-guided delivery of thymidine kinase–nitroreductase dual therapeutic genes by PEGylated-PLGA/PEI nanoparticles for enhanced triple negative breast cancer therapy, Nanomed. 13 (2018) 1051–1066. doi: 10.2217/nnm-2017-0328.
  • Y.I. Yoon, Y.-S. Kwon, H.-S. Cho, S.-H. Heo, K.S. Park, S.G. Park, S.-H. Lee, S.I. Hwang, Y.I. Kim, H.J. Jae, G.-J. Ahn, Y.-S. Cho, H. Lee, H.J. Lee, T.-J. Yoon, Ultrasound-Mediated Gene and Drug Delivery Using a Microbubble-Liposome Particle System, Theranostics 4 (2014) 1133–1144. doi: 10.7150/thno.9945.
  • S. Hernot, A.L. Klibanov, Microbubbles in ultrasound-triggered drug and gene delivery, Adv. Drug Deliv. Rev. 60 (2008) 1153–1166. doi: 10.1016/j.addr.2008.03.005.
  • A. Goto, Y. Anraku, S. Fukushima, A. Kishimura, Increased Enzyme Loading in PICsomes via Controlling Membrane Permeability Improves Enzyme Prodrug Cancer Therapy Outcome, Polymers 15 (2023) 1368. doi: 10.3390/polym15061368.
  • E.A. Morozova, V.V. Kulikova, N.V. Anufrieva, A.N. Minakov, A.S. Chernov, G.B. Telegin, S.V. Revtovich, V.S. Koval, T.V. Demidkina, Methionine γ-lyase in enzyme prodrug therapy: An improvement of pharmacokinetic parameters of the enzyme, Int. J. Biol. Macromol. 140 (2019) 1277–1283. doi: 10.1016/j.ijbiomac.2019.08.224.
  • E. Donath, G.B. Sukhorukov, F. Caruso, S.A. Davis, H. Möhwald, Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes, Angew. Chem. Int. Ed. 37 (1998) 2201–2205. doi: ;2-E.
  • A. Koide, A. Kishimura, K. Osada, W.-D. Jang, Y. Yamasaki, K. Kataoka, Semipermeable Polymer Vesicle (PICsome) Self-Assembled in Aqueous Medium from a Pair of Oppositely Charged Block Copolymers: Physiologically Stable Micro-/Nanocontainers of Water-Soluble Macromolecules, J. Am. Chem. Soc. 128 (2006) 5988–5989. doi: 10.1021/ja057993r.
  • Y. Anraku, A. Kishimura, M. Kamiya, S. Tanaka, T. Nomoto, K. Toh, Y. Matsumoto, S. Fukushima, D. Sueyoshi, M.R. Kano, Y. Urano, N. Nishiyama, K. Kataoka, Systemically Injectable Enzyme‐Loaded Polyion Complex Vesicles as In Vivo Nanoreactors Functioning in Tumors, Angew. Chem. Int. Ed. 55 (2016) 560–565. doi: 10.1002/anie.201508339.
  • A.A.-W.M.M. Japir, W. Ke, J. Li, J.F. Mukerabigwi, A. Ibrahim, Y. Wang, X. Li, Q. Zhou, F. Mohammed, Z. Ge, Tumor-dilated polymersome nanofactories for enhanced enzyme prodrug chemo-immunotherapy, J. Controlled Release 339 (2021) 418–429. doi: 10.1016/j.jconrel.2021.10.015.
  • T. Nishimura, Y. Sasaki, K. Akiyoshi, Biotransporting Self‐Assembled Nanofactories Using Polymer Vesicles with Molecular Permeability for Enzyme Prodrug Cancer Therapy, Adv. Mater. 29 (2017) 1702406. doi: 10.1002/adma.201702406.
  • M. Hori, H. Cabral, K. Toh, A. Kishimura, K. Kataoka, Robust Polyion Complex Vesicles (PICsomes) under Physiological Conditions Reinforced by Multiple Hydrogen Bond Formation Derived by Guanidinium Groups, Biomacromolecules 19 (2018) 4113–4121. doi: 10.1021/acs.biomac.8b01097.
  • M.W. Freeman, A. Arrott, J.H.L. Watson, Magnetism in Medicine, J. Appl. Phys. 31 (1960) S404–S405. doi: 10.1063/1.1984765.
  • A.S. Lübbe, C. Bergemann, H. Riess, F. Schriever, P. Reichardt, K. Possinger, M. Matthias, B. Dörken, F. Herrmann, R. Gürtler, P. Hohenberger, N. Haas, R. Sohr, B. Sander, A.J. Lemke, D. Ohlendorf, W. Huhnt, D. Huhn, Clinical experiences with magnetic drug targeting: a phase I study with 4’-epidoxorubicin in 14 patients with advanced solid tumors, Cancer Res. 56 (1996) 4686–4693.
  • H. Cabral, J. Li, K. Miyata, K. Kataoka, Controlling the biodistribution and clearance of nanomedicines, Nat. Rev. Bioeng. 2 (2023) 214–232. doi: 10.1038/s44222-023-00138-1.
  • B. Polyak, G. Friedman, Magnetic targeting for site-specific drug delivery: applications and clinical potential, Expert Opin. Drug Deliv. 6 (2009) 53–70. doi: 10.1517/17425240802662795.
  • B. Torres-Herrero, I. Armenia, M. Alleva, L. Asín, S. Correa, C. Ortiz, Y. Fernández-Afonso, L. Gutiérrez, J.M. De La Fuente, L. Betancor, V. Grazú, Remote Activation of Enzyme Nanohybrids for Cancer Prodrug Therapy Controlled by Magnetic Heating, ACS Nano 17 (2023) 12358–12373. doi: 10.1021/acsnano.3c01599.
  • S. Correa, S. Puertas, L. Gutiérrez, L. Asín, J. Martínez De La Fuente, V. Grazú, L. Betancor, Design of stable magnetic hybrid nanoparticles of Si-entrapped HRP, PLOS ONE 14 (2019) e0214004. doi: 10.1371/journal.pone.0214004.
  • P. Ball, R. Hobbs, S. Anderson, E. Thompson, V. Gwenin, C. Von Ruhland, C. Gwenin, The YfkO Nitroreductase from Bacillus Licheniformis on Gold-Coated Superparamagnetic Nanoparticles: Towards a Novel Directed Enzyme Prodrug Therapy Approach, Pharmaceutics 13 (2021) 517. doi: 10.3390/pharmaceutics13040517.
  • S. Roy, S.D. Curry, C. Corbella Bagot, E.N. Mueller, A.M. Mansouri, W. Park, J.N. Cha, A.P. Goodwin, Enzyme Prodrug Therapy with Photo-Cross-Linkable Anti-EGFR Affibodies Conjugated to Upconverting Nanoparticles, ACS Nano 16 (2022) 15873–15883. doi: 10.1021/acsnano.2c02558.
  • B.S. Zolnik, Á. González-Fernández, N. Sadrieh, M.A. Dobrovolskaia, Minireview: Nanoparticles and the Immune System, Endocrinology 151 (2010) 458–465. doi: 10.1210/en.2009-1082.
  • G. Huysmans, A. Ranquin, L. Wyns, J. Steyaert, P. Van Gelder, Encapsulation of therapeutic nucleoside hydrolase in functionalised nanocapsules, J. Controlled Release 102 (2005) 171–179. doi: 10.1016/j.jconrel.2004.10.002.
  • R. Kumar, A.N. Maitra, P.K. Patanjali, P. Sharma, Hollow gold nanoparticles encapsulating horseradish peroxidase, Biomaterials 26 (2005) 6743–6753. doi: 10.1016/j.biomaterials.2005.04.045.
  • T.D. Dziubla, A. Karim, V.R. Muzykantov, Polymer nanocarriers protecting active enzyme cargo against proteolysis, J. Controlled Release 102 (2005) 427–439. doi: 10.1016/j.jconrel.2004.10.017.
  • P. Wu, J. Han, Y. Gong, C. Liu, H. Yu, N. Xie, Nanoparticle-Based Drug Delivery Systems Targeting Tumor Microenvironment for Cancer Immunotherapy Resistance: Current Advances and Applications, Pharmaceutics 14 (2022) 1990. doi: 10.3390/pharmaceutics14101990.
  • X. Cao, C. Chen, H. Yu, P. Wang, Horseradish peroxidase-encapsulated chitosan nanoparticles for enzyme-prodrug cancer therapy, Biotechnol. Lett. 37 (2015) 81–88. doi: 10.1007/s10529-014-1664-5.
  • N. Gupta, R.K. Sharma, A. Maitra, A. Shrivastava, In-vitro and in-vivo efficacy of hollow gold nanoparticles encapsulating horseradish peroxidase: Oxidative stress-mediated tumor cell killing, J. Drug Deliv. Sci. Technol. 79 (2023) 103979. doi: 10.1016/j.jddst.2022.103979.
  • M. Konhäuser, V.K. Kannaujiya, J. Kaltbeitzel, P. Winterwerber, E. Böhm, B. Breitenbach, P.R. Wich, Dual-Responsive Enzyme–Polysaccharide Conjugate as a Nanocarrier System for Enzyme Prodrug Therapy, Biomacromolecules 24 (2023) 2138–2148. doi: 10.1021/acs.biomac.3c00031.
  • L. Cheng, F. Zhang, S. Wang, X. Pan, S. Han, S. Liu, J. Ma, H. Wang, H. Shen, H. Liu, Q. Yuan, Activation of Prodrugs by NIR‐Triggered Release of Exogenous Enzymes for Locoregional Chemo‐photothermal Therapy, Angew. Chem. Int. Ed. 58 (2019) 7728–7732. doi: 10.1002/anie.201902476.
  • J. Paggetti, F. Haderk, M. Seiffert, B. Janji, U. Distler, W. Ammerlaan, Y.J. Kim, J. Adam, P. Lichter, E. Solary, G. Berchem, E. Moussay, Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts, Blood 126 (2015) 1106–1117. doi: 10.1182/blood-2014-12-618025.
  • N. Heldring, I. Mäger, M.J.A. Wood, K. Le Blanc, S.E.L. Andaloussi, Therapeutic Potential of Multipotent Mesenchymal Stromal Cells and Their Extracellular Vesicles, Hum. Gene Ther. 26 (2015) 506–517. doi: 10.1089/hum.2015.072.
  • M. Tibensky, J. Jakubechova, U. Altanerova, A. Pastorakova, B. Rychly, L. Baciak, B. Mravec, C. Altaner, Gene-Directed Enzyme/Prodrug Therapy of Rat Brain Tumor Mediated by Human Mesenchymal Stem Cell Suicide Gene Extracellular Vesicles In Vitro and In Vivo, Cancers 14 (2022) 735. doi: 10.3390/cancers14030735.
  • M. Kanada, B.D. Kim, J.W. Hardy, J.A. Ronald, M.H. Bachmann, M.P. Bernard, G.I. Perez, A.A. Zarea, T.J. Ge, A. Withrow, S.A. Ibrahim, V. Toomajian, S.S. Gambhir, R. Paulmurugan, C.H. Contag, Microvesicle-Mediated Delivery of Minicircle DNA Results in Effective Gene-Directed Enzyme Prodrug Cancer Therapy, Mol. Cancer Ther. 18 (2019) 2331–2342. doi: 10.1158/1535-7163.MCT-19-0299.
  • C. Song, J. Xiang, J. Tang, D.G. Hirst, J. Zhou, K.-M. Chan, G. Li, Thymidine Kinase Gene Modified Bone Marrow Mesenchymal Stem Cells as Vehicles for Antitumor Therapy, Hum. Gene Ther. 22 (2011) 439–449. doi: 10.1089/hum.2010.116.
  • M. Matuskova, K. Hlubinova, A. Pastorakova, L. Hunakova, V. Altanerova, C. Altaner, L. Kucerova, HSV-tk expressing mesenchymal stem cells exert bystander effect on human glioblastoma cells, Cancer Lett. 290 (2010) 58–67. doi: 10.1016/j.canlet.2009.08.028.
  • C. Altaner, V. Altanerova, M. Cihova, K. Ondicova, B. Rychly, L. Baciak, B. Mravec, Complete regression of glioblastoma by mesenchymal stem cells mediated prodrug gene therapy simulating clinical therapeutic scenario, Int. J. Cancer 134 (2014) 1458–1465. doi: 10.1002/ijc.28455.
  • V. Altanerova, M. Cihova, M. Babic, B. Rychly, K. Ondicova, B. Mravec, C. Altaner, Human adipose tissue‐derived mesenchymal stem cells expressing yeast cytosinedeaminase::uracil phosphoribosyltransferase inhibit intracerebral rat glioblastoma, Int. J. Cancer 130 (2012) 2455–2463. doi: 10.1002/ijc.26278.
  • A. Mizrak, M.F. Bolukbasi, G.B. Ozdener, G.J. Brenner, S. Madlener, E.P. Erkan, T. Ströbel, X.O. Breakefield, O. Saydam, Genetically Engineered Microvesicles Carrying Suicide mRNA/Protein Inhibit Schwannoma Tumor Growth, Mol. Ther. 21 (2013) 101–108. doi: 10.1038/mt.2012.161.
  • M. Harada-Shiba, K. Yamauchi, A. Harada, I. Takamisawa, K. Shimokado, K. Kataoka, Polyion complex micelles as vectors in gene therapy – pharmacokinetics and in vivo gene transfer, Gene Ther. 9 (2002) 407–414. doi: 10.1038/sj.gt.3301665.
  • M.A.M. Subbaiah, J. Rautio, N.A. Meanwell, Prodrugs as empowering tools in drug discovery and development: recent strategic applications of drug delivery solutions to mitigate challenges associated with lead compounds and drug candidates, Chem. Soc. Rev. 53 (2024) 2099–2210. doi: 10.1039/D2CS00957A.
  • J. Liu, Y. Huang, A. Kumar, A. Tan, S. Jin, A. Mozhi, X.-J. Liang, pH-Sensitive nano-systems for drug delivery in cancer therapy, Biotechnol. Adv. 32 (2014) 693–710. doi: 10.1016/j.biotechadv.2013.11.009.
  • M. Stubbs, P.M.J. McSheehy, J.R. Griffiths, C.L. Bashford, Causes and consequences of tumour acidity and implications for treatment, Mol. Med. Today 6 (2000) 15–19. doi: 10.1016/S1357-4310.(99)01615-9.
  • D. Trachootham, J. Alexandre, P. Huang, Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?, Nat. Rev. Drug Discov. 8 (2009) 579–591. doi: 10.1038/nrd2803.
  • L. Kennedy, J.K. Sandhu, M.-E. Harper, M. Cuperlovic-Culf, Role of Glutathione in Cancer: From Mechanisms to Therapies, Biomolecules 10 (2020) 1429. doi: 10.3390/biom10101429.
  • J. Fang, H. Nakamura, H. Maeda, The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect, Adv. Drug Deliv. Rev. 63 (2011) 136–151. doi: 10.1016/j.addr.2010.04.009.
  • M.-H. Lin, C.-F. Hung, C.-Y. Hsu, Z.-C. Lin, J.-Y. Fang, Prodrugs in Combination with Nanocarriers as a Strategy for Promoting Antitumoral Efficiency, Future Med. Chem. 11 (2019) 2131–2150. doi: 10.4155/fmc-2018-0388.
  • I. Giang, E.L. Boland, G.M.K. Poon, Prodrug Applications for Targeted Cancer Therapy, AAPS J. 16 (2014) 899–913. doi: 10.1208/s12248-014-9638-z.
  • A. Warnecke, I. Fichtner, D. Garmann, U. Jaehde, F. Kratz, Synthesis and Biological Activity of Water-Soluble Maleimide Derivatives of the Anticancer Drug Carboplatin Designed as Albumin-Binding Prodrugs, Bioconjug. Chem. 15 (2004) 1349–1359. doi: 10.1021/bc049829j.
  • F. Kratz, A. Warnecke, K. Scheuermann, C. Stockmar, J. Schwab, P. Lazar, P. Drückes, N. Esser, J. Drevs, D. Rognan, C. Bissantz, C. Hinderling, G. Folkers, I. Fichtner, C. Unger, Probing the Cysteine-34 Position of Endogenous Serum Albumin with Thiol-Binding Doxorubicin Derivatives. Improved Efficacy of an Acid-Sensitive Doxorubicin Derivative with Specific Albumin-Binding Properties Compared to That of the Parent Compound, J. Med. Chem. 45 (2002) 5523–5533. doi: 10.1021/jm020276c.
  • T. Legigan, J. Clarhaut, B. Renoux, I. Tranoy-Opalinski, A. Monvoisin, J.-M. Berjeaud, F. Guilhot, S. Papot, Synthesis and Antitumor Efficacy of a β-Glucuronidase-Responsive Albumin-Binding Prodrug of Doxorubicin, J. Med. Chem. 55 (2012) 4516–4520. doi: 10.1021/jm300348r.
  • B. Tirkey, B. Bhushan, S. Uday Kumar, P. Gopinath, Prodrug encapsulated albumin nanoparticles as an alternative approach to manifest anti-proliferative effects of suicide gene therapy, Mater. Sci. Eng. C 73 (2017) 507–515. doi: 10.1016/j.msec.2016.12.108.
  • A. Rosolen, E. Frascella, C.D. Francesco, A. Todesco, M. Petrone, M. Mehtali, F. Zacchello, L. Zanesco, M. Scarpa, In vitro and in vivo antitumor effects of retrovirus-mediated herpes simplex thymidine kinase gene-transfer in human medulloblastoma, Gene Ther. 5 (1998) 113–120. doi: 10.1038/sj.gt.3300559.
  • A. Ardiani, M. Sanchez-Bonilla, M.E. Black, Fusion enzymes containing HSV-1 thymidine kinase mutants and guanylate kinase enhance prodrug sensitivity in vitro and in vivo, Cancer Gene Ther. 17 (2010) 86–96. doi: 10.1038/cgt.2009.60.
  • S. Shetty, P.F. Lalor, D.H. Adams, Liver sinusoidal endothelial cells — gatekeepers of hepatic immunity, Nat. Rev. Gastroenterol. Hepatol. 15 (2018) 555–567. doi: 10.1038/s41575-018-0020-y.
  • S.K. Soininen, K.-S. Vellonen, A.T. Heikkinen, S. Auriola, V.-P. Ranta, A. Urtti, M. Ruponen, Intracellular PK/PD Relationships of Free and Liposomal Doxorubicin: Quantitative Analyses and PK/PD Modeling, Mol. Pharm. 13 (2016) 1358–1365. doi: 10.1021/acs.molpharmaceut.6b00008.
  • B. Yameen, W.I. Choi, C. Vilos, A. Swami, J. Shi, O.C. Farokhzad, Insight into nanoparticle cellular uptake and intracellular targeting, J. Controlled Release 190 (2014) 485–499. doi: 10.1016/j.jconrel.2014.06.038.
  • A.P. Singh, D.K. Shah, Measurement and Mathematical Characterization of Cell-Level Pharmacokinetics of Antibody-Drug Conjugates: A Case Study with Trastuzumab-vc-MMAE, Drug Metab. Dispos. 45 (2017) 1120–1132. doi: 10.1124/dmd.117.076414.
  • N. Hoshyar, S. Gray, H. Han, G. Bao, The Effect of Nanoparticle Size on In Vivo Pharmacokinetics and Cellular Interaction, Nanomed. 11 (2016) 673–692. doi: 10.2217/nnm.16.5.
  • K. Niikura, T. Matsunaga, T. Suzuki, S. Kobayashi, H. Yamaguchi, Y. Orba, A. Kawaguchi, H. Hasegawa, K. Kajino, T. Ninomiya, K. Ijiro, H. Sawa, Gold Nanoparticles as a Vaccine Platform: Influence of Size and Shape on Immunological Responses in Vitro and in Vivo, ACS Nano 7 (2013) 3926–3938. doi: 10.1021/nn3057005.
  • J.A. Champion, S. Mitragotri, Shape Induced Inhibition of Phagocytosis of Polymer Particles, Pharm. Res. 26 (2009) 244–249. doi: 10.1007/s11095-008-9626-z.
  • B.D. Chithrani, A.A. Ghazani, W.C.W. Chan, Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells, Nano Lett. 6 (2006) 662–668. doi: 10.1021/nl052396o.
  • B.D. Chithrani, W.C.W. Chan, Elucidating the Mechanism of Cellular Uptake and Removal of Protein-Coated Gold Nanoparticles of Different Sizes and Shapes, Nano Lett. 7 (2007) 1542–1550. doi: 10.1021/nl070363y.
  • D.R. Elias, A. Poloukhtine, V. Popik, A. Tsourkas, Effect of ligand density, receptor density, and nanoparticle size on cell targeting, Nanomedicine Nanotechnol. Biol. Med. 9 (2013) 194–201. doi: 10.1016/j.nano.2012.05.015.
  • S. Zhang, A. Nelson, P.A. Beales, Freezing or Wrapping: The Role of Particle Size in the Mechanism of Nanoparticle–Biomembrane Interaction, Langmuir 28 (2012) 12831–12837. doi: 10.1021/la301771b.
  • W.B. Cai, H.L. Yang, J. Zhang, J.K. Yin, Y.L. Yang, L.J. Yuan, L. Zhang, Y.Y. Duan, The Optimized Fabrication of Nanobubbles as Ultrasound Contrast Agents for Tumor Imaging, Sci. Rep. 5 (2015) 13725. doi: 10.1038/srep13725.
  • S. Karpitschka, E. Dietrich, J.R.T. Seddon, H.J.W. Zandvliet, D. Lohse, H. Riegler, Nonintrusive Optical Visualization of Surface Nanobubbles, Phys. Rev. Lett. 109 (2012) 066102. doi: 10.1103/PhysRevLett.109.066102.
  • A. Albanese, P.S. Tang, W.C.W. Chan, The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems, Annu. Rev. Biomed. Eng. 14 (2012) 1–16. doi: 10.1146/annurev-bioeng-071811-150124.
  • C. He, Y. Hu, L. Yin, C. Tang, C. Yin, Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles, Biomaterials 31 (2010) 3657–3666. doi: 10.1016/j.biomaterials.2010.01.065.
  • H. Soo Choi, W. Liu, P. Misra, E. Tanaka, J.P. Zimmer, B. Itty Ipe, M.G. Bawendi, J.V. Frangioni, Renal clearance of quantum dots, Nat. Biotechnol. 25 (2007) 1165–1170. doi: 10.1038/nbt1340.
  • K. Xiao, Y. Li, J. Luo, J.S. Lee, W. Xiao, A.M. Gonik, R.G. Agarwal, K.S. Lam, The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles, Biomaterials 32 (2011) 3435–3446. doi: 10.1016/j.biomaterials.2011.01.021.
  • S. Hirn, M. Semmler-Behnke, C. Schleh, A. Wenk, J. Lipka, M. Schäffler, S. Takenaka, W. Möller, G. Schmid, U. Simon, W.G. Kreyling, Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration, Eur. J. Pharm. Biopharm. 77 (2011) 407–416. doi: 10.1016/j.ejpb.2010.12.029.
  • S. Azzi, J.K. Hebda, J. Gavard, Vascular Permeability and Drug Delivery in Cancers, Front. Oncol. 3 (2013). doi: 10.3389/fonc.2013.00211.
  • B. Lahooti, R.G. Akwii, F.T. Zahra, M.S. Sajib, M. Lamprou, A. Alobaida, M.S. Lionakis, G. Mattheolabakis, C.M. Mikelis, Targeting endothelial permeability in the EPR effect, J. Controlled Release 361 (2023) 212–235. doi: 10.1016/j.jconrel.2023.07.039.
  • R. Sun, J. Xiang, Q. Zhou, Y. Piao, J. Tang, S. Shao, Z. Zhou, Y.H. Bae, Y. Shen, The tumor EPR effect for cancer drug delivery: Current status, limitations, and alternatives, Adv. Drug Deliv. Rev. 191 (2022) 114614. doi: 10.1016/j.addr.2022.114614.
  • M.S. Chauhan, S.R. Anand, In vitro maturation and fertilization of goat oocytes, Indian J. Exp. Biol. 29 (1991) 105–110.
  • L.E. Gerlowski, R.K. Jain, Microvascular permeability of normal and neoplastic tissues, Microvasc. Res. 31 (1986) 288–305. doi: 10.1016/0026-2862.(86)90018-X.
  • F. Yuan, M. Dellian, D. Fukumura, M. Leunig, D.A. Berk, V.P. Torchilin, R.K. Jain, Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size, Cancer Res. 55 (1995) 3752–3756.
  • K. Igarashi, H. Cabral, T. Hong, Y. Anraku, F. Mpekris, T. Stylianopoulos, T. Khan, A. Matsumoto, K. Kataoka, Y. Matsumoto, T. Yamasoba, Vascular Bursts Act as a Versatile Tumor Vessel Permeation Route for Blood‐Borne Particles and Cells, Small 17 (2021) 2103751. doi: 10.1002/smll.202103751.
  • H. Salavati, C. Debbaut, P. Pullens, W. Ceelen, Interstitial fluid pressure as an emerging biomarker in solid tumors, Biochim. Biophys. Acta BBA - Rev. Cancer 1877 (2022) 188792. doi: 10.1016/j.bbcan.2022.188792.
  • T. Zhang, Y. Jia, Y. Yu, B. Zhang, F. Xu, H. Guo, Targeting the tumor biophysical microenvironment to reduce resistance to immunotherapy, Adv. Drug Deliv. Rev. 186 (2022) 114319. doi: 10.1016/j.addr.2022.114319.
  • S.B. Keller, M.A. Averkiou, The Role of Ultrasound in Modulating Interstitial Fluid Pressure in Solid Tumors for Improved Drug Delivery, Bioconjug. Chem. 33 (2022) 1049–1056. doi: 10.1021/acs.bioconjchem.1c00422.
  • A. Mohammadabadi, R.N. Huynh, A.S. Wadajkar, R.G. Lapidus, A.J. Kim, C.B. Raub, V. Frenkel, Pulsed focused ultrasound lowers interstitial fluid pressure and increases nanoparticle delivery and penetration in head and neck squamous cell carcinoma xenograft tumors, Phys. Med. Biol. 65 (2020) 125017. doi: 10.1088/1361-6560/ab9705.
  • B. Mishra, B.B. Patel, S. Tiwari, Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery, Nanomedicine Nanotechnol. Biol. Med. 6 (2010) 9–24. doi: 10.1016/j.nano.2009.04.008.
  • S. Yan, L. Yang, L. Lu, Q. Guo, X. Hu, Y. Yuan, Y. Li, M. Wu, J. Zhang, Improved pharmacokinetic characteristics and bioactive effects of anticancer enzyme delivery systems, Expert Opin. Drug Metab. Toxicol. 14 (2018) 951–960. doi: 10.1080/17425255.2018.1505863.
  • F.U. Din, W. Aman, I. Ullah, O.S. Qureshi, O. Mustapha, S. Shafique, A. Zeb, Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors, Int. J. Nanomedicine Volume 12 (2017) 7291–7309. doi: 10.2147/IJN.S146315.
  • A.P.G. Walsh, H.N. Gordon, K. Peter, X. Wang, Ultrasonic particles: An approach for targeted gene delivery, Adv. Drug Deliv. Rev. 179 (2021) 113998. doi: 10.1016/j.addr.2021.113998.
  • Y. Nakamura, A. Mochida, P.L. Choyke, H. Kobayashi, Nanodrug Delivery: Is the Enhanced Permeability and Retention Effect Sufficient for Curing Cancer?, Bioconjug. Chem. 27 (2016) 2225–2238. doi: 10.1021/acs.bioconjchem.6b00437.
  • C. Chen, M. Sun, J. Wang, L. Su, J. Lin, X. Yan, Active cargo loading into extracellular vesicles: Highlights the heterogeneous encapsulation behaviour, J. Extracell. Vesicles 10 (2021) e12163. doi: 10.1002/jev2.12163.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.