0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Laser-enzyme dual responsive liposomes to regulate autophagy in synergy with phototherapy for melanoma treatment

, , &
Received 07 May 2024, Accepted 25 Jul 2024, Accepted author version posted online: 29 Jul 2024
Accepted author version

References

  • Filin, I. Y.; Mayasin, Y. P.; Kharisova, C. B.; Gorodilova, A. V.; Kitaeva, K. V.; Chulpanova, D. S.; Solovyeva, V. V.; Rizvanov, A. A. Cell Immunotherapy against Melanoma: Clinical Trials Review. Int J Mol Sci 2023, 24 (3). doi: 10.3390/ijms24032413.
  • Papaccio, F.; Kovacs, D.; Bellei, B.; Caputo, S.; Migliano, E.; Cota, C.; Picardo, M. Profiling Cancer-Associated Fibroblasts in Melanoma. Int J Mol Sci 2021, 22 (14). doi: 10.3390/ijms22147255.
  • Tian, L.; Long, F.; Hao, Y.; Li, B.; Li, Y.; Tang, Y.; Li, J.; Zhao, Q.; Chen, J.; Liu, M. A Cancer Associated Fibroblasts-Related Six-Gene Panel for Anti-PD-1 Therapy in Melanoma Driven by Weighted Correlation Network Analysis and Supervised Machine Learning. Front Med (Lausanne) 2022, 9, 880326. doi: 10.3389/fmed.2022.880326.
  • Tang, H.; Zhou, X.; Zhao, X.; Luo, X.; Luo, T.; Chen, Y.; Liang, W.; Jiang, E.; Liu, K.; Shao, Z.; et al. HSP90/IKK-rich small extracellular vesicles activate pro-angiogenic melanoma-associated fibroblasts via the NF-kappaB/CXCL1 axis. Cancer Sci 2022, 113 (4), 1168-1181. doi: 10.1111/cas.15271.
  • Zhou, L.; Yang, K.; Andl, T.; Wickett, R. R.; Zhang, Y. Perspective of Targeting Cancer-Associated Fibroblasts in Melanoma. J Cancer 2015, 6 (8), 717-726. doi: 10.7150/jca.10865.
  • Bai, J.; Jia, X.; Ruan, Y.; Wang, C.; Jiang, X. Photosensitizer-Conjugated Bi(2)Te(3) Nanosheets as Theranostic Agent for Synergistic Photothermal and Photodynamic Therapy. Inorg Chem 2018, 57 (16), 10180-10188. doi: 10.1021/acs.inorgchem.8b01385.
  • Yang, Y.; Wang, S.; Xu, C.; Xie, A.; Shen, Y.; Zhu, M. Improved fluorescence imaging and synergistic anticancer phototherapy of hydrosoluble gold nanoclusters assisted by a novel two-level mesoporous canal structured silica nanocarrier. Chem Commun (Camb) 2018, 54 (22), 2731-2734. doi: 10.1039/c8cc00685g.
  • Sahu, A.; Choi, W. I.; Lee, J. H.; Tae, G. Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy. Biomaterials 2013, 34 (26), 6239-6248. doi: 10.1016/j.biomaterials.2013.04.066.
  • Lee, D. J.; Ahn, Y. S.; Youn, Y. S.; Lee, E. S. Poly(ethylene glycol)-crosslinked fullerenes for high efficient phototherapy. Polymers for Advanced Technologies 2013, 24 (2), 220-227. doi: 10.1002/pat.3074.
  • Huang, W.; Huang, Y.; You, Y.; Nie, T.; Chen, T. High-Yield Synthesis of Multifunctional Tellurium Nanorods to Achieve Simultaneous Chemo-Photothermal Combination Cancer Therapy. Advanced Functional Materials 2017, 27 (33). doi: 10.1002/adfm.201701388.
  • Pan, W.; Liu, C.; Li, Y.; Yang, Y.; Li, W.; Feng, C.; Li, L. Ultrathin tellurium nanosheets for simultaneous cancer thermo-chemotherapy. Bioactive Materials 2022, 13, 96-104. doi: 10.1016/j.bioactmat.2021.11.010.
  • Hu, J.; Ran, S.; Huang, Z.; Liu, Y.; Hu, H.; Zhou, Y.; Ding, X.; Yin, J.; Zhang, Y. Antibacterial tellurium-containing polycarbonate drug carriers to eliminate intratumor bacteria for synergetic chemotherapy against colorectal cancer. Acta Biomaterialia 2024. doi: 10.1016/j.actbio.2024.06.042.
  • Zhao, F.; Huang, W.; He, L.; Nie, S.; Sun, Z.; Chen, T.; Yin, H.; Zhao, J. Reversing lung cancer radioresistance by hyperpermeable tellurium nanotherapeutics via remodeling tumor microenvironment. Nano Today 2023, 50. doi: 10.1016/j.nantod.2023.101819.
  • Duan, L.; Liu, T.; Chen, T. Near-infrared laser-triggered drug release in a tellurium nanosystem for simultaneous chemo-photothermal cancer therapy. Biomater Sci 2021, 9 (5), 1767-1778. doi: 10.1039/d0bm01811b.
  • Guo, Z.; Liu, Y.; Cheng, X.; Wang, D.; Guo, S.; Jia, M.; Ma, K.; Cui, C.; Wang, L.; Zhou, H. Versatile biomimetic cantharidin-tellurium nanoparticles enhance photothermal therapy by inhibiting the heat shock response for combined tumor therapy. Acta Biomaterialia 2020, 110, 208-220. doi: 10.1016/j.actbio.2020.03.028.
  • Wu, Y.; Guo, T.; Qiu, Y.; Lin, Y.; Yao, Y.; Lian, W.; Lin, L.; Song, J.; Yang, H. An inorganic prodrug, tellurium nanowires with enhanced ROS generation and GSH depletion for selective cancer therapy. Chem Sci 2019, 10 (29), 7068-7075. doi: 10.1039/c9sc01070j.
  • Yang, T.; Ke, H.; Wang, Q.; Tang, Y.; Deng, Y.; Yang, H.; Yang, X.; Yang, P.; Ling, D.; Chen, C.; et al. Bifunctional Tellurium Nanodots for Photo-Induced Synergistic Cancer Therapy. ACS Nano 2017, 11 (10), 10012-10024. doi: 10.1021/acsnano.7b04230.
  • Zhang, H.; Xuan, X.; Wang, Y.; Qi, Z.; Cao, K.; Tian, Y.; Wang, C.; Chang, J.; Zhang, Z.; Hou, L. In situ autophagy regulation in synergy with phototherapy for breast cancer treatment. Acta Pharmaceutica Sinica B 2024, 14 (5), 2317-2332. doi: 10.1016/j.apsb.2023.11.019.
  • Camuzard, O.; Santucci-Darmanin, S.; Carle, G. F.; Pierrefite-Carle, V. Autophagy in the crosstalk between tumor and microenvironment. Cancer Lett 2020, 490, 143-153. doi: 10.1016/j.canlet.2020.06.015.
  • Wang, H.; Liu, F.; Wu, X.; Zhu, G.; Tang, Z.; Qu, W.; Zhao, Q.; Huang, R.; Tian, M.; Fang, Y.; et al. Cancer-associated fibroblasts contributed to hepatocellular carcinoma recurrence and metastasis via CD36-mediated fatty-acid metabolic reprogramming. Experimental Cell Research 2024, 435 (2). doi: 10.1016/j.yexcr.2024.113947.
  • Mazurkiewicz, J.; Simiczyjew, A.; Dratkiewicz, E.; Pietraszek-Gremplewicz, K.; Majkowski, M.; Kot, M.; Zietek, M.; Matkowski, R.; Nowak, D. Melanoma cells with diverse invasive potential differentially induce the activation of normal human fibroblasts. Cell Commun Signal 2022, 20 (1), 63. doi: 10.1186/s12964-022-00871-x.
  • Bellei, B.; Migliano, E.; Picardo, M. A Framework of Major Tumor-Promoting Signal Transduction Pathways Implicated in Melanoma-Fibroblast Dialogue. Cancers (Basel) 2020, 12 (11). doi: 10.3390/cancers12113400.
  • Qu, C.; Wang, Q.; Meng, Z.; Wang, P. Cancer-Associated Fibroblasts in Pancreatic Cancer: Should They Be Deleted or Reeducated? Integr Cancer Ther 2018, 17 (4), 1016-1019. doi: 10.1177/1534735418794884.
  • Liu, J.; Liu, C.; Ma, Y.; Pan, X.; Chu, R.; Yao, S.; Chen, J.; Liu, C.; Chen, Z.; Sheng, C.; et al. STING inhibitors sensitize platinum chemotherapy in ovarian cancer by inhibiting the CGAS-STING pathway in cancer-associated fibroblasts (CAFs). Cancer Letters 2024, 588. doi: 10.1016/j.canlet.2024.216700.
  • Zaghdoudi, S.; Decaup, E.; Belhabib, I.; Samain, R.; Cassant-Sourdy, S.; Rochotte, J.; Brunel, A.; Schlaepfer, D.; Cros, J.; Neuzillet, C.; et al. FAK activity in cancer-associated fibroblasts is a prognostic marker and a druggable key metastatic player in pancreatic cancer. EMBO Mol Med 2020, 12 (11), e12010. doi: 10.15252/emmm.202012010.
  • Zhen, Z.; Tang, W.; Wang, M.; Zhou, S.; Wang, H.; Wu, Z.; Hao, Z.; Li, Z.; Liu, L.; Xie, J. Protein Nanocage Mediated Fibroblast-Activation Protein Targeted Photoimmunotherapy To Enhance Cytotoxic T Cell Infiltration and Tumor Control. Nano Lett 2017, 17 (2), 862-869. doi: 10.1021/acs.nanolett.6b04150.
  • Hou, L.; Chen, D.; Hao, L.; Tian, C.; Yan, Y.; Zhu, L.; Zhang, H.; Zhang, Y.; Zhang, Z. Transformable nanoparticles triggered by cancer-associated fibroblasts for improving drug permeability and efficacy in desmoplastic tumors. Nanoscale 2019, 11 (42), 20030-20044. doi: 10.1039/c9nr06438a.
  • Hou, L.; Chen, D.; Wang, R.; Wang, R.; Zhang, H.; Zhang, Z.; Nie, Z.; Lu, S. Transformable Honeycomb-Like Nanoassemblies of Carbon Dots for Regulated Multisite Delivery and Enhanced Antitumor Chemoimmunotherapy. Angew Chem Int Ed Engl 2021, 60 (12), 6581-6592. doi: 10.1002/anie.202014397.
  • Ji, T.; Zhao, Y.; Ding, Y.; Wang, J.; Zhao, R.; Lang, J.; Qin, H.; Liu, X.; Shi, J.; Tao, N.; et al. Transformable Peptide Nanocarriers for Expeditious Drug Release and Effective Cancer Therapy via Cancer-Associated Fibroblast Activation. Angew Chem Int Ed Engl 2016, 55 (3), 1050-1055. doi: 10.1002/anie.201506262.
  • Yu, Q.; Qiu, Y.; Li, J.; Tang, X.; Wang, X.; Cun, X.; Xu, S.; Liu, Y.; Li, M.; Zhang, Z.; et al. Targeting cancer-associated fibroblasts by dual-responsive lipid-albumin nanoparticles to enhance drug perfusion for pancreatic tumor therapy. J Control Release 2020, 321, 564-575. doi: 10.1016/j.jconrel.2020.02.040.
  • Yu, Q.; Tang, X.; Zhao, W.; Qiu, Y.; He, J.; Wan, D.; Li, J.; Wang, X.; He, X.; Liu, Y.; et al. Mild hyperthermia promotes immune checkpoint blockade-based immunotherapy against metastatic pancreatic cancer using size-adjustable nanoparticles. Acta Biomaterialia 2021, 133, 244-256. doi: 10.1016/j.actbio.2021.05.002.
  • Liu, Y.; Ai, K.; Liu, J.; Deng, M.; He, Y.; Lu, L. Dopamine‐Melanin Colloidal Nanospheres: An Efficient Near‐Infrared Photothermal Therapeutic Agent for In Vivo Cancer Therapy. Advanced Materials 2012, 25 (9), 1353-1359. doi: 10.1002/adma.201204683.
  • Ren, W.; Yan, Y.; Zeng, L.; Shi, Z.; Gong, A.; Schaaf, P.; Wang, D.; Zhao, J.; Zou, B.; Yu, H.; et al. A Near Infrared Light Triggered Hydrogenated Black TiO2 for Cancer Photothermal Therapy. Advanced Healthcare Materials 2015, 4 (10), 1526-1536. doi: 10.1002/adhm.201500273.
  • Zhang, H.; Gao, L.; Sui, M.; Wang, J.; Wang, Y.; Xuan, X.; Zhang, Z.; Zhu, L.; Hou, L. The “two-pronged” nanosystem to precisely improve lipid metabolism and inflammatory microenvironment for atherosclerotic plaque stabilization. Nano Research 2022, 16 (2), 2706-2718. doi: 10.1007/s12274-022-4872-9.
  • Rao, J.; Mei, L.; Liu, J.; Tang, X.; Yin, S.; Xia, C.; Wei, J.; Wan, D.; Wang, X.; Wang, Y.; et al. Size-adjustable micelles co-loaded with a chemotherapeutic agent and an autophagy inhibitor for enhancing cancer treatment via increased tumor retention. Acta Biomater 2019, 89, 300-312. doi: 10.1016/j.actbio.2019.03.022.
  • Chen, X.; Yu, Q.; Liu, Y.; Sheng, Q.; Shi, K.; Wang, Y.; Li, M.; Zhang, Z.; He, Q. Synergistic cytotoxicity and co-autophagy inhibition in pancreatic tumor cells and cancer-associated fibroblasts by dual functional peptide-modified liposomes. Acta Biomater 2019, 99, 339-349. doi: 10.1016/j.actbio.2019.09.003.
  • Ma, X.; Wu, Y.; Jin, S.; Tian, Y.; Zhang, X.; Zhao, Y.; Yu, L.; Liang, X. Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. Acs Nano 2011, 5 (11), 8629-8639. doi: 10.1021/nn202155y.
  • Li, P.; Zhang, H.; Chen, T.; Zhou, Y.; Yang, J.; Zhou, J. Cancer-associated fibroblasts promote proliferation, angiogenesis, metastasis and immunosuppression in gastric cancer. Matrix Biology 2024. doi: 10.1016/j.matbio.2024.06.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.