461
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

A general model for riblets simulation in turbulent flows

, , &
Pages 333-345 | Received 23 Sep 2019, Accepted 21 Apr 2020, Published online: 07 May 2020

References

  • Ali, Zaib, James Tyacke, Rob Watson, Paul G. Tucker, and Shahrokh Shahpar. 2019. “Efficient Preprocessing of Complex Geometries for CFD Simulations.” International Journal of Computational Fluid Dynamics 33: 98–114. doi: 10.1080/10618562.2019.1606421
  • Aupoix, B., G. Pailhas, and R. Houdeville. 2012. “Towards a General Strategy to Model Riblet Effects.” AIAA Journal 50: 708–716. doi: 10.2514/1.J051343
  • Bannier, A., É Garnier, and P. Sagaut. 2015. “Riblet Flow Model Based on an Extended FIK Identity.” Flow, Turbulence and Combustion 95: 351–376. doi: 10.1007/s10494-015-9624-2
  • Bechert, D. W., and M. Bartenwerfer. 1989. “The Viscous Flow on Surfaces with Longitudinal Ribs.” Journal of Fluid Mechanics 206: 105–129. doi: 10.1017/S0022112089002247
  • Bechert, D. W., M. Bruse, W. Hage, J. G. T. Van der Hoeven, and G. Hoppe. 1997. “Experiments on Drag-Reducing Surfaces and Their Optimization with an Adjustable Geometry.” Journal of Fluid Mechanics 338: 59–87. doi: 10.1017/S0022112096004673
  • Benschop, H. O. G., and W. P. Breugem. 2017. “Drag Reduction by Herringbone Riblet Texture in Direct Numerical Simulations of Turbulent Channel Flow.” Journal of Turbulence 18: 717–759. doi: 10.1080/14685248.2017.1319951
  • Boomsma, A., and F. Sotiropoulos. 2015. “Riblet Drag Reduction in Mild Adverse Pressure Gradients: A Numerical Investigation.” International Journal of Heat and Fluid Flow 56: 251–260. doi: 10.1016/j.ijheatfluidflow.2015.07.022
  • Boomsma, A., and F. Sotiropoulos. 2016. “Direct Numerical Simulation of Sharkskin Denticles in Turbulent Channel Flow.” Physics of Fluids 28: 035106. doi: 10.1063/1.4942474
  • Canuto, V. M., and Y. Cheng. 1997. “Determination of the Smagorinsky–Lilly Constant CS.” Physics of Fluids 9: 1368–1378. doi: 10.1063/1.869251
  • Chamorro, L. P., R. E. A. Arndt, and F. Sotiropoulos. 2013. “Drag Reduction of Large Wind Turbine Blades Through Riblets: Evaluation of Riblet Geometry and Application Strategies.” Renewable Energy 50: 1095–1105. doi: 10.1016/j.renene.2012.09.001
  • Chang, Jaehee, Taeyong Jung, Haecheon Choi, and John Kim. 2019. “Predictions of the Effective Slip Length and Drag Reduction with a Lubricated Micro-Groove Surface in a Turbulent Channel Flow.” Journal of Fluid Mechanics 874: 797–820. doi: 10.1017/jfm.2019.468
  • Choi, K. S. 1989. “Near-wall Structure of a Turbulent Boundary Layer with Riblets.” Journal of Fluid Mechanics 208: 417–458. doi: 10.1017/S0022112089002892
  • Choi, H., P. Moin, and J. Kim. 1993. “Direct Numerical Simulation of Turbulent Flow Over Riblets.” Journal of Fluid Mechanics 255: 503–539. doi: 10.1017/S0022112093002575
  • Chu, D. C., and G. E. Karniadakis. 1993. “A Direct Numerical Simulation of Laminar and Turbulent Flow Over Riblet-Mounted Surfaces.” Journal of Fluid Mechanics 250: 1–42. doi: 10.1017/S0022112093001363
  • Corke, T. C., and F. O. Thomas. 2018. “Active and Passive Turbulent Boundary-Layer Drag Reduction.” AIAA Journal 56: 3835–3847. doi: 10.2514/1.J056949
  • Dean, R. B. 1978. “Reynolds Number Dependence of Skin Friction and Other Bulk Flow Variables in two-Dimensional Rectangular Duct Flow.” Journal of Fluid Engineering 100: 215–223. doi: 10.1115/1.3448633
  • Dean, B., and B. Bhushan. 2010. “Shark-skin Surfaces for Fluid-Drag Reduction in Turbulent Flow: A Review.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368 (1929): 4775–4806. doi: 10.1098/rsta.2010.0201
  • Debisschop, J. R., and F. T. M. Nieuwstadt. 1996. “Turbulent Boundary Layer in an Adverse Pressure Gradient-Effectiveness of Riblets.” AIAA Journal 34: 932–937. doi: 10.2514/3.13170
  • El-Samni, O. A., H. H. Chun, and H. S. Yoon. 2007. “Drag Reduction of Turbulent Flow Over Thin Rectangular Riblets.” International Journal of Engineering Science 45: 436–454. doi: 10.1016/j.ijengsci.2007.03.002
  • Garcia-Mayoral, R., and J. Jiménez. 2011. “Hydrodynamic Stability and Breakdown of the Viscous Regime Over Riblets.” Journal of Fluid Mechanics 678: 317–347. doi: 10.1017/jfm.2011.114
  • Grüneberger, R., and W. Hage. 2011. “Drag Characteristics of Longitudinal and Transverse Riblets at Low Dimensionless Spacings.” Experiments in Fluids 50: 363–373. doi: 10.1007/s00348-010-0936-7
  • Hurst, E., Q. Yang, and Y. M. Chung. 2014. “The Effect of Reynolds Number on Turbulent Drag Reduction by Streamwise Travelling Waves.” Journal of Fluid Mechanics 759: 28–55. doi: 10.1017/jfm.2014.524
  • Jiménez, J. 1994. “On the Structure and Control of Near Wall Turbulence.” Physics of Fluids 6: 944–953. doi: 10.1063/1.868327
  • Kim, J., P. Moin, and R. Moser. 1987. “Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number.” Journal of Fluid Mechanics 177: 133–166. doi: 10.1017/S0022112087000892
  • Koepplin, V., F. Herbst, and J. R. Seume. 2017. “Correlation-based Riblet Model for Turbomachinery Applications.” Journal of Turbomachinery 139: 071006. doi: 10.1115/1.4035605
  • Lee, S. J., and Y. G. Jang. 2005. “Control of Flow Around a NACA 0012 Airfoil with a Micro-Riblet Film.” Journal of Fluids and Structures 20: 659–672. doi: 10.1016/j.jfluidstructs.2005.03.003
  • Li, X., and X. Li. 2016. “All-speed Roe Scheme for the Large Eddy Simulation of Homogeneous Decaying Turbulence.” International Journal of Computational Fluid Dynamics 30: 69–78. doi: 10.1080/10618562.2016.1156095
  • Li, J., Y. Liu, and J. Wang. 2019. “Evaluation Method of Riblets Effects and Application on a Missile Surface.” Aerospace Science and Technology 95: 105418. doi: 10.1016/j.ast.2019.105418
  • Luchini, P., F. Manzo, and A. Pozzi. 1991. “Resistance of a Grooved Surface to Parallel Flow and Cross-Flow.” Journal of Fluid Mechanics 228: 87–109.
  • Martin, S., and B. Bhushan. 2014. “Fluid Flow Analysis of a Shark-Inspired Microstructure.” Journal of Fluid Mechanics 756: 5–29. doi: 10.1017/jfm.2014.447
  • Mele, B., and R. Tognaccini. 2012. Numerical simulation of riblets on airfoils and wings. 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. AIAA paper, 2012–0861.
  • Mele, B., and R. Tognaccini. 2018. “Slip Length–Based Boundary Condition for Modeling Drag Reduction Devices.” AIAA Journal 56: 3478–3490. doi: 10.2514/1.J056589
  • Mele, B., R. Tognaccini, and P. Catalano. 2015. “Performance Assessment of a Transonic Wing–Body Configuration with Riblets Installed.” Journal of Aircraft 53: 129–140. doi: 10.2514/1.C033220
  • Min, T., and J. Kim. 2004. “Effects of Hydrophobic Surface on Skin-Friction Drag.” Physics of Fluids 16: L55–L58. doi: 10.1063/1.1755723
  • Monfared, M., M. A. Alidoostan, and B. Saranjam. 2019. “Experimental Study on the Friction Drag Reduction of Superhydrophobic Surfaces in Closed Channel Flow.” Journal of Applied Fluid Mechanics 12: 69–76. doi: 10.29252/jafm.75.253.28442
  • Nieuwstadt, F. T. M., W. Wolthers, H. Leijdens, K. Krishna Prasad, and A. Schwarz-van Manen. 1993. “The Reduction of Skin Friction by Riblets Under the Influence of an Adverse Pressure Gradient.” Experiments in Fluids 15: 17–26. doi: 10.1007/BF00195591
  • Park, S. R., and J. M. Wallace. 1994. “Flow Alteration and Drag Reduction by Riblets in a Turbulent Boundary Layer.” AIAA Journal 32: 31–38. doi: 10.2514/3.11947
  • Peet, Y., and P. Sagaut. 2009. “Theoretical Prediction of Turbulent Skin Friction on Geometrically Complex Surfaces.” Physics of Fluids 21: 105105. doi: 10.1063/1.3241993
  • Pope, S. B. 2001. Turbulent Flows. Cambridge: Cambridge University Press.
  • Raayai-Ardakani, S., and G. H. McKinley. 2019. “Geometric Optimization of Riblet-Textured Surfaces for Drag Reduction in Laminar Boundary Layer Flows.” Physics of Fluids 31: 053601. doi: 10.1063/1.5090881
  • Rastegari, A., and R. Akhavan. 2015. “On the Mechanism of Turbulent Drag Reduction with Super-Hydrophobic Surfaces.” Journal of Fluid Mechanics 773: R4. doi: 10.1017/jfm.2015.266
  • Rastegari, A., and R. Akhavan. 2018. “The Common Mechanism of Turbulent Skin-Friction Drag Reduction with Superhydrophobic Longitudinal Microgrooves and Riblets.” Journal of Fluid Mechanics 838: 68–104. doi: 10.1017/jfm.2017.865
  • Sareen, Agrim, Robert W. Deters, Steven P. Henry, and Michael S. Selig. 2014. “Drag Reduction Using Riblet Film Applied to Airfoils for Wind Turbines.” Journal of Solar Energy Engineering 136: 021007. doi: 10.1115/1.4024982
  • Sasamori, M., O. Iihama, H. Mamori, K. Iwamoto, and A. Murata. 2017. “Parametric Study on a Sinusoidal Riblet for Drag Reduction by Direct Numerical Simulation.” Flow, Turbulence and Combustion 99: 47–69. doi: 10.1007/s10494-017-9805-2
  • Schlichting, H., and K. Gersten. 2016. Boundary-layer Theory. New York: Springer.
  • Spalart, P. R., and J. D. McLean. 2011. “Drag Reduction: Enticing Turbulence, and Then an Industry.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369 (1940): 1556–1569. doi: 10.1098/rsta.2010.0369
  • Suzuki, Y., and N. Kasagi. 1994. “Turbulent Drag Reduction Mechanism Above a Riblet Surface.” AIAA Journal 32: 1781–1790. doi: 10.2514/3.12174
  • Walsh, M. J. 1982. Turbulent boundary layer drag reduction using riblets. AIAA Paper, No. 1982–169.
  • Yan, Y. Y. 2007. “Recent Advances in Computational Simulation of Macro-, Meso-, and Micro-Scale Biomimetics Related Fluid Flow Problems.” Journal of Bionic Engineering 4: 97–107. doi: 10.1016/S1672-6529(07)60021-3
  • Yu, Y., X. Ren, X. Li, and C. Gu. 2018. “Flow Simulation of Various Riblet Shapes and a Uniform Model for Boundary Layer.” Journal of Applied Fluid Mechanics 11: 755–764. doi: 10.29252/jafm.11.03.28343

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.