232
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Source Term-Based Turbulent Flow Simulation on GPU with Link-Wise Artificial Compressibility Method

ORCID Icon, , ORCID Icon, &
Pages 549-561 | Received 05 Jun 2021, Accepted 08 Sep 2021, Published online: 04 Oct 2021

References

  • Adams, N. A. 1998. “Direct Numerical Simulation of Turbulent Compression Ramp Flow.” Theoretical & Computational Fluid Dynamics 12 (2): 109–129.
  • Asinari, P., T. Ohwada, E. Chiavazzo, and A. F. Di Rienzo. 2012. “Link-wise Artificial Compressibility Method.” Journal of Computational Physics 231 (15): 5109–5143. doi:https://doi.org/10.1016/j.jcp.2012.04.027
  • Chen, Z., C. Shu, and D. Tan. 2017. “Three-Dimensional Simplified and Unconditionally Stable Lattice Boltzmann Method for Incompressible Isothermal and Thermal Flows.” Physics of Fluids 29 (5): 053601.
  • Chen, Z., C. Shu, and D. Tan. 2018. “Highly Accurate Simplified Lattice Boltzmann Method.” Physics of Fluids 30 (10): 103605.
  • Chen, Z., C. Shu, D. Tan, and C. Wu. 2018. “On Improvements of Simplified and Highly Stable Lattice Boltzmann Method: Formulations, Boundary Treatment, and Stability Analysis.” International Journal for Numerical Methods in Fluids 87 (4): 161–179.
  • Chen, Z., C. Shu, Y. Wang, L. Yang, and D. Tan. 2017. “A Simplified Lattice Boltzmann Method Without Evolution of Distribution Function.” Advances in Applied Mathematics and Mechanics 9 (1): 1–22.
  • Chorin, A. J. 1967. “A Numerical Method for Solving Incompressible Viscous Flow Problems.” Journal of Computational Physics 2 (1): 12–26. doi:https://doi.org/10.1016/0021-9991(67)90037-X
  • Guo, Y., L. Kleiser, and N. Adams. 1994. “A Comparison Study of an Improved Temporal DNS and Spatial DNS of Compressible Boundary Layer Transition.” Fluid Dynamics Conference, 2371.
  • Habich, J., C. Feichtinger, H. Köstler, G. Hager, and G. Wellein. 2013. “Performance Engineering for the Lattice Boltzmann Method on Gpgpus: Architectural Requirements and Performance Results.” Image & Vision Computing New Zealand 80: 276–282.
  • Habich, J., T. Zeiser, G. Hager, and G. Wellein. 2011. “Performance Analysis and Optimization Strategies for a D3q19 Lattice Boltzmann Kernel on Nvidia GPUs Using Cuda.” Advances in Engineering Software 42 (5): 266–272.
  • Harwood, A. R., J. O'Connor, J. S. Munoz, M. C. Santasmasas, and A. J. Revell. 2018. “Luma: A Many-core, Fluid–structure Interaction Solver Based on the Lattice-Boltzmann Method.” SoftwareX 7 (7): 88–94.
  • Harwood, A., P. Wenisch, and A. Revell. 2018. “A Real-Time Modelling and Simulation Platform for Virtual Engineering Design and Analysis.” Proceedings of 6th European Conference on Computational Mechanics (ECCM 6) and 7th European Conference on Computational Fluid Dynamics (ECFD 7).
  • Januszewski, M., and M. Kostur. 2014. “Sailfish: A Flexible Multi-GPU Implementation of the Lattice Boltzmann Method.” Computer Physics Communications 185 (9): 2350–2368. doi:https://doi.org/10.1016/j.cpc.2014.04.018
  • Jarrin, N., S. Benhamadouche, D. Laurence, and R. Prosser. 2006. “A Synthetic-Eddy-Method for Generating Inflow Conditions for Large-Eddy Simulations.” International Journal of Heat and Fluid Flow 27 (4): 585–593.
  • Kawamura, H. 2008. “Direct Numerical Simulation Data Base for Turbulent Channel Flow With Heat Transfer.” Accessed May 27 2021. https://www.rs.tus.ac.jp/t2lab/db/
  • Khani, M., and T.-H. Wu. 2018. “A D3Q19 Lattice Boltzmann Solver on a GPU Using Constant-Time Circular Array Shifting.” Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA).
  • Klein, M., A. Sadiki, and J. Janicka. 2003. “A Digital Filter Based Generation of Inflow Data for Spatially Developing Direct Numerical Or Large Eddy Simulations.” Journal of Computational Physics 186 (2): 652–665. doi:https://doi.org/10.1016/S0021-9991(03)00090-1
  • Kuznik, F., C. Obrecht, G. Rusaouen, and J. J. Roux. 2010. “LBM Based Flow Simulation Using GPU Computing Processor.” Computers & Mathematics with Applications 59 (7): 2380–2392.
  • Li, W., X. Wei, and A. Kaufman. 2003. “Implementing Lattice Boltzmann Computation on Graphics Hardware.” The Visual Computer 19 (7–8): 444–456. doi:https://doi.org/10.1007/s00371-003-0210-6
  • Matyas, A. 2018. “Large Eddy Simulation of Flow Around a Cylinder With Fractional Step Lattice Boltzmann Methods.” International Conference of Numerical Analysis and Applied Mathematics.
  • Matyas, A. 2019. “Fractional Step Lattice Boltzmann Methods with Coarse Corrective Steps.” Computers & Fluids 187 (1): 60–68. doi:https://doi.org/10.1016/j.compfluid.2019.05.002
  • Mawson, M. J., and A. J. Revell. 2014. “Memory Transfer Optimization for a Lattice Boltzmann Solver on Kepler Architecture Nvidia GPUs.” Computer Physics Communications 185 (10): 2566–2574.
  • McIntosh-Smith, S., and D. Curran. 2014. “Evaluation of a Performance Portable Lattice Boltzmann Code Using Opencl.” Proceedings of the International Workshop on OpenCL 2013 & 2014, 1–12.
  • N. B. Computationally Intensive Research. 2021. “Bede Case Study.” Accessed April 16 2021. https://n8cir.org.uk/documents/97/2021_01_28_santasmasas_case_study_2.pdf
  • Nvidia. 2021. “Compute Unified Device Architecture Programming Guide.” Accessed May 27 2021. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
  • Obrecht, C., P. Asinari, F. Kuznik, and J.-J. Roux. 2014. “High-Performance Implementations and Large-scale Validation of the Link-wise Artificial Compressibility Method.” Journal of Computational Physics 275 (15): 143–153. doi:https://doi.org/10.1016/j.jcp.2014.06.062
  • Obrecht, C., P. Asinari, F. Kuznik, and J.-J. Roux. 2016. “Thermal Link-Wise Artificial Compressibility Method: GPU Implementation and Validation of a Double-population Model.” Computers & Mathematics with Applications 72 (2): 375–385, the Proceedings of ICMMES 2014.
  • Obrecht, C., F. Kuznik, B. Tourancheau, and J. J. Roux. 2013. “Multi-GPU Implementation of the Lattice Boltzmann Method.” Computers & Mathematics with Applications 65 (2): 252–261.
  • Riesinger, C., A. Bakhtiari, M. Schreiber, P. Neumann, and H.-J. Bungartz. 2017. “A Holistic Scalable Implementation Approach of the Lattice Boltzmann Method for CPU/GPU Heterogeneous Clusters.” Computation 5 (4): 48.
  • Schmidt, S., and M. Breuer. 2017. “Source Term Based Synthetic Turbulence Inflow Generator for Eddy-resolving Predictions of An Airfoil Flow Including a Laminar Separation Bubble.” Computers & Fluids 146 (6): 1–22.
  • Shu, C., X. D. Niu, Y. T. Chew, and Q. D. Cai. 2006. “A Fractional Step Lattice Boltzmann Method for Simulating High Reynolds Number Flows.” Mathematics and Computers in Simulation (MATCOM) 72 (2–6): 201–205.
  • Skillen, A., A. Revell, and T. Craft. 2016. “Accuracy and Efficiency Improvements in Synthetic Eddy Methods.” International Journal of Heat and Fluid Flow 62 (1–3): 386–394.
  • Tãulke, J. 2009. “Implementation of a Lattice Boltzmann Kernel Using the Compute Unified Device Architecture Developed by Nvidia.” Computing and Visualization in Science 13: 1–11.
  • Tölke, J., and M. Krafczyk. 2008. “TeraFLOP Computing on a Desktop PC with GPUs for 3D CFD.” International Journal of Computational Fluid Dynamics 22 (7): 443–456. doi:https://doi.org/10.1080/10618560802238275
  • Tomczak, T., and R. G. Szafran. 2018. “Sparse Geometries Handling in Lattice Boltzmann Method Implementation for Graphic Processors.” IEEE Transactions on Parallel and Distributed Systems 29 (8): 1865–1878.
  • Tran, N. P., M. Lee, and S. Hong. 2017. “Performance Optimization of 3d Lattice Boltzmann Flow Solver on a GPU.” Scientific Programming 2017: 1–16. doi:https://doi.org/10.1155/2017/1205892.
  • Xian, W., and A. Takayuki. 2011. “Multi-GPU Performance of Incompressible Flow Computation by Lattice Boltzmann Method on GPU Cluster.” Parallel Computing 37: 521–535.
  • Yu, Z., Z. Lin, X. Shao, and L.-P. Wang. 2016. “A Parallel Fictitious Domain Method for the Interface-resolved Simulation of Particle-laden Flows and Its Application to the Turbulent Channel Flow.” Engineering Applications of Computational Fluid Mechanics 10 (1): 160–170.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.