395
Views
1
CrossRef citations to date
0
Altmetric
Articles

An Immersed Boundary Method Based on Parallel Adaptive Cartesian Grids for High Reynolds Number Turbulent Flow

, , , &
Pages 319-341 | Received 14 Jan 2022, Accepted 27 Jul 2022, Published online: 16 Aug 2022

References

  • Akenine-Möllser, T. 2001. “Fast 3D Triangle-Box Overlap Testing.” Journal of Graphics Tools 6 (1): 29–33.
  • Alauzet, F., and A. Loseille. 2016. “A Decade of Progress on Anisotropic Mesh Adaptation for Computational Fluid Dynamics.” Computer-Aided Design 72: 13–39.
  • Allmaras, S. R., and F. T. Johnson. 2012. “Modifications and Clarifications for the Implementation of the Spalart-Allmaras Turbulence Model.” In Seventh international conference on computational fluid dynamics (ICCFD7), Big Island, HI.
  • Bangerth, W., R. Hartmann, and G. Kanschat. 2007. “Deal. II – A General-Purpose Object-Oriented Finite Element Library.” ACM Transactions on Mathematical Software 33 (4): 24.
  • Bashkin, V. A., A. V. Vaganov, I. V. Egorov, D. V. Ivanovet, and G. A. Ignatova. 2002. “Comparison of Calculated and Experimental Data on Supersonic Flow Past a Circular Cylinder.” Fluid Dynamics 37 (3): 473–483.
  • Berger, M., and M. Aftosmis. 2012. “Progress Towards a Cartesian cut-Cell Method for Viscous Compressible Flow.” In 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.
  • Berger, M. J., and M. J. Aftosmis. 2017. “An ODE-Based Wall Model for Turbulent Flow Simulations.” AIAA Journal 56 (2): 700–714.
  • Berger, M. J., and J. Oliger. 1984. “Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations.” Journal of Computational Physics 53 (3): 484–512.
  • Bharadwaj S, A., and S. Ghosh. 2020. “Data Reconstruction at Surface in Immersed-Boundary Methods.” Computers & Fluids 196: 104236.
  • Blazek, J. 2015. Computational Fluid Dynamics: Principles and Applications. Oxford: Butterworth-Heinemann.
  • Brodersen, O. 2002. “Drag Prediction of Engine-Airframe Interference Effects Using Unstructured Navier-Stokes Calculations.” Journal of Aircraft 39 (6): 927–935.
  • Burstedde, C., L. C. Wilcox, and O. Ghattas. 2011. “p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees.” SIAM Journal on Scientific Computing 33 (3): 1103–1133.
  • Capizzano, F. 2011. “Turbulent Wall Model for Immersed Boundary Methods.” AIAA Journal 49 (11): 2367–2381.
  • Clarke, D. K., M. D. Salas, and H. A. Hassan. 1986. “Euler Calculations for Multielement Airfoils Using Cartesian Grids.” AIAA Journal 24 (3): 353–358.
  • Coirier, W. J., and K. G. Powell. 1996. “Solution-Adaptive Cartesian Cell Approach for Viscous and Inviscid Flows.” AIAA Journal 34 (5): 938–945.
  • Constant, B., S. Péron, H. Beaugendre, and C. Benoit. 2021. “An Improved Immersed Boundary Method for Turbulent Flow Simulations on Cartesian Grids.” Journal of Computational Physics 435: 110240.
  • Cook, P., M. McDonald, and M. Firmin. 1979. “Aerofoil rae 2822-pressure distributions, and boundary layer and wake measurements. Experimental data base for computer program assessment.” AGARD Report AR, 1979. 138.
  • Dussin, D., M. Fossati, A. Guardone, and L. Vigevano. 2009. “Hybrid Grid Generation for Two-Dimensional High-Reynolds Flows.” Computers & Fluids 38 (10): 1863–1875.
  • Gavel, H., P. Berry, and A. Axelsson. 2006. “Conceptual Design of a New Generation JAS 39 Gripen Aircraft.” In 44th AIAA Aerospace Sciences Meeting and Exhibit.
  • Ghias, R., R. Mittal, and H. Dong. 2007. “A Sharp Interface Immersed Boundary Method for Compressible Viscous Flows.” Journal of Computational Physics 225 (1): 528–553.
  • Gottlieb, S., and C.-W. Shu. 1998. “Total Variation Diminishing Runge-Kutta Schemes.” Mathematics of Computation 67 (221): 73–85.
  • Gou, J., X. Su, and X. Yuan. 2018. “Adaptive Mesh Refinement Method-Based Large Eddy Simulation for the Flow Over Circular Cylinder at ReD = 3900.” International Journal of Computational Fluid Dynamics 32 (1): 1–18.
  • Haselbacher, A., and J. Blazek. 2000. “Accurate and Efficient Discretization of Navier-Stokes Equations on Mixed Grids.” AIAA Journal 38 (11): 2094–2102.
  • Isaac, T., C. Burstedde, L. C. Wilcox, and O. Ghattas. 2015. “Recursive Algorithms for Distributed Forests of Octrees.” SIAM Journal on Scientific Computing 37 (5): C497–C531.
  • Jalaal, M., and K. Mehravaran. 2012. “Fragmentation of Falling Liquid Droplets in bag Breakup Mode.” International Journal of Multiphase Flow 47: 115–132.
  • Kalitzin, G., and G. Iaccarino. 2002. “Turbulence Modeling in an Immersed-Boundary RANS Method.” In CTR Annual Briefs, 415–426.
  • Keats, W. A., and F. S. Lien. 2004. “Two-Dimensional Anisotropic Cartesian Mesh Adaptation for the Compressible Euler Equations.” International Journal for Numerical Methods in Fluids 46 (11): 1099–1125.
  • Kupiainen, M., and B. Sjögreen. 2009. “A Cartesian Embedded Boundary Method for the Compressible Navier-Stokes Equations.” Journal of Scientific Computing 41 (1): 94–117.
  • Laflin, K. R., S. M. Klausmeyer, T. Zickuhr, J. C. Vassberg, R. A. Wahls, J. H. Morrison, J. L. Godard. et al. 2005. “Data Summary from Second AIAA Computational Fluid Dynamics Drag Prediction Workshop.” Journal of Aircraft 42 (5): 1165–1178.
  • Lee-Rausch, E. M., N. T. Frink, D. J. Mavriplis, R. D. Rausch, and W. E. Milholen. 2009. “Transonic Drag Prediction on a DLR-F6 Transport Configuration Using Unstructured Grid Solvers.” Computers & Fluids 38 (3): 511–532.
  • Liu, J., N. Zhao, O. Hu, M. Goman, and X. K. Li. 2013. “A New Immersed Boundary Method for Compressible Navier–Stokes Equations.” International Journal of Computational Fluid Dynamics 27 (3): 151–163.
  • Mayeur, J., A. Dumont, D. Destarac, and V. Gleize. 2016. “Reynolds-Averaged Navier–Stokes Simulations on NACA0012 and ONERA-M6 Wing with the ONERA ElsA Solver.” AIAA Journal 54 (9): 2671–2687.
  • Mohd-Yusof, J. 1997. Combined Immersed Boundaries/B-Splines Methods for Simulations in Complex Geometries, CTR Annual Research Briefs, NASA Ames. San Francisco: Stanford University.
  • Nagaram, M., and M.-S. Liou. 2009. “A Cartesian Based Body-Fitted Adaptive Grid Method for Compressible Viscous Flows.” In 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.
  • O’Rourke, J. 1998. Computational Geometry in C. Cambridge: Cambridge University Press.
  • Paillere, H., and K. Powell. 1992. “A Wave-Model-Based Refinement Criterion for Adaptive-Grid Computation of Compressible Flows.” In 30th Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics.
  • Peskin, C. S. 1972. “Flow Patterns Around Heart Valves: A Numerical Method.” Journal of Computational Physics 10 (2): 252–271.
  • Péron, S., C. Benoit, T. Renaud, and I. Mary. 2021. “An Immersed Boundary Method on Cartesian Adaptive Grids for the Simulation of Compressible Flows Around Arbitrary Geometries.” Engineering with Computers 37 (3): 2419–2437.
  • Rumsey, C. L., S. M. Rivers, and J. H. Morrison. 2005. “Study of CFD Variation on Transport Configurations from the Second Drag-Prediction Workshop.” Computers & Fluids 34 (7): 785–816.
  • Rumsey, C., B. Smith, and G. Huang. 2010. “Description of a Website Resource for Turbulence Modeling Verification and Validation.” In 40th Fluid Dynamics Conference and Exhibit.
  • Schmitt, V. 1979. “Pressure Distributions on the ONERA M6-Wing Experimental Data Base for Computer Program Assessment.” AGARD AR 138: B1-1–B1-44.
  • Sitaraman, J., V. K. Lakshminarayan, B. Roget, and A. M. Wissink. 2017. “Progress in Strand Mesh Generation and Domain Connectivity for Dual-Mesh cfd Simulations.” In 55th AIAA Aerospace Sciences Meeting.
  • Slotnick, J. P., A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, and D. J. Mavriplis. 2014. CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences.
  • Spalart, P., and S. Allmaras. 1992. “A One-Equation Turbulence Model for Aerodynamic Flows.” In 30th Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics.
  • Tamaki, Y., M. Harada, and T. Imamura. 2017. “Near-Wall Modification of Spalart–Allmaras Turbulence Model for Immersed Boundary Method.” AIAA Journal 55 (9): 3027–3039.
  • Tamaki, Y., and T. Imamura. 2018. “Turbulent Flow Simulations of the Common Research Model Using Immersed Boundary Method.” AIAA Journal 56 (6): 2271–2282.
  • Toro, E. F. 2013. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Berlin: Springer Science & Business Media.
  • Weiss, J. M., J. P. Maruszewski, and W. A. Smith. 1999. “Implicit Solution of Preconditioned Navier-Stokes Equations Using Algebraic Multigrid.” AIAA Journal 37 (1): 29–36.
  • Wieghardt, K., and W. Tillmann. 1951. “On the Turbulent Friction Layer for Rising Pressure.” NACA TM-1314.
  • Wissink, A., S. Kamkar, T. Pulliam, J. Sitaraman, and V. Sankaran. 2010. “Cartesian Adaptive Mesh Refinement for Rotorcraft Wake Resolution.” In 28th AIAA Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics.
  • Zhu, J., and C.-W. Shu. 2018. “A New Type of Multi-Resolution WENO Schemes with Increasingly Higher Order of Accuracy.” Journal of Computational Physics 375: 659–683.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.