192
Views
1
CrossRef citations to date
0
Altmetric
Articles

Numerical Assessment of a Nonintrusive Surrogate Model Based on Recurrent Neural Networks and Proper Orthogonal Decomposition: Rayleigh–Bénard Convection

ORCID Icon, & ORCID Icon
Pages 599-617 | Received 01 Jul 2022, Accepted 28 Nov 2022, Published online: 10 Feb 2023

References

  • Abadía-Heredia, R., M. López-Martín, B. Carro, J. I. Arribas, J. M. Pérez, and S. Le Clainche. 2022. “A Predictive Hybrid Reduced Order Model Based on Proper Orthogonal Decomposition Combined with Deep Learning Architectures.” Expert Systems with Applications 187: Article ID 115910. doi:10.1016/j.eswa.2021.115910.
  • Ahmed, M., and O. San. 2018. “Stabilized Principal Interval Decomposition Method for Model Reduction of Nonlinear Convective Systems with Moving Shocks.” Computational and Applied Mathematics 37 (5): 6870–6902. doi:10.1007/s40314-018-0718-z.
  • Ahmed, S. E., S. Pawar, O. San, A. Rasheed, T. Iliescu, and B. R. Noack. 2021. “On Closures for Reduced Order Models—A Spectrum of First-Principle to Machine-Learned Avenues.” Physics of Fluids 33 (9): Article ID 091301. doi:10.1063/5.0061577.
  • Ahmed, S. E., and O. San. 2020. “Breaking the Kolmogorov Barrier in Model Reduction of Fluid Flows.” Fluids 5 (1): 26. doi:10.3390/fluids5010026.
  • Ahmed, S. E., O. San, A. Rasheed, and T. Iliescu. 2020. “A Long Short-term Memory Embedding for Hybrid Uplifted Reduced Order Models.” Physica D: Nonlinear Phenomena 409: Article ID 132471. doi:10.1016/j.physd.2020.132471.
  • Ahmed, S. E., O. San, A. Rasheed, and T. Iliescu. 2021. “Nonlinear Proper Orthogonal Decomposition for Convection-Dominated Flows.” Physics of Fluids 33 (12): Article ID 121702. doi:10.1063/5.0074310.
  • Amsallem, D., and B. Haasdonk. 2016. “PEBL-ROM: Projection-Error Based Local Reduced-Order Models.” Advanced Modeling and Simulation in Engineering Sciences 3 (1): 1–25. doi:10.1186/s40323-016-0059-7.
  • Amsallem, D., M. J. Zahr, and C. Farhat. 2012. “Nonlinear Model Order Reduction Based on Local Reduced-Order Bases.” International Journal for Numerical Methods in Engineering 92 (10): 891–916. doi:10.1002/nme.v92.10.
  • Amsallem, D., M. J. Zahr, and K. Washabaugh. 2015. “Fast Local Reduced Basis Updates for the Efficient Reduction of Nonlinear Systems with Hyper-Reduction.” Advances in Computational Mathematics 41 (5): 1187–1230. doi:10.1007/s10444-015-9409-0.
  • Aubry, N., W. Y. Lian, and E. S. Titi. 1993. “Preserving Symmetries in the Proper Orthogonal Decomposition.” SIAM Journal on Scientific Computing 14 (2): 483–505. doi:10.1137/0914030.
  • Bergmann, M., C. H. Bruneau, and A. Iollo. 2009. “Enablers for Robust POD Models.” Journal of Computational Physics 228 (2): 516–538. doi:10.1016/j.jcp.2008.09.024.
  • Berkooz, G., P. Holmes, and J. L. Lumley. 1993. “The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows.” Annual Review of Fluid Mechanics 25 (1): 539–575. doi:10.1146/fluid.1993.25.issue-1.
  • Briley, W. R. 1971. “A Numerical Study of Laminar Separation Bubbles Using the Navier–Stokes Equations.” Journal of Fluid Mechanics 47 (4): 713–736. doi:10.1017/S0022112071001332.
  • Brunton, S. L., B. R. Noack, and P. Koumoutsakos. 2020. “Machine Learning for Fluid Mechanics.” Annual Review of Fluid Mechanics 52: 477–508. doi:10.1146/fluid.2020.52.issue-1.
  • Burkardt, J., M. Gunzburger, and H. C. Lee. 2006. “Centroidal Voronoi Tessellation-based Reduced-Order Modeling of Complex Systems.” SIAM Journal on Scientific Computing 28 (2): 459–484. doi:10.1137/5106482750342221x.
  • Burkardt, J., M. Gunzburger, and H. C. Lee. 2006. “POD and CVT-based Reduced-Order Modeling of Navier–Stokes Flows.” Computer Methods in Applied Mechanics and Engineering 196 (1–3): 337–355. doi:10.1016/j.cma.2006.04.004.
  • Cai, T., Z. Deng, Y. Park, S. Mohammadshahi, Y. Liu, and K. C. Kim. 2021. “Acquisition of kHz-Frequency Two-dimensional Surface Temperature Field Using Phosphor Thermometry and Proper Orthogonal Decomposition Assisted Long Short-Term Memory Neural Networks.” International Journal of Heat and Mass Transfer 165: Article ID 120662. doi:10.1016/j.ijheatmasstransfer.2020.120662.
  • Christensen, E. A., M. Brøns, and J. N. Sørensen. 1999. “Evaluation of Proper Orthogonal Decomposition-based Decomposition Techniques Applied to Parameter-Dependent Nonturbulent Flows.” SIAM Journal on Scientific Computing 21 (4): 1419–1434. doi:10.1137/S1064827598333181.
  • Deane, A., I. Kevrekidis, G. E. Karniadakis, and S. Orszag. 1991. “Low-dimensional Models for Complex Geometry Flows: Application to Grooved Channels and Circular Cylinders.” Physics of Fluids A: Fluid Dynamics 3 (10): 2337–2354. doi:10.1063/1.857881.
  • Deng, Z., Y. Chen, Y. Liu, and K. C. Kim. 2019. “Time-Resolved Turbulent Velocity Field Reconstruction Using a Long Short-term Memory (LSTM)-based Artificial Intelligence Framework.” Physics of Fluids 31 (7): Article ID 075108. doi:10.1063/1.5111558.
  • Dihlmann, M., M. Drohmann, and B. Haasdonk. 2011. “Model Reduction of Parametrized Evolution Problems Using the Reduced Basis Method with Adaptive Time-partitioning.” Proceedings of ADMOS 2011: 64.
  • Drohmann, M., B. Haasdonk, and M Ohlberger. 2011. “Adaptive Reduced Basis Methods for Nonlinear Convection–Diffusion Equations.” In Finite Volumes for Complex Applications VI Problems & Perspectives, 369–377. Springer.
  • Eftang, J. L., D. J. Knezevic, and A. T. Patera. 2011. “An Hp Certified Reduced Basis Method for Parametrized Parabolic Partial Differential Equations.” Mathematical and Computer Modelling of Dynamical Systems 17 (4): 395–422. doi:10.1080/13873954.2011.547670.
  • Eftang, J. L., A. T. Patera, and E. M. Rønquist. 2010. “An ‘hp’ Certified Reduced Basis Method for Parametrized Elliptic Partial Differential Equations.” SIAM Journal on Scientific Computing 32 (6): 3170–3200. doi:10.1137/090780122.
  • Eftang, J. L., and B. Stamm. 2012. “Parameter Multi-domain ‘hp’ Empirical Interpolation.” International Journal for Numerical Methods in Engineering 90 (4): 412–428. doi:10.1002/nme.3327.
  • Eivazi, H., H. Veisi, M. H. Naderi, and V. Esfahanian. 2020. “Deep Neural Networks for Nonlinear Model Order Reduction of Unsteady Flows.” Physics of Fluids 32 (10): Article ID 105104. doi:10.1063/5.0020526.
  • Esfahanian, V., A. B. Ansari, and F. Torabi. 2015. “Simulation of Lead-acid Battery Using Model Order Reduction.” Journal of Power Sources 279: 294–305. doi:10.1016/j.jpowsour.2014.12.149.
  • Greif, C., and K. Urban. 2019. “Decay of the Kolmogorov N-width for Wave Problems.” Applied Mathematics Letters 96: 216–222. doi:10.1016/j.aml.2019.05.013.
  • Grimberg, S., C. Farhat, R. Tezaur, and C. Bou-Mosleh. 2021. “Mesh Sampling and Weighting for the Hyperreduction of Nonlinear Petrov–Galerkin Reduced-order Models with Local Reduced-order Bases.” International Journal for Numerical Methods in Engineering 122 (7): 1846–1874. doi:10.1002/nme.v122.7.
  • Haasdonk, B., M. Dihlmann, and M. Ohlberger. 2011. “A Training Set and Multiple Bases Generation Approach for Parameterized Model Reduction Based on Adaptive Grids in Parameter Space.” Mathematical and Computer Modelling of Dynamical Systems 17 (4): 423–442. doi:10.1080/13873954.2011.547674.
  • Hochreiter, S., and J. Schmidhuber. 1997. “Long Short-term Memory.” Neural Computation 9 (8): 1735–1780. doi:10.1162/neco.1997.9.8.1735.
  • Holmes, P., J. L. Lumley, G. Berkooz, and C. W Rowley. 2012. Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge: Cambridge University Press.
  • Holmes, P. J., J. L. Lumley, G. Berkooz, J. C. Mattingly, and R. W. Wittenberg. 1997. “Low-dimensional Models of Coherent Structures in Turbulence.” Physics Reports 287 (4): 337–384. doi:10.1016/S0370-1573(97)00017-3.
  • Huang, D., J. N. Fuhg, C. Weißenfels, and P. Wriggers. 2020. “A Machine Learning Based Plasticity Model Using Proper Orthogonal Decomposition.” Computer Methods in Applied Mechanics and Engineering 365: Article ID 113008. doi:10.1016/j.cma.2020.113008.
  • Im, S., J. Lee, and M. Cho. 2021. “Surrogate Modeling of Elasto-plastic Problems Via Long Short-term Memory Neural Networks and Proper Orthogonal Decomposition.” Computer Methods in Applied Mechanics and Engineering 385: Article ID 114030. doi:10.1016/j.cma.2021.114030.
  • Jacquier, P., A. Abdedou, V. Delmas, and A. Soulaïmani. 2021. “Non-intrusive Reduced-order Modeling Using Uncertainty-Aware Deep Neural Networks and Proper Orthogonal Decomposition: Application to Flood Modeling.” Journal of Computational Physics 424: Article ID 109854. doi:10.1016/j.jcp.2020.109854.
  • Kaiser, E., B. R. Noack, L. Cordier, A. Spohn, M. Segond, M. Abel, G. Daviller, and R. K. Niven. 2014. “Cluster-based Reduced-order Modelling of a Mixing Layer.” Journal of Fluid Mechanics 754: 365–414. doi:10.1017/jfm.2014.355.
  • Kalb, V. L., and A. E. Deane. 2007. “An Intrinsic Stabilization Scheme for Proper Orthogonal Decomposition Based Low-dimensional Models.” Physics of Fluids 19 (5): Article ID 054106. doi:10.1063/1.2723149.
  • Kapteyn, M. G., J. V. Pretorius, and K. E. Willcox. 2021. “A Probabilistic Graphical Model Foundation for Enabling Predictive Digital Twins At Scale.” Nature Computational Science 1 (5): 337–347. doi:10.1038/s43588-021-00069-0.
  • Karhunen, K. 1946. “Zur Spektraltheorie Stochastischer Prozesse.” Annales Academiae Scientiarum Fennicae, AI 34:
  • Kherad, M., M. K. Moayyedi, and F. Fotouhi. 2021. “Reduced Order Framework for Convection Dominant and Pure Diffusive Problems Based on Combination of Deep Long Short-term Memory and Proper Orthogonal Decomposition/dynamic Mode Decomposition Methods.” International Journal for Numerical Methods in Fluids 93 (3): 853–873. doi:10.1002/fld.v93.3.
  • Kolmogoroff, A. 1936. “Uber Die Beste Annaherung Von Funktionen Einer Gegebenen Funktionenklasse.” The Annals of Mathematics 37: 107–110. doi:10.2307/1968691.
  • Kosambi, D. 1943. “Statistics in Function Space.” Journal of the Indian Mathematical Society 7: 76–88.
  • Kunisch, K., and S. Volkwein. 1999. “Control of the Burgers Equation by a Reduced-order Approach Using Proper Orthogonal Decomposition.” Journal of Optimization Theory and Applications 102 (2): 345–371. doi:10.1023/A:1021732508059.
  • Kunisch, K., and S. Volkwein. 2001. “Galerkin Proper Orthogonal Decomposition Methods for Parabolic Problems.” Numerische Mathematik 90 (1): 117–148. doi:10.1007/s002110100282.
  • Lele, S. K. 1992. “Compact Finite Difference Schemes with Spectral-like Resolution.” Journal of Computational Physics 103 (1): 16–42. doi:10.1016/0021-9991(92)90324-R.
  • Loeve, M. 1948. “Functions Aleatoires Du Second Ordre.” Processus Stochastique Et Mouvement Brownien 366–420.
  • Lumley, J. L. 1967. “The Structure of Inhomogeneous Turbulent Flows.” Atmospheric Turbulence and Radio Wave Propagation 166–178.
  • Majda, A. 2003. Introduction to PDEs and Waves for the Atmosphere and Ocean. Vol. 9. NY: American Mathematical Society.
  • Maulik, R., B. Lusch, and P. Balaprakash. 2021. “Reduced-order Modeling of Advection-dominated Systems with Recurrent Neural Networks and Convolutional Autoencoders.” Physics of Fluids 33 (3): Article ID 037106. doi:10.1063/5.0039986.
  • Obukhov, A. 1954. “Statistical Description of Continuous Fields.” Transactions of the Geophysical International Academy Nauk USSR 24 (24): 3–42.
  • Olah, C. 2015. Understanding LSTM Networks. Accessed at 27, December 2022. http://colah.github.io/posts/2015-08-Understanding-LSTMs/.
  • Ooi, C., Q. T. Le, M. H. Dao, V. B. Nguyen, H. H. Nguyen, and T. Ba. 2021. “Modeling Transient Fluid Simulations with Proper Orthogonal Decomposition and Machine Learning.” International Journal for Numerical Methods in Fluids 93 (2): 396–410. doi:10.1002/fld.v93.2.
  • Park, H., and M. Lee. 1998. “An Efficient Method of Solving the Navier–Stokes Equations for Flow Control.” International Journal for Numerical Methods in Engineering 41 (6): 1133–1151. doi:10.1002/(ISSN)1097-0207.
  • Pawar, S., S. Rahman, H. Vaddireddy, O. San, A. Rasheed, and P. Vedula. 2019. “A Deep Learning Enabler for Nonintrusive Reduced Order Modeling of Fluid Flows.” Physics of Fluids 31 (8): Article ID 085101. doi:10.1063/1.5113494.
  • Pearson, K. 1901. “LIII. On Lines and Planes of Closest Fit to Systems of Points in Space.” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2 (11): 559–572.
  • Peherstorfer, B., D. Butnaru, K. Willcox, and H. J. Bungartz. 2014. “Localized Discrete Empirical Interpolation Method.” SIAM Journal on Scientific Computing 36 (1): A168–A192. doi:10.1137/130924408.
  • Pugachev, V. S. 1953. “The General Theory of Correlation of Random Functions.” Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 17 (5): 401–420.
  • Rasheed, A., O. San, and T. Kvamsdal. 2020. “Digital Twin: Values, Challenges and Enablers From a Modeling Perspective.” IEEE Access 8: 21980–22012. doi:10.1109/Access.6287639.
  • Rathinam, M., and L. R. Petzold. 2003. “A New Look at Proper Orthogonal Decomposition.” SIAM Journal on Numerical Analysis 41 (5): 1893–1925. doi:10.1137/S0036142901389049.
  • Ravindran, S. 2000. “Reduced-order Adaptive Controllers for Fluid Flows Using POD.” Journal of Scientific Computing 15 (4): 457–478. doi:10.1023/A:1011184714898.
  • Redeker, M., and B. Haasdonk. 2015. “A POD-EIM Reduced Two-scale Model for Crystal Growth.” Advances in Computational Mathematics 41 (5): 987–1013. doi:10.1007/s10444-014-9367-y.
  • San, O. 2015. “A Novel High-order Accurate Compact Stencil Poisson Solver: Application to Cavity Flows.” International Journal of Applied Mechanics 7 (01): Article ID 1550006. doi:10.1142/S1758825115400062.
  • San, O., and J. Borggaard. 2015. “Principal Interval Decomposition Framework for POD Reduced-order Modeling of Convective Boussinesq Flows.” International Journal for Numerical Methods in Fluids 78 (1): 37–62. doi:10.1002/fld.v78.1.
  • San, O., and R. Maulik. 2018. “Neural Network Closures for Nonlinear Model Order Reduction.” Advances in Computational Mathematics 44 (6): 1717–1750. doi:10.1007/s10444-018-9590-z.
  • San, O., R. Maulik, and M. Ahmed. 2019. “An Artificial Neural Network Framework for Reduced Order Modeling of Transient Flows.” Communications in Nonlinear Science and Numerical Simulation 77: 271–287. doi:10.1016/j.cnsns.2019.04.025.
  • San, O., A. Rasheed, and T. Kvamsdal. 2021. “Hybrid Analysis and Modeling, Eclecticism, and Multifidelity Computing Toward Digital Twin Revolution.” GAMM-Mitteilungen – Surveys for Applied Mathematics and Mechanics 44: Article ID e202100007. https://doi.org/10.1002/gamm.202100007
  • Shahbazi, A. A., and V. Esfahanian. 2019. “Reduced-order Modeling of Lead-acid Battery Using Cluster Analysis and Orthogonal Cluster Analysis Method.” International Journal of Energy Research 43 (13): 6779–6798. https://doi.org/10.1002/er.4645
  • Sirovich, L. 1987. “Turbulence and the Dynamics of Coherent Structures. I. Coherent Structures.” Quarterly of Applied Mathematics 45 (3): 561–571.
  • Srinivasan, P. A., L. Guastoni, H. Azizpour, P. Schlatter, and R. Vinuesa. 2019. “Predictions of Turbulent Shear Flows Using Deep Neural Networks.” Physical Review Fluids 4 (5): Article ID 054603. doi:10.1103/PhysRevFluids.4.054603.
  • Vinuesa, R., H. Azizpour, I. Leite, M. Balaam, V. Dignum, S. Domisch, M. Tegmark, and F. Fuso Nerini. 2020. “The Role of Artificial Intelligence in Achieving the Sustainable Development Goals.” Nature Communications 11 (1): 1–10. doi:10.1038/s41467-019-14108-y.
  • Volkwein, S. 2001. “Optimal Control of a Phase-Field Model Using Proper Orthogonal Decomposition.” ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics 81 (2): 83–97. doi:10.1002/(ISSN)1521-4001.
  • Wang, M., H. X. Li, X. Chen, and Y. Chen. 2016. “Deep Learning-based Model Reduction for Distributed Parameter Systems.” IEEE Transactions on Systems, Man, and Cybernetics: Systems 46 (12): 1664–1674. doi:10.1109/TSMC.2016.2605159.
  • Wang, Z., D. Xiao, F. Fang, R. Govindan, C. C. Pain, and Y. Guo. 2018. “Model Identification of Reduced Order Fluid Dynamics Systems Using Deep Learning.” International Journal for Numerical Methods in Fluids 86 (4): 255–268. doi:10.1002/fld.v86.4.
  • Washabaugh, K., D. Amsallem, M. Zahr, and C Farhat. 2012. “Nonlinear Model Reduction for CFD Problems Using Local Reduced-Order Bases.” In 42nd AIAA Fluid Dynamics Conference and Exhibit, 2686. New Orleans, Louisiana.
  • Weinan, E., and J. G. Liu. 1996. “Essentially Compact Schemes for Unsteady Viscous Incompressible Flows.” Journal of Computational Physics 126 (1): 122–138. doi:10.1006/jcph.1996.0125.
  • Wieland, B. 2015. “Implicit Partitioning Methods for Unknown Parameter Sets.” Advances in Computational Mathematics 41 (5): 1159–1186. doi:10.1007/s10444-015-9404-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.